Search results for: alcoholic fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 528

Search results for: alcoholic fermentation

528 Application of Refractometric Methodology for Simultaneous Determination of Alcohol and Residual Sugar Concentrations during Alcoholic Fermentation Bioprocess of Date Juice

Authors: Boukhiar Aissa, Halladj Fatima, Iguergaziz Nadia, Lamrani yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess is of great importance. In fact, it is a key indicator for monitoring this bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic) are used to the determination of this parameter. However, these techniques are very long and they require: rigorous preparations, sometimes dangerous chemical reagents and/or expensive equipment. In the present study, the date juice is used as the substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of alcoholic fermentation revealed a good correlation (R2=0.98) between initial and final °Brix: °Brixf=0.377×°Brixi. In addition, the relationship between Δ°Brix and alcoholic content of the final product (A,%) has been determined: Δ°Brix/A=1.1. The obtained results allowed us to establish iso-responses abacus, which can be used for the determination of alcohol and residual sugar content, with a mean relative error (MRE) of 5.35%.

Keywords: alcoholic fermentation, date juice, refractometry, residual sugar

Procedia PDF Downloads 310
527 New Methodology for Monitoring Alcoholic Fermentation Processes Using Refractometry

Authors: Boukhiar Aissa, Iguergaziz Nadia, Halladj Fatima, Lamrani Yasmina, Benamara Salem

Abstract:

Determining the alcohol content in alcoholic fermentation bioprocess has a great importance. In fact, it is a key indicator for monitoring this fermentation bioprocess. Several methodologies (chemical, spectrophotometric, chromatographic...) are used to the determination of this parameter. However, these techniques are very long and require: rigorous preparations, sometimes dangerous chemical reagents, and/or expensive equipment. In the present study, the date juice is used as a substrate of alcoholic fermentation. The extracted juice undergoes an alcoholic fermentation by Saccharomyces cerevisiae. The study of the possible use of refractometry as a sole means for the in situ control of this process revealed a good correlation (R2 = 0.98) between initial and final ° Brix: ° Brix f = 0.377× ° Brixi. In addition, we verified the relationship between the variation in final and initial ° Brix (Δ ° Brix) and alcoholic rate produced (A exp): CΔ° Brix / A exp = 1.1. This allows the tracing of abacus isoresponses that permit to determine the alcoholic and residual sugar rates with a mean relative error (MRE) of 5.35%.

Keywords: refractometry, alcohol, residual sugar, fermentation, brix, date, juice

Procedia PDF Downloads 443
526 Effect of Alcoholic and Acetous Fermentations on Phenolic Acids of Kei-Apple (Dovyalis Caffra L.) Fruit

Authors: Neil Jolly, Louisa Beukes, Santiago Benito-SaEz

Abstract:

Kei-apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals. The fruit has increased L-malic, ascorbic, and phenolic acids. Juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation and acetous fermentation using acetic acid bacteria. Saccharomyces cerevisiae+S. pombe wines and vinegars had highest pH. Total acidity, soluble solids and L-malic acid decreased during alcoholic and acetous fermentation with highest in S. cerevisiae wines and vinegars. Volatile acidity was highest in S. pombe vinegars but not different from S. cerevisiae and S. cerevisiae+S. pombe. Gallic acid was highest in S. pombe wines and vinegars. Syringic acid was highest in S. cerevisiae wines and vinegars. S. cerevisiae+S. pombe wines were highest in caffeic, p-coumaric and protocatechuic acids. Schizosaccharomyces pombe vinegars were highest in caffeic and p-coumaric acids. Ferulic and sinapic acids were highest in S. pombe and S. cerevisiae wines, respectively. Chlorogenic acid was most abundant in both wines and vinegars. Saccharomyces cerevisiae+S. pombe and S. cerevisiae had a positive effect on most phenolic acids. Saccharomyces cerevisiae +acetic acid bacteria had an increased effect on syringic and chlorogenic acids. Schizosaccharomyces pombe+acetic acid bacteria resulted in an increase in gallic, caffeic and p-coumaric acids. Acetic acid bacteria had minimal performance with respect to volatile acidity production in comparison to commercial vinegars. Acetic acid bacteria selection should therefore be reconsidered and the decrease of certain phenolic acids during acetous fermentation needs to be investigated.

Keywords: acetic acid bacteria, liquid chromatography, phenolics, saccharomyces cerevisiae, schizosaccharomyces pombe

Procedia PDF Downloads 118
525 Schizosaccharomyces pombe, Saccharomyces cerevisiae Yeasts and Acetic Acid Bacteria in Alcoholic and Acetous Fermentations: Effect on Phenolic Acids of Kei-Apple (Dovyalis caffra L.) Vinegar

Authors: Phillip Minnaar, Neil Jolly, Louisa Beukes, Santiago Benito-Saez

Abstract:

Dovyalis caffra is a tree found on the African continent. Limited information exists on the effect of acetous fermentation on the phytochemicals of Kei-apple fruit. The phytochemical content of vinegars is derived from compounds present in the fruit the vinegar is made of. Kei-apple fruit juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation (AF). Acetous fermentation followed AF, using an acetic acid bacteria consortium as an inoculant. Juice had the lowest pH and highest total acidity (TA). The wine had the highest pH and vinegars lowest TA. Total soluble solids and L-malic acid decreased during AF and acetous fermentation. Volatile acidity concentration was not different among vinegars. Gallic, syringic, caffeic, p-coumaric, and chlorogenic acids increased during acetous fermentation, whereas ferulic, sinapic, and protocatechuic acids decreased. Chlorogenic acid was the most abundant phenolic acid in both wines and vinegars. It is evident from this investigation that Kei-apple vinegar is a source of plant-derived phenolics, which evolved through fermentation. However, the AAB selection showed minimal performance with respect to VA production. Acetic acid bacteria selection for acetous fermentation should be reconsidered, and the reasons for the decrease of certain phenolic acids during acetous fermentation needs to be investigated.

Keywords: acetic acid bacteria, acetous fermentation, liquid chromatography, phenolic acids

Procedia PDF Downloads 110
524 Impact of a Locally-Prepared Fermented Alcoholic Beverage from Jaggery on the Gut Bacterial Profile of the Tea-Tribal Populations of Assam, India

Authors: Rupamoni Thakur, Madhusmita Dehingia, Narayan C. Talukdar, Mojibur R. Khan

Abstract:

The human gut is an extremely active fermentation site and is inhabited by diverse bacterial species. Consumption of alcoholic beverages has been shown to substantially modulate the human gut bacterial profile (GBP) of an individual. Assam, a major north-eastern state of India, is home to a number of tribal populations of which the tea-tribes form a major community. These tea-tribal communities are known to prepare and consume a locally-prepared alcoholic beverage from fermented jaggery, whose chemical composition is unknown. In this study, we demonstrate the effect of daily intake of the locally-prepared alcoholic beverage on the GBP of the tea-tribal communities and correlate it with the changes in the biochemical biomarkers of the population. The fecal bacterial diversity of 40 drinkers and 35 non-drinking healthy individuals were analyzed by polymerase chain reaction (PCR)–denaturing gradient gel electrophoresis (DGGE). The results suggested that the GBP was significantly modulated in the fermented-beverage consuming subjects. Significant difference was also observed in the serum biochemical parameters such as triglyceride, total cholesterol and the liver marker enzymes (ASAT/ALAT and GGT). Further studies to identify the GBP of drinkers vs non-drinkers through Next-generation Sequencing (NGS) analysis and to correlate the changes with the biochemical biomarkers of the population is underway.

Keywords: alcoholic beverage, gut bacterial profile, PCR-DGGE analysis, tea-tribes of India

Procedia PDF Downloads 282
523 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo

Abstract:

Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.

Keywords: cocoa fermentation, fermenter, microbial activity, temperature, turning

Procedia PDF Downloads 231
522 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage

Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic

Abstract:

Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.

Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds

Procedia PDF Downloads 87
521 Extractive Fermentation of Ethanol Using Vacuum Fractionation Technique

Authors: Weeraya Samnuknit, Apichat Boontawan

Abstract:

A vacuum fractionation technique was introduced to remove ethanol from fermentation broth. The effect of initial glucose and ethanol concentrations were investigated for specific productivity. The inhibitory ethanol concentration was observed at 100 g/L. In order to increase the fermentation performance, the ethanol product was removed as soon as it is produced. The broth was boiled at 35°C by reducing the pressure to 65 mBar. The ethanol/water vapor was fractionated for up to 90 wt% before leaving the column. Ethanol concentration in the broth was kept lower than 25 g/L, thus minimized the product inhibition effect to the yeast cells. For batch extractive fermentation, a high substrate utilization rate was obtained at 26.6 g/L.h and most of glucose was consumed within 21 h. For repeated-batch extractive fermentation, addition of glucose was carried out up to 9 times and ethanol was produced more than 8-fold higher than batch fermentation.

Keywords: ethanol, extractive fermentation, product inhibition, vacuum fractionation

Procedia PDF Downloads 221
520 Antihypertensive Activity of Alcoholic Extract of Citrus Paradise Juice in One Clip One Kidney Hypertension Model in Rats

Authors: Lokesh Bhatt, Jayesh Rathod

Abstract:

Hypertension is one of the most prevalent cardiovascular disorder. It is responsible for several other cardiovascular disorders. Although many drugs are available for the treatment of hypertension, still a large population has uncontrolled blood pressure. Thus there is an unmet need for new therapeutic approaches for the same. Fruit juice of Citrus paradise contains several flavonoids with vasodilatory activity. We hypothesized that alcoholic extract of Citrus paradise, which contains flavonoids, might attenuate hypertension. The objective of the present study was to evaluate the antihypertensive activity of alcoholic extract of Citrus paradise fruit juice in rats. Hypertension was induced using one clip one kidney model in rats. The renal artery was occluded for 4 h after removal of one kidney. Once stabilized, the ganglionic blockade was performed followed by removal of the arterial clip from the kidney. Removal of clip resulted in an increase in blood pressure which is due to release of renin from the kidney. Alcoholic extract of Citrus paradise fruit juice was then administered at 50 mg/kg and 100 mg/kg dose by intravenous injection. Blood pressure was monitored continuously. Alcoholic extract of Citrus paradise fruit juice reduced hypertension in dose-dependent manner. Antihypertensive activity was found to be associated with vasodilation. The results of the present study showed antihypertensive potential of alcoholic extract of Citrus paradise fruit juice.

Keywords: citrus paradise, alcoholic extract, one clip one kidney model, vasodilation

Procedia PDF Downloads 255
519 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 172
518 Process Optimization and Microbial Quality of Provitamin A-Biofortified Amahewu, a Non-Alcoholic Maize Based Beverage

Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela, Oluwatosin A. Ijabadeniyi

Abstract:

Provitamin A-biofortified maize has been developed to alleviate Vitamin A deficiency; a major public health problem in developing countries. Amahewu, a non-alcoholic fermented maize based beverage is produced using white maize, which is deficient in Vitamin A. In this study, the suitable processing conditions for the production of amahewu using provitamin A-biofortified maize and the microbial quality of the processed products were evaluated. Provitamin A-biofortified amahewu was produced with reference to traditional processing method. Processing variables were Inoculum types (Malted provitamin A maize, Wheat bran, and lactobacillus mixed starter culture with either malted provitamin A or wheat bran) and concentration (0.5 %, 1 % and 2 %). A total of four provitamin A-biofortified amahewu products after fermentation were subjected to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. pH and TTA were monitored throughout the storage period. Sample of provitamin A-biofortified amahewu were plated and observed every day for 5 days to assess the presence of Aerobic and Anaerobic spore formers, E.coli, Lactobacillus and Mould. The addition of starter culture substantially reduced the fermentation time (6 hour, pH 3.3) compared to those with no addition of starter culture (24 hour pH 3.5). It was observed that Lactobacillus were present from day 0 for all the storage temperatures. The presence of aerobic spore former and mould were observed on day 3. E.coli and Anaerobic spore formers were not present throughout the storage period. These microbial growth were minimal at 4ᴼC while 25ᴼC had higher counts of growth with 37ᴼC having the highest colony count. Throughout the storage period, pH of provitamin A-biofortified amahewu was stable. Provitamin A-biofortified amahewu stored under refrigerated condition (4ᴼC) had better storability compared to 25ᴼC and 37ᴼC. The production and microbial quality of provitamin A-biofortified amahewu might be important in combating Vitamin A Deficiency.

Keywords: biofortification, fermentation, maize, vitamin A deficiency

Procedia PDF Downloads 400
517 Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)

Authors: O. R. Raimi, A. Lateef

Abstract:

Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food.

Keywords: Aspergillus niger, solid state fermentation, kola nut pods, Fructosyltransferase (FTase)

Procedia PDF Downloads 420
516 Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process

Authors: Nho-Eul Song, Sang-Ho Baik

Abstract:

Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method.

Keywords: bacteria, black raspberry, vinegar fermentation, yeast

Procedia PDF Downloads 416
515 Solid State Fermentation of Tamarind (Tamarindus indica) Seed to Produce Food Condiment

Authors: Olufunke O. Ezekiel, Adenike O. Ogunshe, Omotola F. Olagunju, Arinola O. Falola

Abstract:

Studies were conducted on fermentation of tamarind seed for production of food condiment. Fermentation followed the conventional traditional method of fermented locust bean (iru) production and was carried out over a period of three days (72 hours). Samples were withdrawn and analysed for proximate composition, pH, titratable acidity, tannin content, phytic acid content and trypsin inhibitor activity using standard methods. Effects of fermentation on proximate composition, anti-nutritional factors and sensory properties of the seed were evaluated. All data were analysed using ANOVA and means separated using Duncan multiple range test. Microbiological analysis to identify and characterize the microflora responsible for the fermentation of the seed was also carried out. Fermentation had significant effect on the proximate composition on the fermented seeds. As fermentation progressed, there was significant reduction in the anti-nutrient contents. Organisms isolated from the fermenting tamarind seeds were identified as non-pathogenic and common with fermented legumes.

Keywords: condiment, fermentation, legume, tamarind seed

Procedia PDF Downloads 312
514 Optimisation of Stored Alcoholic Beverage Joufinai with Reverse Phase HPLC Method and Its Antioxidant Activities: North- East India

Authors: Dibakar Chandra Deka, Anamika Kalita Deka

Abstract:

Fermented alcoholic beverage production has its own stand among the tribal communities of North-East India. This biological oxidation method is followed by Ahom, Dimasa, Nishi, Miri, Bodo, Rabha tribes of this region. Bodo tribes among them not only prepare fermented alcoholic beverage but also store it for various time periods like 3 months, 6 months, 9 months, 12 months and 15 months etc. They prepare alcoholic beverage Jou (rice beer) following the fermentation of Oryza sativa with traditional yeast culture Amao. Saccharomyces cerevisiae is the main domain strain present in Amao. Dongphangrakep (Scoparia dulcis), Mwkhna (Clerodendrum viscosum), Thalir (Musa balbisina) and Khantal Bilai (Ananas cosmos) are the main plants used for Amao preparation. The stored Jou is known as Joufinai. They store the fermented mixture (rice and Amao) in anaerobic conditions for the preparation of Joufinai. We observed a successive increase in alcohol content from 3 months of storage period with 11.79 ± 0.010 (%, v/v) to 15.48 ± 0.070 (%, v/v) at 15 months of storage by a simple, reproducible and solution based colorimetric method. A positive linear correlation was also observed between pH and ethanol content with storage having correlation coefficient 0.981. Here, we optimised the detection of change in constituents of Joufinai during storage using reverse phase HPLC method. We found acetone, ethanol, acetic acid, glycerol as main constituents present in Joufinai. A very good correlation was observed from 3 months to 15 months of storage periods with its constituents. Increase in glycerol content was also detected with storage periods and hence Joufinai can be use as a precursor of above stated compounds. We also observed antioxidant activities increase from 0.056 ±2.80 mg/mL for 3 months old to 0.078± 5.33 mg/mL (in ascorbic acid equivalents) for 15 month old beverage by DPPH radical scavenging method. Therefore, we aimed for scientific validation of storage procedure used by Bodos in Joufinai production and to convert the Bodos’ traditional alcoholic beverage to a commercial commodity through our study.

Keywords: Amao, correlation, beverage, joufinai

Procedia PDF Downloads 288
513 Analysis of Total Acid in Arabica Coffee Beans after Fermentation with Ohmic Technology

Authors: Reta

Abstract:

Coffee is widely consumed not only because of its typical taste, but coffee has antioxidant properties because of its polyphenols, and it stimulates brain's performance. The main problem with the consumption of coffee is its content of caffeine. Caffeine, when consumed in excess, can increase muscle tension, stimulate the heart, and increase the secretion of gastric acid. In this research, we applied ohmic-based fermentation technology, which is specially designed to mimic the stomach. We used Arabica coffee, which although cheaper than Luwak coffee, has high acidity, which needs to be reduced. Hence, we applied the ohmic technology, varied the time and temperature of the process and measured the total acidity of the coffee to determine optimum fermentation conditions. Results revealed total acidity of the coffee varied with fermentation conditions; 0.32% at 400C and 12 hr, and 0.52% at 400C and 6 hr. The longer the fermentation, the lower was the acidity. The acidity of the mongoose-fermented (natural fermentation) beans was 2.34%, which is substantially higher than the acidity of the ohmic samples. Ohmic-based fermentation technology, therefore, offers improvements in coffee quality, and this is discussed to highlight the potential of ohmic technology in coffee processing.

Keywords: ohmic technology, fermentation, coffee quality, Arabica coffee

Procedia PDF Downloads 305
512 Colour Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique

Authors: Khairul Bariah Sulaiman, Tajul Aris Yang

Abstract:

Fermentation is well known as an essential process in cocoa beans. Besides to develop the precursor of cocoa flavour, it also induce the colour changes in the beans.The fermentation process is reported to be influenced by duration of pod storage and fermentation. Therefore, this study was conducted to evaluate colour of Malaysian cocoa beans and how the pods storage and fermentation duration using shallow box technique will effect on it characteristics. There are two factors being studied ie duration of cocoa pod storage (0, 2, 4, and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial design with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans is inspected for colour changes under artificial light during cut test and divided into four groups of colour namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batch have percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the colour characteristic of the Malaysian dried beans compared to fermentation duration.

Keywords: cocoa beans, colour, fermentation, shallow box

Procedia PDF Downloads 455
511 Yeasts Associated to Spontaneous Date Vinegar Process

Authors: F. Halladj, H. Amellal, S. Benamara

Abstract:

Current consumer trends go towards natural products defined as the products obtained by a traditional manufacturing method. Vinegar is one of those products marketed; it may be industrially obtained by a submerged (fast) or traditional (slow) processes. The latter exhibited a high quality because of its complex microbiological transformations (or two-stage fermentation) by the native must flora. Moreover, although that Acetic acid bacteria have traditionally been considered to play the leading role in vinegar production, some studies have recently highlighted that also yeasts metabolism can affect traditional vinegar chemical properties in a remarkable way. Thus, the aim of this study was to monitor a traditional slow process of vinegar as applied in the south of Algeria using date with hard texture (Degla-Beida variety) to isolate and identify the involved yeasts in order to select them as starter culture. Phenotypic and molecular analysis show that the non-Saccharomyces were the main yeasts species isolated throughout the alcoholic spontaneous fermentation and they included Hanseniaspora guilliermondii and Torulaspora delbrueckii.

Keywords: date vinegar, traditional production, yeasts, Phenotypic, Algeria

Procedia PDF Downloads 401
510 Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation

Authors: Young Min Kim, Deokyeong Choe, Chul Soo Shin

Abstract:

Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step.

Keywords: cultivation process, fed-batch fermentation, monascus pigments, pH stability

Procedia PDF Downloads 271
509 Establishing the Microbial Diversity of Traditionally Prepared Rice Beer of Northeast India to Impact in Increasing Its Shelf Life

Authors: Shreya Borthakur, Adhar Sharma

Abstract:

The North-east states of India are well known for their age-old practice of preparing alcoholic beer from rice and millet. They do so in a traditional way by sprinkling starter cake (inoculum) on cooked rice or millet after which the fermentation starts and eventually, forms the beer. This starter cake has a rich composition of different microbes and medicinal herbs along with the powdered rice dough or maize dough with rice bran. The starter cake microbial composition has an important role in determining the microbial succession and metabolic secretions as the fermentation proceeds from the early to its late stage, thus, giving the beer a unique aroma, taste, and other sensory properties of traditionally prepared beer. Here, We have worked on identifying and characterizing the microbial community in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. A total of 18 microbial strains have been isolated from the starter cake of Monpa tribe, while 10 microbial isolates in that of Galo tribe. A metagenomic approach was applied to enumerate the cultural and non-cultural microbes present in the starter cakes prepared by the Monpa and Galo tribes of Arunachal Pradesh. The findings of the mini-project lays foundation to understand the role of microbes present in the starter cake in the beer’s fermentation process and will aide in future research on re-formulating the starter cakes to prevent the early spoilage of the ready to consume beer as the traditional rice beer has a short shelf-life. The paper concludes with the way forward being controlled CRISPR-Cas9.

Keywords: fermentation, traditional beer, microbial succession, preservation, CRISPR-Cas, food microbiology

Procedia PDF Downloads 85
508 Fermentation with Lactobacillus plantarum CK10 Enhanced Antioxidant Activity of Blueberry Puree

Authors: So Yae Koh, YeonWoo Song, Ji-Yeon Ryu, Jeong Yong Moon, Somi Kim Cho

Abstract:

Blueberry, a perennial shrub, is one of the most popular fruits due to its flavor and strong free radical scavenging properties. In this study, the blueberry puree was fermented by Lactobacillus plantarum CK10 and the antioxidant activities of fermentation products were examined. Various conditions with different supplements (5% sucrose or 10% skim milk) were evaluated for fermentation efficiency and the effects on antioxidant properties. The viable cell count of lactic acid bacteria, pH, total phenolic compounds and flavonoids contents were measured after 7 days of fermentation. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activities were highly enhanced compared to non-fermented blueberry puree after fermentation. Interestingly, the antioxidant activities were greatly increased in the fermentation of blueberry puree alone without supplements. The present results indicate that the blueberry puree fermented by Lactobacillus plantarum CK10 could be used as a potential source of natural antioxidants and these findings will facilitate the utilization of blueberry as a resource for food additive.

Keywords: antioxidant activity, blueberry, lactobacillus plantarum CK10, fermentation

Procedia PDF Downloads 322
507 Multiscale Entropy Analysis of Electroencephalogram (EEG) of Alcoholic and Control Subjects

Authors: Lal Hussain, Wajid Aziz, Imtiaz Ahmed Awan, Sharjeel Saeed

Abstract:

Multiscale entropy analysis (MSE) is a useful technique recently developed to quantify the dynamics of physiological signals at different time scales. This study is aimed at investigating the electroencephalogram (EEG) signals to analyze the background activity of alcoholic and control subjects by inspecting various coarse-grained sequences formed at different time scales. EEG recordings of alcoholic and control subjects were taken from the publically available machine learning repository of University of California (UCI) acquired using 64 electrodes. The MSE analysis was performed on the EEG data acquired from all the electrodes of alcoholic and control subjects. Mann-Whitney rank test was used to find significant differences between the groups and result were considered statistically significant for p-values<0.05. The area under receiver operator curve was computed to find the degree separation between the groups. The mean ranks of MSE values at all the times scales for all electrodes were higher control subject as compared to alcoholic subjects. Higher mean ranks represent higher complexity and vice versa. The finding indicated that EEG signals acquired through electrodes C3, C4, F3, F7, F8, O1, O2, P3, T7 showed significant differences between alcoholic and control subjects at time scales 1 to 5. Moreover, all electrodes exhibit significance level at different time scales. Likewise, the highest accuracy and separation was obtained at the central region (C3 and C4), front polar regions (P3, O1, F3, F7, F8 and T8) while other electrodes such asFp1, Fp2, P4 and F4 shows no significant results.

Keywords: electroencephalogram (EEG), multiscale sample entropy (MSE), Mann-Whitney test (MMT), Receiver Operator Curve (ROC), complexity analysis

Procedia PDF Downloads 352
506 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis

Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong

Abstract:

A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.

Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell

Procedia PDF Downloads 311
505 The Effect of Fermentation and Germination on the Nutrient and Antinutrient Composition of Lima Bean (Phaseolus lunatus) Flour

Authors: P. N. Okeke

Abstract:

Fermentation and germination of legumes have been an ancient practice. In this study, the influence of fermentation and germination on the chemical properties of Lima bean (Phaseolus lunatus) flour were evaluated. The flours were analyzed for their proximate and mineral composition, using the standard assay methods. The result showed that fermentation and germination increased the moisture, protein and ash content of the flours while fiber, fat and carbohydrate were decreased. The protein level of fermented and germinated lima bean increased from 21.06–26.60%. The minerals: iron, copper, zinc, and phosphorous increased due to germination and fermentation. The phytate and tannin levels were drastically reduced in both the fermented and germinated flours. The result of this study revealed that fermentation and germination makes the nutrient in lima beans more accessible as it reduces the anti-nutrients. It is therefore recommended that lima bean be process accordingly for richer and more bio-availability of the nutrients.

Keywords: nutrient, anti-nutrient, fermented, germinated, lima bean flour

Procedia PDF Downloads 353
504 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 75
503 Fermentation of Tolypocladium inflatum to Produce Cyclosporin in Dairy Waste Culture Medium

Authors: Fereshteh Falah, Alireza Vasiee, Farideh Tabatabaei-Yazdi

Abstract:

In this research, we investigated the usage of dairy sludge in the fermentation process and cyclosporin production. This bioactive compound is a metabolite produced by Tolypocladium inflatum. Results showed that about 200 ppm of cyclosporin can be produced in this fermentation. In order to have a proper and specific function, CyA must be free of any impurities, so we need purification. In this downstream processing, we used chromatographic extraction and evaluation of pharmacological activities of cyA. Results showed that the obtained metabolite has very high activity against Aspergilus niger (25mm clear zone). This cyclosporin was isolated for use as an antibiotic. The current research shows that this drug is very vital and commercially very important.

Keywords: fermentation, cyclosporin A, Tolypocladium inflatum, TLC

Procedia PDF Downloads 83
502 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.

Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence

Procedia PDF Downloads 478
501 Impact of Varying Malting and Fermentation Durations on Specific Chemical, Functional Properties, and Microstructural Behaviour of Pearl Millet and Sorghum Flour Using Response Surface Methodology

Authors: G. Olamiti; TK. Takalani; D. Beswa, AIO Jideani

Abstract:

The study investigated the effects of malting and fermentation times on some chemical, functional properties and microstructural behaviour of Agrigreen, Babala pearl millet cultivars and sorghum flours using response surface methodology (RSM). Central Composite Rotatable Design (CCRD) was performed on two independent variables: malting and fermentation times (h), at intervals of 24, 48, and 72, respectively. The results of dependent parameters such as pH, titratable acidity (TTA), Water absorption capacity (WAC), Oil absorption capacity (OAC), bulk density (BD), dispersibility and microstructural behaviour of the flours studied showed a significant difference in p < 0.05 upon malting and fermentation time. Babala flour exhibited a higher pH value at 4.78 at 48 h malted and 81.9 fermentation times. Agrigreen flour showed a higher TTA value at 0.159% at 81.94 h malted and 48 h fermentation times. WAC content was also higher in malted and fermented Babala flour at 2.37 ml g-1 for 81.94 h malted and 48 h fermentation time. Sorghum flour exhibited the least OAC content at 1.67 ml g-1 at 14 h malted and 48 h fermentation times. Agrigreen flour recorded the least bulk density, at 0.53 g ml-1 for 72 h malted and 24 h fermentation time. Sorghum flour exhibited a higher content of dispersibility, at 56.34%, after 24 h malted and 72 h fermented time. The response surface plots showed that increased malting and fermentation time influenced the dependent parameters. The microstructure behaviour of malting and fermentation times of pearl millet varieties and sorghum flours showed isolated, oval, spherical, or polygonal to smooth surfaces. The optimal processing conditions, such as malting and fermentation time for Agrigreen, were 32.24 h and 63.32 h; 35.18 h and 34.58 h for Babala; and 36.75 h and 47.88 h for sorghum with high desirability of 1.00. The validation of the optimum processing malting and fermentation times (h) on the dependent improved the experimented values. Food processing companies can use the study's findings to improve food processing and quality.

Keywords: Pearl millet, malting, fermentation, microstructural behaviour

Procedia PDF Downloads 41
500 Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour

Authors: Ocheme B. Ocheme, Omobolanle O. Oloyede, S. James, Eleojo V. Akpa

Abstract:

The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours.

Keywords: fermentation, flour, functional properties, Moringa

Procedia PDF Downloads 647
499 Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract

Authors: Asato Takaishi, Masashi Nasuhara, Ayuko Itsuki, Kenichi Suga

Abstract:

Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism.

Keywords: fermentation, lactobacillus, Stevia, steviol glycosides, yeast

Procedia PDF Downloads 516