Search results for: water consumption prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13393

Search results for: water consumption prediction

10603 Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation

Authors: Madhan Vinu, Yue-Chun Jiang, Yi-Feng Lin, Chia-Her Lin

Abstract:

An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification.

Keywords: metal-organic framework, microporous materials, separation, chitosan membranes

Procedia PDF Downloads 221
10602 Radon Concentration in the Water Samples of Hassan District, Karnataka, India

Authors: T. S. Shashikumar

Abstract:

Radon is a radioactive gas emitted from radium, a daughter product of uranium that occurs naturally in rocks and soil. Radon, together with its decay products, emits alpha particles that can damage lung tissue. The activity concentration of 222Ra has been analyzed in water samples collected from borewells and rivers in and around Hassan city, Karnataka State, India. The measurements were performed by Emanometry technique. The concentration of 222Rn in borewell waters varies from 18.49±1.89 to 397.26±12.3 Bql-1 with geometric mean 120.48±12.87 Bql-1 and in river waters it varies from 92.63±9.31 to 93.98±9.51 Bql-1 with geometric mean of 93.16±9.33 Bql-1. In the present study, the radon concentrations are higher in Adarshanagar and Viveka Nagar which are found to be 397.26±12.3 Bql-1 and 325.78±32.56 Bql-1. Most of the analysed samples show a 222Rn concentration more than 100 Bql-1 and this can be attributed to the geology of the area where the ground waters are located, which is predominantly of granitic characteristic. The average inhalation dose and ingestion dose in the borewell water are found to be 0.405 and 0.033 µSvy-1; and in river water it is found to be 0.234 and 0.019 µSvy-1, respectively. The average total effective dose rate in borewell waters and river waters are found to be 0.433 and 0.253 µSvy-1, which does not cause any health risk to the population of Hassan region.

Keywords: borewell, effective dose, emanometry, 222Rn

Procedia PDF Downloads 438
10601 Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin

Authors: Gabriela Kalcikova, Igor Bosevski, Ula Rozman, Andreja Zgajnar Gotvajn

Abstract:

Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment.

Keywords: antibiotics, biodegradability, tiamulin, toxicity

Procedia PDF Downloads 186
10600 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
10599 Green Technology for the Treatment of Industrial Effluent Contaminated with Dyes

Authors: Afzaal Gulzar, Shafaq Mubarak, M. Zia-Ur-Rehman

Abstract:

Industrial waste waters put environmental constrains to the water quality of aqueous reserves. Number of techniques has been used to treat them before disposal to water bodies. In this work a novel green approach is study by using poultry waste eggshells as a low cost efficient adsorbent for the dyes present in industrial effluent of textile and paper industries. The developed technique not only used to treat contaminated waters but also resulted in the utilization of poultry eggshell waste which in turn assists in solid waste management. Batch sorption studies like contact time, adsorbent dose, dye concentration, temp and pH has been conducted to find the optimum adsorption parameters.

Keywords: green technology, solid waste management, industrial effluent, eggshell waste utilization, waste water treatment

Procedia PDF Downloads 468
10598 Effect of Different Chemical Concentrations on Control of Dodder (Cuscuta campestris Yunck.) in Vitex (Agnus castus)

Authors: Aliyu B. Mustapha, Poul A. Gida

Abstract:

Pot experiment was conducted at the landscape unit of Modibbo Adama University of Technology, Yola in 2015 and 2016 to determine the effect of some chemicals namely glyphosate, salt and detergent on Golden dodder (Cuscuta campestris Yunk). The experiment was laid in a completely randomized design (CRD) with three replications. The treatments include the following: glyphosate-T0= (control),(Og a.i/ha-1) T1=35g a.i/ha-1, T2=70g a.i/ha-1, T3=105g a.i/ha-1, T4=140 a.i/ha-1 and T5=175g a.i/ha-1: Salt (T0=control O mole/ha-1 T1=1mole/ha-1 T2=2mole/ha-1, T3=3mole/ha-1 , T4=4mole/ha-1 and T5=5mole/ha-1:washing detergent T0=Og/ha-1(control), T1=30ml detergent +70ml distilled water T2=45ml detergent+65ml distilled water T3=60ml detergent+40ml distilled water, T4=75ml detergent+25ml distilled water and T5=90ml detergent +10mldistilled water, the treatments were replicated three times. Data were collected include: plant height, number of leaves, leaf area, leaf area index and Cuscuta cover score at 3,6,9and 12 weeks after sprouting(WAS). Biomas of Vitex was also collected at the end of the experiment. Data collected were analyzed using software Genstat version 8.0. Results showed that glyphosate gave the least Cuscuta cover score and the tallest Vitex plant. However, detergent mildly controlled Cuscuta, while salt has no effect on Cuscuta campestris indicating that glyphosate could be used in the control of parasitic dodder (Cuscuta campestris) on Vitex plant.

Keywords: chemical, control, dudder, Vitex

Procedia PDF Downloads 189
10597 Consumer Market for Mineral Water and Development Policy in Georgia

Authors: Gulnaz Erkomaishvili

Abstract:

The paper discusses mineral water consumer market and development policy in Georgia, the tools and measures, which will contribute to the production of mineral waters and increase its export. The paper studies and analyses current situation in mineral water production sector as well as the factors affecting increase and reduction of its export. It’s noted that in order to gain and maintain competitive advantage, it’s necessary to provide continuous supply of high-quality goods with modern design, open new distribution channels to enter new markets, carry out broad promotional activities, organize e-commerce. Economic policy plays an important role in protecting markets from counterfeit goods. The state also plays an important role in attracting foreign direct investments. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. Based on the research, the paper suggests the strategy for improving the competitiveness of Georgian mineral waters, relevant conclusions and recommendations are provided.

Keywords: mineral waters, consumer market for mineral waters, export of mineral waters, mineral water development policy in Georgia

Procedia PDF Downloads 429
10596 A Tagging Algorithm in Augmented Reality for Mobile Device Screens

Authors: Doga Erisik, Ahmet Karaman, Gulfem Alptekin, Ozlem Durmaz Incel

Abstract:

Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going forward, the algorithm will be improved to more rapidly react to position changes while driving.

Keywords: accurate tagging algorithm, augmented reality, localization, location-based AR

Procedia PDF Downloads 374
10595 Length of Pregnancy and Dental Caries Observation in Relation to BMI

Authors: Edit Xhajanka, Gresa Baboci, Irene Malagnino, Mimoza Canga, Vito Antonio Malagnino

Abstract:

Purpose: This study aimed at identifying dental caries increment or reduction, based on factors such as smoking, the scaling of teeth, BMI before and during pregnancy, carbohydrates consumption in relation to childbirth. Material and method: In this observational study, the sample included a total of 98 pregnant women and their age class was 18-45 years old, with a median age of 31.5 years. The setting of the participants resides in Vlora –Albania. Moreover, 64.4% were from the city and 35.6% were from the nearby villages. The study was conducted in the time period January 2018 –June 2021. Body mass index (BMI) was calculated using the standard formula (kg/m²). Maternal pre, during and post-pregnancy BMI was collected by using a validated questionnaire. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: Based on the data analysis, 44.4% of the sample declared that they did smoke before pregnancy and 55.6% not smoked during their pregnancy. As a result, no association was found between smoking and length of pregnancy P=0.95. There is also a strong relation (P=0.000) between the number of teeth with caries before pregnancy and the number of teeth with caries during pregnancy. There is a significant relationship between the scaling of teeth and childbirth, P=0.05. BMI before and during pregnancy in relation to carbohydrates consumption have a significant correlation P=0.004 and P=0.002. The values of BMI before and during pregnancy in relation to childbirth have a strong correlation: P=0.043 and P=0.040, respectively. As a result, obesity was associated with preterm birth. The percentage of children born during 34-36 weeks of pregnancy was 69%, and children born during 32-34 weeks of pregnancy were 31%. CONCLUSION: There was a positive association between dental caries experience, BMI and carbohydrates consumption. Obesity in pregnancy is increasing worldwide; that is why this study suggests the importance of an appropriate weight before and during pregnancy.

Keywords: BMI, dental caries, pregnancy, scaling, smoking

Procedia PDF Downloads 198
10594 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria

Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu

Abstract:

Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.

Keywords: agriculture, bioaccumulation, heavy metal, plant tissues

Procedia PDF Downloads 385
10593 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
10592 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 366
10591 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method

Authors: R. R. Hordijk, O. J. G. Somsen

Abstract:

Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.

Keywords: image processing, image recognition, polynomial fit, water

Procedia PDF Downloads 534
10590 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 82
10589 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 88
10588 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 162
10587 Assessing Household Energy Savings and Consumer Behavior in Padang City

Authors: Prima Fithri, Lusi Susanti, Karin Bestarina

Abstract:

Indonesia's electrification ratio is still around 80.1%, which means that approximately 19.9% of households in Indonesia have not been getting the flow of electrical energy. Household electricity consumptions in Indonesia are generally still dominated by the public urban. In the city of Padang, West Sumatera, Indonesia, about 94.10% are power users of government services (PLN). The most important thing of the issue is human resources efficient energy. Consumer behavior in utilizing electricity becomes significant. Intensive questioner survey, in-depth interview and statistical analysis are carried out to collect scientific evidences of the behavioral based changes instruments to reduce electricity consumption in household sector. The questioner was developed to include five factors assuming affect the electricity consumption pattern in household sector. They are: attitude, energy price, household income, knowledge and other determinants. The survey was carried out in Padang, West Sumatra Province Indonesia. About 210 questioner papers were proportionally distributed to households in 11 districts in Padang. Stratified sampling was used as a method to select respondents. The results show that the household size, income, payment methods and size of house are factors affecting electricity saving behavior in residential sector. Household expenses on electricity are strongly influenced by gender, type of job, level of education, size of house, income, payment method and level of installed power. These results provide a scientific evidence for stakeholders on the potential of controlling electricity consumption and designing energy policy by government in residential sector.

Keywords: electricity, energy saving, household, behavior, policy

Procedia PDF Downloads 523
10586 Typology of the Physic-Chemical Quality of the Water of the Area of Touggourt Case: Aquifers of the Intercalary Continental and the Terminal Complex, S-E of Algeria

Authors: Habes Sameh, Bettahar Asma, Nezli Imad Eddine

Abstract:

The region of Touggourt is situated in the southern part is Algeria, it receives important quantities of waters, the latter are extracted from the fossil groundwater (the Intercalary Continental and the Terminal Complex). The mineralization of these waters of the Terminal Complex is between 3 and 6,5 g/l and for waters of Intercalary Continental is 1,8 and 8,7 g/l, thus it constitutes an obstacle as for its use. To highlight the origins of this mineralization, we used the hydrochemical tool. So the chemical analyses in our ownership, were treated by means of the software "Statistica", what allowed us to realize an analysis in main components (ACP), the latter showed a competition between sodic or magnesian chlorinated water and calcic bicarbonate water, rich in potassium for the TC, while for the IC, we have a competition between sodic or calcic chlorinated and magnesian water treated with copper sulphate waters. The simulation realized thermodynamics showed a variation of the index of saturation which do not exceed zero, for waters of two aquifer TC and IC, so indicating one under saturation of waters towards minerals, highlighting the influence of the geologic formation in the outcrop on the quality of waters. However, we notice that these waters remain acceptable for the irrigation of plants but must be treated before what are consumed by the human being.

Keywords: ACP, intercalary, continental, mineralization, SI, Terminal Complex

Procedia PDF Downloads 528
10585 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 110
10584 Carbon Di Oxide Sequestration by Freshwater Microalgae Isolated from River Noyyal, India and Its Biomass for Biofuel Production

Authors: K. R. Mohanapriya, D. Geetharamani

Abstract:

In last few decades, global atmospheric concentrations of green house gases have been frequently increased because of carbon di oxide (CO2) emission from combustion of fossil fuels. This green house gas emission leads to global warming. In order to reduce green house gas emission, cultivation of microalgae has received attention due to their feasibility of CO2 sequestration. Microalgae can grow and multiply in short period because of their photosynthetic simple unicellular structures and can grow using water unsuitable for human consumption with nutrients that are available at low cost. In the present study, freshwater microalgae were isolated from Noyyal river in Coimbatore, Tamil Nadu, India. The isolated strains were screened for CO2 sequestration potential. The efficient isolate namely Klebsormidium sp was subjected to further study. Quantitative determination of CO2 sequestration potential of the isolate under study has been done. The biomass of the isolate thus obtained was subjected to triglyceride and fatty acid analysis to study the potential application of the isolate for biodiesel production.

Keywords: CO2 sequestration, freshwater microalgae, Klebsormidium sp, biodiesel

Procedia PDF Downloads 386
10583 An Exploitation of Electrical Sensors in Monitoring Pool Chlorination

Authors: Fahad Alamoudi, Yaser Miaji

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, water slides, and more recently, hydrotherapy and wave pools. In this research, a few simple equipment is used for test, detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, Rio 12HF and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates, the lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 363
10582 Groundwater Treatment of Thailand's Mae Moh Lignite Mine

Authors: A. Laksanayothin, W. Ariyawong

Abstract:

Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.

Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine

Procedia PDF Downloads 310
10581 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty

Authors: Christoph Ostermair

Abstract:

We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.

Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory

Procedia PDF Downloads 199
10580 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 314
10579 Leveraging Laser Cladding Technology for Eco-Friendly Solutions and Sustainability in Equipment Refurbishment

Authors: Rakan A. Ahmed, Raja S. Khan, Mohammed M. Qahtani

Abstract:

This paper explores the transformative impact of laser cladding technology on the circular economy, emphasizing its role in reducing environmental impact compared to traditional welding methods. Laser cladding, an innovative manufacturing process, optimizes resource efficiency and sustainability by significantly decreasing power consumption and minimizing material waste. The study explores how laser cladding operates within the framework of the circular economy, promoting energy efficiency, waste reduction, and emissions control. Through a comparative analysis of energy and material consumption between laser cladding and conventional welding methods, the paper highlights the significant strides in environmental conservation and resource optimization made possible by laser cladding. The findings highlight the potential for this technology to revolutionize industrial practices and propel a more sustainable and eco-friendly manufacturing landscape.

Keywords: laser cladding, circular economy, carbon emission, energy

Procedia PDF Downloads 77
10578 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 415
10577 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 237
10576 Experimental Study of Discharge with Sharp-Crested Weirs

Authors: E. Keramaris, V. Kanakoudis

Abstract:

In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.

Keywords: sharp-crested weir, weir height, flow measurement, open channel flow

Procedia PDF Downloads 139
10575 Improvement of Ground Water Quality Index Using Citrus limetta

Authors: Rupas Kumar M., Saravana Kumar M., Amarendra Kumar S., Likhita Komal V., Sree Deepthi M.

Abstract:

The demand for water is increasing at an alarming rate due to rapid urbanization and increase in population. Due to freshwater scarcity, Groundwater became the necessary source of potable water to major parts of the world. This problem of freshwater scarcity and groundwater dependency is very severe particularly in developing countries and overpopulated regions like India. The present study aimed at evaluating the Ground Water Quality Index (GWQI), which represents overall quality of water at certain location and time based on water quality parameters. To evaluate the GWQI, sixteen water quality parameters have been considered viz. colour, pH, electrical conductivity, total dissolved solids, turbidity, total hardness, alkalinity, calcium, magnesium, sodium, chloride, nitrate, sulphate, iron, manganese and fluorides. The groundwater samples are collected from Kadapa City in Andhra Pradesh, India and subjected to comprehensive physicochemical analysis. The high value of GWQI has been found to be mainly from higher values of total dissolved solids, electrical conductivity, turbidity, alkalinity, hardness, and fluorides. in the present study, citrus limetta (sweet lemon) peel powder has used as a coagulant and GWQI values are recorded in different concentrations to improve GWQI. Sensitivity analysis is also carried out to determine the effect of coagulant dosage, mixing speed and stirring time on GWQI. The research found the maximum percentage improvement in GWQI values are obtained when the coagulant dosage is 100ppm, mixing speed is 100 rpm and stirring time is 10 mins. Alum is also used as a coagulant aid and the optimal ratio of citrus limetta and alum is identified as 3:2 which resulted in best GWQI value. The present study proposes Citrus limetta peel powder as a potential natural coagulant to treat Groundwater and to improve GWQI.

Keywords: alum, Citrus limetta, ground water quality index, physicochemical analysis

Procedia PDF Downloads 227
10574 Computational Insight into a Mechanistic Overview of Water Exchange Kinetics and Thermodynamic Stabilities of Bis and Tris-Aquated Complexes of Lanthanides

Authors: Niharika Keot, Manabendra Sarma

Abstract:

A thorough investigation of Ln3+ complexes with more than one inner-sphere water molecule is crucial for designing high relaxivity contrast agents (CAs) used in magnetic resonance imaging (MRI). This study accomplished a comparative stability analysis of two hexadentate (H3cbda and H3dpaa) and two heptadentate (H4peada and H3tpaa) ligands with Ln3+ ions. The higher stability of the hexadentate H3cbda and heptadentate H4peada ligands has been confirmed by the binding affinity and Gibbs free energy analysis in aqueous solution. In addition, energy decomposition analysis (EDA) reveals the higher binding affinity of the peada4− ligand than the cbda3− ligand towards Ln3+ ions due to the higher charge density of the peada4− ligand. Moreover, a mechanistic overview of water exchange kinetics has been carried out based on the strength of the metal–water bond. The strength of the metal–water bond follows the trend Gd–O47 (w) > Gd–O39 (w) > Gd–O36 (w) in the case of the tris-aquated [Gd(cbda)(H2O)3] and Gd–O43 (w) > Gd–O40 (w) for the bis-aquated [Gd(peada)(H2O)2]− complex, which was confirmed by bond length, electron density (ρ), and electron localization function (ELF) at the corresponding bond critical points. Our analysis also predicts that the activation energy barrier decreases with the decrease in bond strength; hence kex increases. The 17O and 1H hyperfine coupling constant values of all the coordinated water molecules were different, calculated by using the second-order Douglas–Kroll–Hess (DKH2) approach. Furthermore, the ionic nature of the bonding in the metal–ligand (M–L) bond was confirmed by the Quantum Theory of Atoms-In-Molecules (QTAIM) and ELF along with energy decomposition analysis (EDA). We hope that the results can be used as a basis for the design of highly efficient Gd(III)-based high relaxivity MRI contrast agents for medical applications.

Keywords: MRI contrast agents, lanthanide chemistry, thermodynamic stability, water exchange kinetics

Procedia PDF Downloads 83