Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 196

Search results for: runoff

196 Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran

Authors: L.Jowkar. M.Samiee

Abstract:

Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin.

Keywords: Arc CN-Run off, rain-runoff, return period, watershed

Procedia PDF Downloads 42
195 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 158
194 Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand

Authors: Preeyaphorn Kosa, Thanutch Sukwimolseree

Abstract:

The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff.

Keywords: climate, runoff, SWAT, upper Mun River basin

Procedia PDF Downloads 286
193 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 168
192 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: flood, HEC-HMS, prediction, rainfall, runoff

Procedia PDF Downloads 264
191 Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study

Authors: Fatema Akram, Mohammad Golam Rasul, Mohammad Masud Kamal Khan, Md. Sharif Imam Ibne Amir

Abstract:

A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated storm-water modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for sub-catchments were simulated and the runoff from the sub-catchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area.

Keywords: ARI, design storm, IFD, rainfall temporal pattern, routing techniques, surface runoff, XPSTORM

Procedia PDF Downloads 333
190 Riparian Buffer Strips’ Capability of E. coli Removal in New York Streams

Authors: Helen Sanders, Joshua Cousins

Abstract:

The purpose of this study is to ascertain whether riparian buffer strips could be used to reduce Escherichia Coli (E. coli) runoff into streams in Central New York. Mainstream methods currently utilized to reduce E. coli runoff include fencing and staggered fertilizing plans for agriculture. These methods still do not significantly limit E. coli and thus, pose a serious health risk to individuals who swim in contaminated waters or consume contaminated produce. One additional method still in research development involves the planting of vegetated riparian buffers along waterways. Currently, riparian buffer strips are primarily used for filtration of nitrate and phosphate runoff to slow erosion, regulate pH and, improve biodiversity within waterways. For my research, four different stream sites were selected for the study, in which rainwater runoff was collected at both the riparian buffer and the E. coli sourced runoff upstream. Preliminary results indicate that there is an average 70% decrease in E. coli content in streams at the riparian buffer strips compared to upstream runoff. This research could be utilized to include vegetated buffer planting as a method to decrease manure runoff into essential waterways.

Keywords: Escherichia coli, riparian buffer strips, vegetated riparian buffers, runoff, filtration

Procedia PDF Downloads 33
189 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 301
188 The Relationship between Land Use Change and Runoff

Authors: Thanutch Sukwimolseree, Preeyaphorn Kosa

Abstract:

Many problems are occurred in watershed due to human activity and economic development. The purpose is to determine the effects of the land use change on surface runoff using land use map on 1980, 2001 and 2008 and daily weather data during January 1, 1979 to September 30, 2010 applied to SWAT. The results can be presented that the polynomial equation is suitable to display that relationship. These equations for land use in 1980, 2001 and 2008 are consisted of y = -0.0076x5 + 0.1914x4–1.6386x3 + 6.6324x2–8.736x + 7.8023(R2 = 0.9255), y = -0.0298x5 + 0.8794x4 - 9.8056x3 + 51.99x2 - 117.04x + 96.797; (R2 = 0.9186) and y = -0.0277x5 + 0.8132x4 - 8.9598x3 + 46.498x2–101.83x +81.108 (R2 = 0.9006), respectively. Moreover, if the agricultural area is the largest area, it is a sensitive parameter to concern surface runoff.

Keywords: land use, runoff, SWAT, upper Mun River basin

Procedia PDF Downloads 294
187 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia

Authors: Suzana Ramli, Wardah Tahir

Abstract:

Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.

Keywords: surface runoff, geographic information system, curve number method, environment

Procedia PDF Downloads 183
186 Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model

Authors: F. Esfandyari Darabad, Z. Samadi

Abstract:

The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation.

Keywords: curve number, khiyav river basin, runoff estimation, SCS

Procedia PDF Downloads 503
185 Runoff Estimation Using NRCS-CN Method

Authors: E. K. Naseela, B. M. Dodamani, Chaithra Chandran

Abstract:

The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.6Keywords: curve number, GIS, remote sensing, runoff

Procedia PDF Downloads 447
184 Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud

Authors: Mohammad Reza Kavianpour, Arsalan Behzadifard Pour, Ali Aghazadeh Cloudy, Abolfazl Moqimi

Abstract:

In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone.

Keywords: flood management, SWMM, runoff, flood zone

Procedia PDF Downloads 491
183 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie

Abstract:

In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 315
182 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 323
181 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia

Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop

Abstract:

Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.

Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia

Procedia PDF Downloads 302
180 Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran

Authors: Mohammad Reza Dahmardeh Ghaleno, Mohammad Nohtani, Saeedeh Khaledi

Abstract:

Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively.

Keywords: watershed simulation, WetSpa, runoff, flood prediction

Procedia PDF Downloads 237
179 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin

Authors: Abolghasem Akbari

Abstract:

The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.

Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff

Procedia PDF Downloads 178
178 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 47
177 Simulating the Surface Runoff for the Urbanized Watershed of Mula-Mutha River from Western Maharashtra, India

Authors: Anargha A. Dhorde, Deshpande Gauri, Amit G. Dhorde

Abstract:

Mula-Mutha basin is one of the speedily urbanizing watersheds, wherein two major urban centers, Pune and Pimpri-Chinchwad, have developed at a shocking rate in the last two decades. Such changing land use/land cover (LULC) is prone to hydrological problems and flash floods are a frequent, eventuality in the lower reaches of the basin. The present research brings out the impact of varying LULC, impervious surfaces on urban surface hydrology and generates storm-runoff scenarios for the hydrological units. The two multi-temporal satellite images were processed and supervised classification is performed with > 75% accuracy. The built-up has increased from 14.4% to 34.37% in the 28 years span, which is concentrated in and around the Pune-PCMC region. Impervious surfaces that were obtained by population calibrated multiple regression models. Almost 50% area of the watershed is impervious, which attribute to increase surface runoff and flash floods. The SCS-CN method was employed to calculate surface runoff of the watershed. The comparison between calculated and measured values of runoff was performed in a statistically precise way which shows no significant difference. Increasing built-up areas, as well as impervious surface areas due to rapid urbanization and industrialization, may lead to generating high runoff volumes in the basin especially in the urbanized areas of the watershed and along the major transportation arteries. Simulations generated with 50 mm and 100 mm rainstorm depth conspicuously noted that most of the changes in terms of increased runoff are constricted to the highly urbanized areas. Considering whole watershed area, the runoff values 39 m³ generated with 1'' rainfall whereas only urbanized areas of the basin (Pune and Pimpari-Chinchwad) were generated 11154 m³ runoff. Such analysis is crucial in providing information regarding their intensity and location, which proves instrumental in their analysis in order to formulate proper mitigation measures and rehabilitation strategies.

Keywords: land use/land cover, LULC, impervious surfaces, surface hydrology, storm-runoff scenarios

Procedia PDF Downloads 65
176 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 440
175 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 108
174 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train

Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof

Abstract:

Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.

Keywords: pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train

Procedia PDF Downloads 38
173 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation

Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos

Abstract:

A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.

Keywords: rainfall, runoff, hydrologic design, PMF

Procedia PDF Downloads 165
172 Hydrological Modeling and Climate Change Impact Assessment Using HBV Model, A Case Study of Karnali River Basin of Nepal

Authors: Sagar Shiwakoti, Narendra Man Shakya

Abstract:

The lumped conceptual hydrological model HBV is applied to the Karnali River Basin to estimate runoff at several gauging stations and to analyze the changes in catchment hydrology and future flood magnitude due to climate change. The performance of the model is analyzed to assess its suitability to simulate streamflow in snow fed mountainous catchments. Due to the structural complexity, the model shows difficulties in modeling low and high flows accurately at the same time. It is observed that the low flows were generally underestimated and the peaks were correctly estimated except for some sharp peaks due to isolated precipitation events. In this study, attempt has been made to evaluate the importance of snow melt discharge in the runoff regime of the basin. Quantification of contribution of snowmelt to annual, summer and winter runoff has been done. The contribution is highest at the beginning of the hot months as the accumulated snow begins to melt. Examination of this contribution under conditions of increased temperatures indicate that global warming leading to increase in average basin temperature will significantly lead to higher contributions to runoff from snowmelt. Forcing the model with the output of HadCM3 GCM and the A1B scenario downscaled to the station level show significant changes to catchment hydrology in the 2040s. It is observed that the increase in runoff is most extreme in June - July. A shift in the hydrological regime is also observed.

Keywords: hydrological modeling, HBV light, rainfall runoff modeling, snow melt, climate change

Procedia PDF Downloads 412
171 Determination of the Runoff Coefficient in Urban Regions, an Example from Haifa, Israel

Authors: Ayal Siegel, Moshe Inbar, Amatzya Peled

Abstract:

This study examined the characteristic runoff coefficient in different urban areas. The main area studied is located in the city of Haifa, northern Israel. Haifa spreads out eastward from the Mediterranean seacoast to the top of the Carmel Mountain range with an elevation of 300 m. above sea level. For this research project, four watersheds were chosen, each characterizing a different part of the city; 1) Upper Hadar, a spacious suburb on the upper mountain side; 2) Qiryat Eliezer, a crowded suburb on a level plane of the watershed; 3) Technion, a large technical research university which is located halfway between the top of the mountain range and the coast line. 4) Keret, a remote suburb, on the southwestern outskirts of Haifa. In all of the watersheds found suitable, instruments were installed to continuously measure the water level flowing in the channels. Three rainfall gauges scattered in the study area complete the hydrological requirements for this research project. The runoff coefficient C in peak discharge events was determined by the Rational Formula. The main research finding is the significant relationship between the intensity of rainfall, and the impervious area which is connected to the drainage system of the watershed. For less intense rainfall, the full potential of the connected impervious area will not be exploited. As a result, the runoff coefficient value decreases as do the peak discharge rate and the runoff yield from the storm event. The research results will enable application to other areas by means of hydrological model to be be set up on GIS software that will make it possible to estimate the runoff coefficient of any given city watershed.

Keywords: runoff coefficient, rational method, time of concentration, connected impervious area.

Procedia PDF Downloads 257
170 Land Use Sensitivity Map for the Extreme Flood Events in the Kelantan River Basin

Authors: Nader Saadatkhah, Jafar Rahnamarad, Shattri Mansor, Zailani Khuzaimah, Arnis Asmat, Nor Aizam Adnan, Siti Noradzah Adam

Abstract:

Kelantan river basin as a flood prone area at the east coast of the peninsular Malaysia has suffered several flood and mudflow events in the recent years. The current research attempted to assess the land cover changes impact in the Kelantan river basin focused on the runoff contributions from different land cover classes and the potential impact of land cover changes on runoff generation. In this regards, the hydrological regional modeling of rainfall induced runoff event as the improved transient rainfall infiltration and grid based regional model (Improved-TRIGRS) was employed to compute rate of infiltration, and subsequently changes in the discharge volume in this study. The effects of land use changes on peak flow and runoff volume was investigated using storm rainfall events during the last three decades.

Keywords: improved-TRIGRS model, land cover changes, Kelantan river basin, flood event

Procedia PDF Downloads 303
169 Pollutant Loads of Urban Runoff from a Mixed Residential-Commercial Catchment

Authors: Carrie Ho, Tan Yee Yong

Abstract:

Urban runoff quality for a mixed residential-commercial land use catchment in Miri, Sarawak was investigated for three storm events in 2011. Samples from the three storm events were tested for five water quality parameters, Namely, TSS, COD, BOD5, TP, and Pb. Concentration of the pollutants were found to vary significantly between storms, but were generally influenced by the length of antecedent dry period and the strength of rainfall intensities. Runoff from the study site showed a significant level of pollution for all the parameters investigated. Based on the National Water Quality Standards for Malaysia (NWQS), stormwater quality from the study site was polluted and exceeded class III water for TSS and BOD5 with maximum EMCs of 177 and 24 mg/L, respectively. Design pollutant load based on a design storm of 3-month average recurrence interval (ARI) for TSS, COD, BOD5, TP, and Pb were estimated to be 40, 9.4, 5.4, 1.7, and 0.06 kg/ha, respectively. The design pollutant load for the pollutants can be used to estimate loadings from similar catchments within Miri City.

Keywords: mixed land-use, urban runoff, pollutant load, national water quality

Procedia PDF Downloads 220
168 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses

Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam

Abstract:

The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.

Keywords: synthetic mulch, runoff, evaporation, infiltration

Procedia PDF Downloads 39
167 Transformation of the Ili Delta Ecosystems Related to the Runoff Control of the Ile-Balkhash Basin Rivers

Authors: Ruslan Salmurzauli, Sabir Nurtazin, Buho Hoshino, Niels Thevs, A. B. Yeszhanov, Aiman Imentai

Abstract:

This article presents the results of a research on the transformation of the diverse ecosystems of the Ili delta during the period 1979-2014 based on the analysis of the hydrological regime dynamics, weather conditions and satellite images. Conclusions have been drawn on the decisive importance of the water runoff of the Ili River in the negative changes and environmental degradation in delta areas over the past forty-five years. The increase of water consumption in the Chinese and Kazakhstan parts of the Ili-Balkhash basin caused desiccation and desertification of many hydromorphic delta ecosystems and the reduction of water flow into Lake Balkhash. We demonstrate that a significant reduction of watering of the delta areas could drastically accelerate the aridization and degradation of the hydromorphic ecosystems. Under runoff decrease, a transformation process of the delta ecosystems begins from the head part and gradually spread northward to the periphery of the delta. The desertification is most clearly expressed in the central and western parts of the delta areas.

Keywords: Ili-Balkhash basin, Ili river delta, runoff, hydrological regime, transformation of ecosystems, remote sensing

Procedia PDF Downloads 322