Search results for: Blue Nile Basin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1313

Search results for: Blue Nile Basin

1193 Experimental and Theoretical Studies for Removal of Dyes from Industrial Wastewater Using Bioremediation

Authors: Sakshi Batra, Suresh Gupta, Pratik Pande, Navneet Kaur, Lovdeep Kaur

Abstract:

The objective of this study is removal of Methylene blue dye or reactive orange-16 from industrial waste water or from soil using bioremediation technique. As huge amount of dyes are releasing from textile industry in water and soil environment during dyeing process. In this study, we focused on removal of Methylene blue dye and Reactive orange dye from industrial soil at different initial concentration of dye. An experiment study was carried out at methylene blue dye or Reactive orange-16 dye at varying concentration of both the dye as 50 ppm, 100ppm, 200 ppm, 300 ppm and 400 ppm. Maximum removal is obtained at 16-20 hours Experiments are carried out for pH, Temperature and MSM composition. The final concentration has been observed by UV-VIS. The two species has been isolated from the Industrial effluent. Finally the product analysis has been done by GC-MS.

Keywords: bioremediation, cultural growth, dyes, environment

Procedia PDF Downloads 284
1192 Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand

Authors: Preeyaphorn Kosa, Thanutch Sukwimolseree

Abstract:

The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff.

Keywords: climate, runoff, SWAT, upper Mun River basin

Procedia PDF Downloads 367
1191 Milk Protein Genetic Variation and Haplotype Structure in Sudanse Indigenous Dairy Zebu Cattle

Authors: Ammar Said Ahmed, M. Reissmann, R. Bortfeldt, G. A. Brockmann

Abstract:

Milk protein genetic variants are of interest for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Sudanese native cattle breeds, which have been gradually declining in numbers over the last years due to the breed substitution, and indiscriminate crossbreeding. The genetic variation at three milk protein genes αS1-casein (CSN1S1), αS2-casein (CSN1S2) and ƙ-casein (CSN3) was investigated in 250 animals belonging to five Bos indicus cattle breeds of Sudan (Butana, Kenana, White-nile, Erashy and Elgash). Allele specific primers were designed for five SNPs determine the CSN1S1 variants B and C, the CSN1S2 variants A and B, the CSN3 variants A, B and H. Allele, haplotype frequencies and genetic distances (D) were calculated and the phylogenetic tree was constructed. All breeds were found to be polymorphic for the studied genes. The CSN1S1*C variant was found very frequently (>0.63) in all analyzed breeds with highest frequency (0.82) in White-nile cattle. The CSN1S2*A variant (0.77) and CSN3*A variant (0.79) had highest frequency in Kenana cattle. Eleven haplotypes in casein gene cluster were inferred. Six of all haplotypes occurred in all breeds with remarkably deferent frequencies. The estimated D ranged from 0.004 to 0.049. The most distant breeds were White-nile and Kenana (D 0.0479). The results presented contribute to the genetic knowledge of indigenous cattle and can be used for proper definition and classification of the Sudanese cattle breeds as well as breeding, utilization, and potential development of conservation strategies for local breeds.

Keywords: milk protein, genetic variation, casein haplotype, Bos indicus

Procedia PDF Downloads 401
1190 Predictive Spectral Lithological Mapping, Geomorphology and Geospatial Correlation of Structural Lineaments in Bornu Basin, Northeast Nigeria

Authors: Aminu Abdullahi Isyaku

Abstract:

Semi-arid Bornu basin in northeast Nigeria is characterised with flat topography, thick cover sediments and lack of continuous bedrock outcrops discernible for field geology. This paper presents the methodology for the characterisation of neotectonic surface structures and surface lithology in the north-eastern Bornu basin in northeast Nigeria as an alternative approach to field geological mapping using free multispectral Landsat 7 ETM+, SRTM DEM and ASAR Earth Observation datasets. Spectral lithological mapping herein developed utilised spectral discrimination of the surface features identified on Landsat 7 ETM+ images to infer on the lithology using four steps including; computations of band combination images; band ratio images; supervised image classification and inferences of the lithological compositions. Two complementary approaches to lineament mapping are carried out in this study involving manual digitization and automatic lineament extraction to validate the structural lineaments extracted from the Landsat 7 ETM+ image mosaic covering the study. A comparison between the mapped surface lineaments and lineament zones show good geospatial correlation and identified the predominant NE-SW and NW-SE structural trends in the basin. Topographic profiles across different parts of the Bama Beach Ridge palaeoshorelines in the basin appear to show different elevations across the feature. It is determined that most of the drainage systems in the northeastern Bornu basin are structurally controlled with drainage lines terminating against the paleo-lake border and emptying into the Lake Chad mainly arising from the extensive topographic high-stand Bama Beach Ridge palaeoshoreline.

Keywords: Bornu Basin, lineaments, spectral lithology, tectonics

Procedia PDF Downloads 114
1189 Degradation of Different Organic Contaminates Using Corona Discharge Plasma

Authors: A. H. El-Shazly, A. El-Tayeb, M. F. Elkady, Mona G. E. Ibrahim, Abdelazim M. Negm

Abstract:

In this paper, corona discharge plasma reactor was used for degradation of organic pollution in aqueous solutions in batch reactor. This work examines the possibility of increasing the organic pollution removal efficiency from wastewater using non-thermal plasma. Three types of organic pollution phenol, acid blue 25 and methylene blue are presented to investigate experimentally the amount of organic pollution removal efficiency from wastewater. Measurement results for phenol degradation percentage are 71% in 35 min and 96% when its residence time is 60 min. In addition, the degradation behavior of acid blue 25 utilizing dual pin-to-plate corona discharge plasma system displays a removal efficiency of 82% in 11 min. The complete decolorization was accomplished in 35 min for concentration of acid blue 25 up to 100 ppm. Furthermore, the methylene blue degradation touched up to 85% during 35 min treatment in corona discharge plasma a batch reactor system. The decolorization ratio, conductivity, corona current and discharge energy are considered at various concentration molarity for AlCl3, CaCl2, KCl and NaCl under different molar concentration. It was observed that the attendance of salts at the same concentration level considerably diminished the rate and the extent of decolorization. The research presented that the corona system could be positively utilized in a diversity of organically contaminated at diverse concentrations. Energy consumption requirements for decolorization was considered. The consequences will be valuable for designing the plasma treatment systems appropriate for industrial wastewaters.

Keywords: wastewater treatment, corona discharge, non-thermal plasma, organic pollution

Procedia PDF Downloads 303
1188 Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface

Authors: V. Sivakumar, R. Neelakantan

Abstract:

Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.

Keywords: chandryaan-1, moon mineralogy mapper, mineral, mare orientale, moon

Procedia PDF Downloads 351
1187 Economics of Fish-Plantain Integrated Farm Enterprise in Southern Nigeria

Authors: S. O. Obasa, J. A. Soaga, O. I. Afolabi, N. A. Bamidele, O. E. Babalola

Abstract:

Attempt to improve the income of the rural population is a welcome development in Nigeria. Integrated fish-crop farming has been suggested as a means of raising farm income, reducing wastage and mitigating the risk component in production through the complementarity gain. A feeding trial was carried out to investigate the replacement of maize with fermented unripe plantain (Musa paradisiaca) peel meal in the diet of Nile tilapia, Oreochromis niloticus. The economics of the integrated enterprise was assessed using budgetary analysis techniques. The analysis incorporated the material and labour costs as well as the returns from sale of matured fish and plantain. A total of 60 fingerlings of Nile tilapia (1.70±0.1 g) were stocked at 10 per plastic tank. Two iso-nitrogenous diets containing 35% crude protein in which maize meal was replaced by fermented unripe plantain peel meal at 0% (FUP0/Control diet), and 100% (FUP100) were formulated and prepared. The fingerlings were fed at 5% body weight per day for 56 days. Lowest feed conversion ratio of 1.39 in fish fed diet FUP100 was not significantly different (P > 0.05) from the highest 1.42 of fish fed the Control diet. The highest percentage profit of 88.85% in fish fed diet FUP100 was significantly higher than 66.68% in fish fed diet FUP0, while the profit index of 1.89 in fish fed diet FUP100 was significantly different from 1.67 in fish fed diet FUP0. Therefore, fermented unripe plantain peel meal can completely replace maize in the diet of O. niloticus fingerlings. Profitability assessment shows that the net income from the integration was ₦ 463,000 per hectare and the integration resulted to an increase of ₦ 87,750.00 representing a 12.2% increase than in separate production.

Keywords: fish-crop, income, Nile tilapia, waste management

Procedia PDF Downloads 461
1186 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 39
1185 Mariculture Trials of the Philippine Blue Sponge Xestospongia sp.

Authors: Clairecynth Yu, Geminne Manzano

Abstract:

The mariculture potential of the Philippine blue sponge, Xestospongia sp. was assessed through the pilot sponge culture in the open-sea at two different biogeographic regions in the Philippines. Thirty explants were randomly allocated for the Puerto Galera, Oriental Mindoro culture setup and the other nine were transported to Lucero, Bolinao, Pangasinan. Two different sponge culture methods of the sponge explants- the lantern and the wall method, were employed to assess the production of the Renieramycin M. Both methods have shown to be effective in growing the sponge explants and that the Thin Layer Chromatography (TLC) results have shown that Renieramycin M is present on the sponges. The effect of partial harvesting in the growth and survival rates of the blue sponge in the Puerto Galera setup was also determined. Results showed that a higher growth rate was observed on the partially harvested explants on both culture methods as compared to the unharvested explants.

Keywords: chemical ecology, porifera, sponge, Xestospongia sp.

Procedia PDF Downloads 248
1184 Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne

Abstract:

Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy.

Keywords: omeprazole, bromothymol blue, methyl orange and picric acid, charge transfer complexes

Procedia PDF Downloads 507
1183 Impacts of Climate Change on Water Resources Management in the Mahi River Basin of India

Authors: Y. B. Sharma, K. B. Biswas

Abstract:

This research project examines a 5000 cal yr BP sediment core record to reveal the consequences of human impact and climate variability on the tropical dry forests of the Mahi river basin, western India. To date there has been little research to assess the impact of climate variability and human impact on the vegetation dynamics of this region. There has also been little work to link changes in vegetation cover to documented changes in the basin hydrology over the past 100 years – although it is assumed that the two are closely linked. The key objective of this research project therefore is to understand the driving mechanisms responsible for the abrupt changes in the Mahi river basin as detailed in historical documentation and its impact on water resource management. The Mahi river basin is located in western India (22° 11’-24° 35’ N 72° 46’-74° 52’ E). Mahi river arises in the Malwa Plateau, Madhya Pradesh near Moripara and flows through the uplands and alluvial plain of Rajasthan and Gujarat provinces before draining into the Gulf of Cambay. Palaeoecological procedures (sedimentology, geochemical analysis, C&N isotopes and fossil pollen evidences) have been applied on sedimentary sequences collected from lakes in the Mahi basin. These techniques then facilitate to reconstruct the soil erosion, nutrient cycling, vegetation changes and climatic variability over the last 5000 years. Historical documentation detailing changes in demography, climate and landscape use over the past 100 years in this region will also be collated to compare with the most recent palaeoecological records. The results of the research work provide a detailed record of vegetation change, soil erosion, changes in aridity, and rainfall patterns in the region over the past 5000 years. This research therefore aims to determine the drivers of change and natural variability in the basin. Such information is essential for its current and future management including restoration.

Keywords: human impact, climate variability, vegetation cover, hydrology, water resource management, Mahi river basin, sedimentology, geochemistry, fossil pollen, nutrient cycling, vegetation changes, palaeoecology, aridity, rainfall, drivers of change

Procedia PDF Downloads 339
1182 Insights on the Social-Economic Implications of the Blue Economy Concept on Coastal Tourism in Tonga

Authors: Amelia Faotusia

Abstract:

The blue economy concept was coined by Pacific nations in recognition of the importance of sustainably managing their extensive marine territories. This is especially important for major ocean-based economic sectors of Pacific economies, such as coastal tourism. There is an absence of research, however, on the key ways in which the blue economy concept has emerged in discourse and public policy in Pacific countries, as well as how it articulates with coastal tourism. This research helps to fill such a gap with a specific focus on Tonga through the application of a post-positivist research approach to conduct a desktop study of relevant national documents and qualitative interviews with relevant government staff, civil society organizations, and tourism operators. The findings of the research reflect the importance of institutional integration and partnerships for a successful blue economy transition and are presented in the form of two case studies corresponding to two sub-sectors of Tonga’s coastal tourism sector: (i) the whale-watching and swimming industry, and (ii) beach resorts and restaurants. A thematic analysis applied to the interview data of both cases then enabled the identification of key areas and issues for socio-economic policy intervention and recommendations in support of blue economy transitions in Tonga’s coastal tourism sector. Examples of the relevant areas and issues that emerged included the importance of foreign direct investment, local market access, community-based special management areas, as well as the need to address the anthropogenic impacts of tropical cyclones, whale tourism, plastic litter on coastal assets, and ecosystems. Policy and practical interventions in support of addressing such issues include a proposed restructuring of the whale-watching and swimming licensing system; integration of climate resilience, adaptation, and capacity building as priorities of local blue economy interventions; as well as strengthening of the economic sustainability dimension of blue economy policies. Finally, this research also revealed the need for further specificity and research on the influence and value of local Tongan culture and traditional knowledge, particularly within existing customary marine tenure systems, on Tonga’s national and sectoral blue economy policies and transitions.

Keywords: blue economy, coastal tourism, integrated ocean management, ecosystem resilience

Procedia PDF Downloads 62
1181 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori

Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh

Abstract:

An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.

Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)

Procedia PDF Downloads 227
1180 Application of Biopolymer for Adsorption of Methylene Blue Dye from Simulated Effluent: A Green Method for Textile Industry Wastewater Treatment

Authors: Rabiya, Ramkrishna Sen

Abstract:

The textile industry releases huge volume of effluent containing reactive dyes in the nearby water bodies. These effluents are significant source of water pollution since most of the dyes are toxic in nature. Moreover, it scavenges the dissolved oxygen essential to the aquatic species. Therefore, it is necessary to treat the dye effluent before it is discharged in the nearby water bodies. The present study focuses on removing the basic dye methylene blue from simulated wastewater using biopolymer. The biopolymer was partially purified from the culture of Bacillus licheniformis by ultrafiltration. Based on the elution profile of the biopolymer from ion exchange column, it was found to be a negatively charged molecule. Its net anionic nature allows the biopolymer to adsorb positively charged molecule, methylene blue. The major factors which influence the removal of dye by the biopolymer such as incubation time, pH, initial dye concentration were evaluated. The methylene blue uptake by the biopolymer is more (14.84 mg/g) near neutral pH than in acidic pH (12.05mg/g) of the water. At low pH, the lower dissociation of the dye molecule as well as the low negative charge available on the biopolymer reduces the interaction between the biopolymer and dye. The optimum incubation time for maximum removal of dye was found to be 60 min. The entire study was done with 25 mL of dye solution in 100 mL flask at 25 °C with an amount of 11g/L of biopolymer. To study the adsorption isotherm, the dye concentration was varied in the range of 25mg/L to 205mg/L. The dye uptake by the biopolymer against the equilibrium concentration was plotted. The plot indicates that the adsorption of dye by biopolymer follows the Freundlich adsorption isotherm (R-square 0.99). Hence, these studies indicate the potential use of biopolymer for the removal of basic dye from textile wastewater in an ecofriendly and sustainable way.

Keywords: biopolymer, methylene blue dye, textile industry, wastewater

Procedia PDF Downloads 108
1179 Synthesis of Graphene Oxide/Chitosan Nanocomposite for Methylene Blue Adsorption

Authors: S. Melvin Samuel, Jayanta Bhattacharya

Abstract:

In the present study, a graphene oxide/chitosan (GO-CS) composite material was prepared and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The synthesized GO-CS adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopes (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermogravimetric analysis (TGA). The removal of MB was conducted in batch mode. The effect of parameters influencing the adsorption of MB such as pH of the solution, initial MB concentration, shaking speed, contact time and adsorbent dosage were studied. The results showed that the GO-CS composite material has high adsorption capacity of 196 mg/g of MB solution at pH 9.0. Further, the adsorption of MB on GO-CS followed pseudo second order kinetics and equilibrium adsorption data well fitted by the Langmuir isotherm model. The study suggests that the GO-CS is a favorable adsorbent for the removal of MB from aqueous solution.

Keywords: Methylene blue, Graphene oxide-chitosan, Isotherms, Kinetics.

Procedia PDF Downloads 145
1178 Potential Impacts of Warming Climate on Contributions of Runoff Components from Two Catchments of Upper Indus Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Ahuti Shrestha, Iram Bano

Abstract:

The hydrology of Upper Indus basin is not recognized well due to the intricacies in the climate and geography, and the scarcity of data above 5000 meters above sea level where most of the precipitation falls in the form of snow. The main objective of this study is to measure the contributions of different components of runoff in Upper Indus basin. To achieve this goal, the Modified positive degree-day model (MPDDM) was used to simulate the runoff and investigate its components in two catchments of Upper Indus basin, Hunza and Gilgit River basins. These two catchments were selected because of their different glacier coverage, contrasting area distribution at high altitudes and significant impact on the Upper Indus River flow. The components of runoff like snow-ice melt and rainfall-base flow were identified by the model. The simulation results show that the MPDDM shows a good agreement between observed and modeled runoff of these two catchments and the effects of snow-ice are mainly reliant on the catchment characteristics and the glaciated area. For Gilgit River basin, the largest contributor to runoff is rain-base flow, whereas large contribution of snow-ice melt observed in Hunza River basin due to its large fraction of glaciated area. This research will not only contribute to the better understanding of the impacts of climate change on the hydrological response in the Upper Indus, but will also provide guidance for the development of hydropower potential, water resources management and offer a possible evaluation of future water quantity and availability in these catchments.

Keywords: future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 328
1177 Mathematical Model for Output Yield Obtained by Single Slope Solar Still

Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath

Abstract:

The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.

Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination

Procedia PDF Downloads 95
1176 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 52
1175 Impact and Risk Assessment of Climate Change on Water Quality: A Study in the Errer River Basin, Taiwan

Authors: Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Pei-Chih Wu, Hsien-Chang Wang

Abstract:

Taiwan, a climatically challenged island, has always been keen on the issue of water resource management due to its limitations in water storage. Since water resource management has been the focal point of many adaptations to climate change, there has been a lack of attention on another issue, water quality. This study chooses the Errer River Basin as the experimental focus for water quality in Taiwan. With the Errer River Basin being one of the most polluted rivers in Taiwan, this study observes the effects of climate change on this river over a period of time. Taiwan is also targeted by multiple typhoons every year, the heavy rainfall and strong winds create problems of pollution being carried to different river segments, including into the ocean. This study aims to create an impact and risk assessment on Errer River Basin, to show the connection from climate change to potential extreme events, which in turn could influence water quality and ultimately human health. Using dynamic downscaling, this study narrows the information from a global scale to a resolution of 1 km x 1 km. Then, through interpolation, the resolution is further narrowed into a resolution of 200m x 200m, to analyze the past, present, and future of extreme events. According to different climate change scenarios, this study designs an assessment index on the vulnerability of the Errer River Basin. Through this index, Errer River inhabitants can access advice on adaptations to climate change and act accordingly.

Keywords: climate change, adaptation, water quality, risk assessment

Procedia PDF Downloads 322
1174 Geomorphologic Evolution of the Southern Habble-Rud River Basin, North of Iran

Authors: Maryam Jaberi, Siavosh Shayan, Mojtaba Yamani

Abstract:

Habble-Rud River basin (HR), up to 100 km length, one of the largest watersheds which drain into deserts to the north of Central Iran (Dasht-e Kavir). This stream is oblique with the NE-SW trending, flow in the southern range of central Alborz Mountains and the northern border of Central Iran. The end of the ~17 km suddenly change direction and with the southern trending to have a morphology which meanders passes through the Alborz Mountain ridge and flows into the Garmsar plain where it forms one of the largest alluvial fans in Iran, i.e. the vast Garmsar alluvial fan with an area of 476 km2. This study was carried out through morphometric analyses, longitudinal river profiles, and study of geomorpholic evidence such as fluvial terraces, gypsum-salt domes, seismic data, and satellite images. This study aimed to investigate the changes in the pattern of rivers in the southern part of the HR river basin. The southern part of HR river basin located at the southern foothills of the Central Alborz is characterized the thrust faults (Sorkheh-Kalut and Garmsar faults), folds,diapirs and arid climate. The activity of more than 10 salt domes that belong to the Oligocene-Miocene period has considerably influenced the pattern of streams in this region. Dissolution of these domes has not only reduced the quality of water and soil resources, but also has led to the formation of badlands and gullies.Our results indicated that the pattern of rivers in the southern part of HR river basin was influenced by discharge of the HR river in Quaternary, geological structure, subsidence of Central Iran and vertical uplift of Alborz mountain. These agents caused the formation meanders in the southern part of the HR River and evaluation of the seasonal rivers like Shoor-Darre and Garmabsar.

Keywords: geomorphologic evaluation, rivers pattern, Habble-Rud River basin, seasonal rivers

Procedia PDF Downloads 479
1173 Groundwater Vulnerability of Halabja-Khurmal Sub-Basin

Authors: Lanja F. Rauf, Salahalddin S. Ali, Nadhir Al-Ansari

Abstract:

Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively.

Keywords: groundwater vulnerability, modified DRASTIC, land-use, nitrate pollution, water quality index

Procedia PDF Downloads 64
1172 Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India

Authors: Jaypalsinh B. Parmar, Pintu Nakrani, Ashish Chaurasia

Abstract:

Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated.

Keywords: CartoDEM, Digital Elevation Model, GPS, lower Tapi basin

Procedia PDF Downloads 331
1171 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 472
1170 Potential Effects of Climate Change on Streamflow, Based on the Occurrence of Severe Floods in Kelantan, East Coasts of Peninsular Malaysia River Basin

Authors: Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Mohd. Khairul Amri Kamarudin, Azman Azid, Siti Humaira Haron, Muhammad Hafiz Md. Saad

Abstract:

Malaysia is a country in Southeast Asia that constantly exposed to flooding and landslide. The disaster has caused some troubles such loss of property, loss of life and discomfort of people involved. This problem occurs as a result of climate change leading to increased stream flow rate as a result of disruption to regional hydrological cycles. The aim of the study is to determine hydrologic processes in the east coasts of Peninsular Malaysia, especially in Kelantan Basin. Parameterized to account for the spatial and temporal variability of basin characteristics and their responses to climate variability. For hydrological modeling of the basin, the Soil and Water Assessment Tool (SWAT) model such as relief, soil type, and its use, and historical daily time series of climate and river flow rates are studied. The interpretation of Landsat map/land uses will be applied in this study. The combined of SWAT and climate models, the system will be predicted an increase in future scenario climate precipitation, increase in surface runoff, increase in recharge and increase in the total water yield. As a result, this model has successfully developed the basin analysis by demonstrating analyzing hydrographs visually, good estimates of minimum and maximum flows and severe floods observed during calibration and validation periods.

Keywords: east coasts of Peninsular Malaysia, Kelantan river basin, minimum and maximum flows, severe floods, SWAT model

Procedia PDF Downloads 230
1169 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite

Authors: Rachna, Uma Shanker

Abstract:

Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.

Keywords: nanocomposite, phenols, photodegradation, sunlight, water

Procedia PDF Downloads 85
1168 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 208
1167 Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India

Authors: K. Mirudhula, R. Saravanan

Abstract:

Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system.

Keywords: lower Bhavani basin, erode, groundwater flow modeling, irrigation practice, lined canal system

Procedia PDF Downloads 272
1166 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan

Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla

Abstract:

Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.

Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation

Procedia PDF Downloads 114
1165 Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran)

Authors: Hadi Allafta, Christian Opp

Abstract:

Soil erosion is a major concern in the Shatt Al-Arab basin owing to the steepness of its topography as well as the remarkable altitudinal deference between the upstream and downstream parts of the basin. Such conditions resulted in soil vulnerability to erosion; huge amounts of soil are annually transported, creating enormous implications such as land degradation, structure damage, biodiversity loss, productivity decline, etc. Thus, evaluation of soil erosion risk and its spatial distribution is crucial to build adatabase for efficient control measures. The present study used revised universal soil loss equation (RUSLE) model integrated with Geographic Information System (GIS) for depicting soil erosion hazard zones in the Shatt Al-Arab basin. The RUSLE model incorporated several parameters such as rainfall-runoff erosivity, soil erodibility, slope length and steepness, land cover and management, and conservation support practice for soil erosion zonation. High to medium soil loss of 100 to 20 ton perhectare per year represents around 25% of the basin area, while the areas of low soil loss of less than 20 ton per hectare per year occupied the rest of the total area. The high soil loss rates are linked to areas of high rainfall levels, loamy soil domination, elevated terrains/plateau margins with steep side slope, and high cultivation activities. The findings of the current study can be useful for managers and policy makers in the implementation of a suitable conservation program to reduce soil erosion or to recommend soil conservation acts if development projects are to be continued at regions of high soil erosion risk.

Keywords: geographic information system, revised universal soil loss equation, shatt Al-Arab basin, soil erosion

Procedia PDF Downloads 91
1164 Biological Control of Blue Mold Disease of Grapes by Pichia anomala Supplemented by Chitosan and Its Possible Control Mechanism

Authors: Esa Abiso Godana, Qiya Yang, Kaili Wang, Zhang Hongyin, Xiaoyun Zhang, Lina Zhao

Abstract:

Blue mold decay caused by Penicillium expansum is among the recent identified diseases of grapes (Vitis vinifera). The increasing concern about use of chemical substance and pesticide in postharvest fruit push the trends of research toward biocontrol strategies which are more sustainable and ecofriendly. In this study, we determined the biocontrol efficacy of Pichia anomala alone and supplemented with 1% chitosan in the grapefruit against blue mold disease caused by P. expansum. The result showed that 1% chitosan better enhances the biocontrol efficacy P. anomala. Chitosan (1% w/v) also improved the number of population of P. anomala in grape wounds, surface and on nutrient yeast dextrose broth (NYDB). P. anomala supplemented with 1% w/v chitosan significantly reduced the disease incidence, lesion diameter and natural decay of grapefruits without affecting the fruit quality as compared to the control. The scanned electron microscope (SEM) concisely illustrates how the high number of yeast cells on the wounds reduced the growth of P. expansum. P. anomala alone or P. anomala supplemented with 1% w/v chitosan are presented as a potential biocontrol alternative against the postharvest blue mold of grapefruit.

Keywords: biocontrol, Pichia anomala, chitosan, Penicillium expansum, grape

Procedia PDF Downloads 82