Search results for: regional climate model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19291

Search results for: regional climate model

19291 The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future.

Keywords: climate change, climate impact, air quality, air pollution, Thailand

Procedia PDF Downloads 317
19290 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 268
19289 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh

Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran

Abstract:

In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.

Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques

Procedia PDF Downloads 213
19288 Projection of Climate Change over the Upper Ping River Basin Using Regional Climate Model

Authors: Chakrit Chotamonsak, Eric P. Salathé Jr, Jiemjai Kreasuwan

Abstract:

Dynamical downscaling of the ECHAM5 global climate model is applied at 20-km horizontal resolution using the WRF regional climate model (WRF-ECHAM5), to project changes from 1990–2009 to 2045–2064 of temperature and precipitation over the Upper Ping River Basin. The analysis found that monthly changes in daily temperature and precipitation over the basin for the 2045-2064 compared to the 1990-2009 are revealed over the basin all months, with the largest warmer in December and the smallest warmer in February. The future simulated precipitation is smaller than that of the baseline value in May, July and August, while increasing of precipitation is revealed during pre-monsoon (April) and late monsoon (September and October). This means that the rainy season likely becomes longer and less intensified during the rainy season. During the cool-dry season and hot-dry season, precipitation is substantial increasing over the basin. For the annual cycle of changes in daily temperature and precipitation over the upper Ping River basin, the largest warmer in the mean temperature over the basin is 1.93 °C in December and the smallest is 0.77 °C in February. Increase in nighttime temperature (minimum temperature) is larger than that of daytime temperature (maximum temperature) during the dry season, especially in wintertime (November to February), resulted in decreasing the diurnal temperature range. The annual and seasonal changes in daily temperature and precipitation averaged over the basin. The annual mean rising are 1.43, 1.54 and 1.30 °C for mean temperature, maximum temperature and minimum temperature, respectively. The increasing of maximum temperature is larger than that of minimum temperature in all months during the dry season (November to April).

Keywords: climate change, regional climate model, upper Ping River basin, WRF

Procedia PDF Downloads 332
19287 On Regional Climate Singularity: On Example of the Territory of Georgia

Authors: T. Davitashvili

Abstract:

In this paper, some results of numerical simulation of the air flow dynamics in the troposphere over the Caucasus Mountains taking place in conditions of nonstationarity of large-scale undisturbed background flow are presented. Main features of the atmospheric currents changeability while air masses are transferred from the Black Sea to the land’s surface had been investigated. In addition, the effects of thermal and advective-dynamic factors of atmosphere on the changes of the West Georgian climate have been studied. It was shown that non-proportional warming of the Black Sea and Colkhi lowland provokes the intensive strengthening of circulation and effect of climate cooling in the western Georgia.

Keywords: regional climate, numerical simulation, local circulation, orographic effect

Procedia PDF Downloads 446
19286 Regional Changes under Extreme Meteorological Events

Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel

Abstract:

The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.

Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)

Procedia PDF Downloads 364
19285 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia

Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova

Abstract:

Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.

Keywords: biodiversity, climate change, Norway spruce forests, gap model

Procedia PDF Downloads 240
19284 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 80
19283 Climate Change Effects in a Mediterranean Island and Streamflow Changes for a Small Basin Using Euro-Cordex Regional Climate Simulations Combined with the SWAT Model

Authors: Pier Andrea Marras, Daniela Lima, Pedro Matos Soares, Rita Maria Cardoso, Daniela Medas, Elisabetta Dore, Giovanni De Giudici

Abstract:

Climate change effects on the hydrologic cycle are the main concern for the evaluation of water management strategies. Climate models project scenarios of precipitation changes in the future, considering greenhouse emissions. In this study, the EURO-CORDEX (European Coordinated Regional Downscaling Experiment) climate models were first evaluated in a Mediterranean island (Sardinia) against observed precipitation for a historical reference period (1976-2005). A weighted multi-model ensemble (ENS) was built, weighting the single models based on their ability to reproduce observed rainfall. Future projections (2071-2100) were carried out using the 8.5 RCP emissions scenario to evaluate changes in precipitations. ENS was then used as climate forcing for the SWAT model (Soil and Water Assessment Tool), with the aim to assess the consequences of such projected changes on streamflow and runoff of two small catchments located in the South-West Sardinia. Results showed that a decrease of mean rainfall values, up to -25 % at yearly scale, is expected for the future, along with an increase of extreme precipitation events. Particularly in the eastern and southern areas, extreme events are projected to increase by 30%. Such changes reflect on the hydrologic cycle with a decrease of mean streamflow and runoff, except in spring, when runoff is projected to increase by 20-30%. These results stress that the Mediterranean is a hotspot for climate change, and the use of model tools can provide very useful information to adopt water and land management strategies to deal with such changes.

Keywords: EURO-CORDEX, climate change, hydrology, SWAT model, Sardinia, multi-model ensemble

Procedia PDF Downloads 174
19282 AgriFood Model in Ankara Regional Innovation Strategy

Authors: Coskun Serefoglu

Abstract:

The study aims to analyse how a traditional sector such as agri-food could be mobilized through regional innovation strategies. A principal component analysis as well as qualitative information, such as in-depth interviews, focus group and surveys, were employed to find the priority sectors. An agri-food model was developed which includes both a linear model and interactive model. The model consists of two main components, one of which is technological integration and the other one is agricultural extension which is based on Land-grant university approach of U.S. which is not a common practice in Turkey.

Keywords: regional innovation strategy, interactive model, agri-food sector, local development, planning, regional development

Procedia PDF Downloads 112
19281 Climate Change Impact on Water Resources above the Territory of Georgia

Authors: T. Davitashvili

Abstract:

At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.

Keywords: climate, droughts, pollution, water resources

Procedia PDF Downloads 441
19280 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia

Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi

Abstract:

Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.

Keywords: APSIM, downscaling, response, SDSM

Procedia PDF Downloads 335
19279 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 236
19278 The Projections of Urban Climate Change Using Conformal Cubic Atmospheric Model in Bali, Indonesia

Authors: Laras Tursilowati, Bambang Siswanto

Abstract:

Urban climate change has short- and long-term implications for decision-makers in urban development. The problem for this important metropolitan regional of population and economic value is that there is very little usable information on climate change. Research about urban climate change has been carried out in Bali Indonesia by using Conformal Cubic Atmospheric Model (CCAM) that runs with Representative Concentration Pathway (RCP)4.5. The history data means average data from 1975 to 2005, climate projections with RCP4.5 scenario means average data from 2006 to 2099, and anomaly (urban climate change) is RCP4.5 minus history. The results are the history of temperature between 22.5-27.5 OC, and RCP4.5 between 25.5-29.5 OC. The temperature anomalies can be seen in most of northern Bali that increased by about 1.6 to 2.9 OC. There is a reduced humidity tendency (drier) in most parts of Bali, especially the northern part of Bali, while a small portion in the south increase moisture (wetter). The comfort index of Bali region in history is still relatively comfortable (20-26 OC), but on the condition RCP4.5 there is no comfortable area with index more than 26 OC (hot and dry). This research is expected to be useful to help the government make good urban planning.

Keywords: CCAM, comfort index, IPCC AR5, temperature, urban climate change

Procedia PDF Downloads 109
19277 An enhanced Framework for Regional Tourism Sustainable Adaptation to Climate Change

Authors: Joseph M. Njoroge

Abstract:

The need for urgent adaptation have triggered tourism stakeholders and research community to develop generic adaptation framework(s) for national, regional and or local tourism desti-nations. Such frameworks have been proposed to guide the tourism industry in the adaptation process with an aim of reducing tourism industry’s vulnerability and to enhance their ability to cope to climate associated externalities. However research show that current approaches are far from sustainability since the adaptation options sought are usually closely associated with development needs-‘business as usual’-where the implication of adaptation to social justice and environmental integrity are often neglected. Based on this view there is a need to look at adaptation beyond addressing vulnerability and resilience to include the need for adaptation to enhance social justice and environmental integrity. This paper reviews the existing adaptation frameworks/models and evaluates their suitability in enhancing sustainable adaptation for regional tourist destinations. It is noted that existing frameworks contradicts the basic ‘principles of sustainable adaptation’. Further attempts are made to propose a Sustainable Regional Tourism Adaptation Framework (SRTAF) to assist regional tourism stakeholders in the achieving sustainable adaptation.

Keywords: sustainable adaptation, sustainability principles, sustainability portfolio, Regional Tourism

Procedia PDF Downloads 350
19276 Climate Change Awareness at the Micro Level: Case Study of Grande Riviere, Trinidad

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study investigates the level of awareness to climate change and major factors that influence such awareness in Grande Riviere, Trinidad. Through the development of an Awareness Index and application of a Structural Equation Model to survey data, the findings suggest an Awareness index value of 0.459 in Grande Riviere. These results suggest that households have climate smart attitudes and behaviors but climate knowledge is lacking. This is supported by the structural equation model which shows a negative relationship between awareness and causes of climate change. The study concludes by highlighting the need for immediate action on increasing knowledge.

Keywords: awareness, climate change, climate education, index structural equation model

Procedia PDF Downloads 419
19275 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 136
19274 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 328
19273 Analysis of Awareness and Climate Change Impact in Energy Efficiency of Household Appliances

Authors: Meltem Ucal

Abstract:

It is obvious that with limited resources and increasing of energy consumption from day to day, increase in amount of greenhouse gases in the atmosphere will increase risk of climate change. The objective of “Raising Awareness in Energy Efficiency of Household Appliances and Climate Change” paper is to make the connection between climate change and energy saving to be understood. First of all, research and evaluation aiming improvement of women’s behaviors of purchasing and using household appliances and also educate next generations who will be faced risks of climate change, with their mothers will be done.

Keywords: energy efficiency, climate change, wareness, household appliences, econometrics model, logit model

Procedia PDF Downloads 311
19272 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 18
19271 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 84
19270 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.

Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change

Procedia PDF Downloads 196
19269 How to Evaluate the Contribution of Social Finance to Regional Economy

Authors: Jungeun Cho

Abstract:

Social finance has received increasing attention as a means to promote the growth of regional economies. Despite the plenty of research discussed their critical role and functions in regional economic development such as the financing and promotion of co-operatives or social enterprises and the offering credit to the financially excluded in the region, however, rarely are efforts made to measure the contribution of social finance in the regional economy. It is essential to establish an evaluation model in order to encourage social finance institutions to perform their supposed role and functions on regional economic development. The objective of this paper is to formulate an evaluation model of the contribution of social finance to the regional economy through an analytic hierarchy process (AHP) approach. This study is expected to provide useful guidelines for social finance institutions’ strategies and the policies of local or central government regarding social finance.

Keywords: social finance, regional economy, social economy, policies of local or central government

Procedia PDF Downloads 395
19268 A Regional Innovation System Model Based on the Systems Thinking Approach

Authors: Samara E., Kilintzis P., Katsoras E., Martinidis G.

Abstract:

Regions play an important role in the global economy by driving research and innovation policies through a major tool, the Regional Innovation System (RIS). RIS is a social system that encompasses the systematic interaction of the various organizations that comprise it in order to improve local knowledge and innovation. This article describes the methodological framework for developing and validating a RIS model utilizing system dynamics. This model focuses on the functional structure of the RIS, separating it in six diverse, interacting sub-systems.

Keywords: innovations, regional development, systems thinking, social system

Procedia PDF Downloads 35
19267 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia

Authors: Elias Jemal Abdella

Abstract:

The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.

Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP

Procedia PDF Downloads 301
19266 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 82
19265 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 341
19264 Potential Impact of Climate Change on Suspended Sediment Changes in Mekong River Basin

Authors: Zuliziana Suif, Nordila Ahmad, Sengheng Hul

Abstract:

This paper evaluates the impact of climate change on suspended sediment changes in the Mekong River Basin. In this study, the distributed process-based sediment transport model is used to examine the potential impact of future climate on suspended sediment dynamic changes in the Mekong River Basin. To this end, climate scenarios from two General Circulation Model (GCMs) were considered in the scenario analysis. The simulation results show that the sediment load and concentration shows 0.64% to 69% increase in the near future (2041-2050) and 2.5% to 95% in the far future (2090- 2099). As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in sediment management. Overall, the changes in sediment load and concentration can have a great implication for related sediment management.

Keywords: climate change, suspended sediment, Mekong River Basin, GCMs

Procedia PDF Downloads 399
19263 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages

Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei

Abstract:

In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.

Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model

Procedia PDF Downloads 318
19262 Smallholder Farmers’ Adaptation Strategies and Socioeconomic Determinants of Climate Variability in Boset District, Oromia, Ethiopia

Authors: Hurgesa Hundera, Samuel Shibeshibikeko, Tarike Daba, Tesfaye Ganamo

Abstract:

The study aimed at examining the ongoing adaptation strategies used by smallholder farmers in response to climate variability in Boset district. It also assessed the socioeconomic factors that influence the choice of adaptation strategies of smallholder farmers to climate variability risk. For attaining the objectives of the study, both primary and secondary sources of data were employed. The primary data were obtained through a household questionnaire, key informant interviews, focus group discussions, and observations, while secondary data were acquired through desk review. Questionnaires were distributed and filled by 328 respondents, and they were identified through systematic random sampling technique. Descriptive statistics and binary logistic regression model were applied in this study as the main analytical methods. The findings of the study reveal that the sample households have utilized multiple adaptation strategies in response to climate variability, such as cropping early mature crops, planting drought resistant crops, growing mixed crops on the same farm lands, and others. The results of the binary logistic model revealed that education, sex, age, family size, off farm income, farm experience, access to climate information, access to farm input, and farm size were significant and key factors determining farmers’ choice of adaptation strategies to climate variability in the study area. To enable effective adaptation measures, Ministry of Agriculture and Natural Resource, with its regional bureaus and offices and concerned non–governmental organizations, should consider climate variability in their planning and budgeting in all levels of decision making.

Keywords: adaptation strategies, boset district, climate variability, smallholder farmers

Procedia PDF Downloads 56