Search results for: low temperature stress
7692 Managing Work–Family Conflict in Today's Nursing Profession: The Role of Supervisors
Authors: Alshutwi Sitah
Abstract:
Many countries around the world are struggling to maintain an adequate number of nurses. Inadequate nursing staffing could compromise the quality of patient care. Among many factors that contribute to registered nurses (RN) turnover, the influence of work–family conflict (WFC) has gained little attention. WFC was found to be significantly associated with increased turnover intention (TI) among employees. Furthermore, WFC has been linked to a number of negative consequences, including lower job satisfaction and organizational commitment, sleep insufficiency, insomnia symptoms, obesity, cardiovascular diseases, sleep insufficiency, and high cholesterol. In an effort to find strategies to manage the consequences of WFC, many behavioral, psychological, and career scholars have focused on the role of supervisor support. Family Supportive Supervisor Behaviors (FSSB) has been found to be a promising approach contributing to the reduction of TI in employees’ experiencing WFC. Despite the importance of work–family issues and the influence of FSSB, limited studies have been conducted among the nursing population and none were found that included a sample from Saudi Arabia. Therefore, the main Purpose of this study was to evaluate the influence of FSSB on the relationship among WFC, Stress, and TI in Saudi Arabian registered nurses. Method: A cross-sectional study. Sample: Convenience sampling; 113 Saudi female nurse. Result: Fifty percent of nurses intended to leave their workplace, 68 % of nurses reported having a conflict between work and family, and 44% reported having a high level of stress. A significant positive correlation was found between WFC and TI (r= .43, P < 0.01). A negative correlation was found between FSSB and TI (r= -.53, P < 0.01). Both WFC and stress were associated with TI; however, these associations were buffered (weaken), when nurses had higher FSSB. Conclusion: The FSSB could be seen as a tool to help married, female nurses to demonstrate their professional role without compromising their family responsibilities. Nurses’ turnover is a complex issue that may require multiple prevention strategies; however, enhancing FSSB could be a key resource for maintaining a positive workplace environment and reducing TI.Keywords: turnover intention, work-family conflict, supervisor support, nursing retention
Procedia PDF Downloads 2257691 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method
Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier
Abstract:
Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.Keywords: refractory composite, fracture mechanics, crack propagation, DEM
Procedia PDF Downloads 837690 Moral Distress among Nurses Working in Hospitals in Jazan: A Cross-Sectional Study
Authors: Hussain Darraj
Abstract:
Background: Healthcare workers, especially nurses, are subjected to a great risk of psychological stress, mostly moral distress. Therefore, it is crucial to address moral distress in nurses. Objectives: The aim of this study is to study the extent of moral distress among hospital nurses in Jazan. Methods: This study used a cross-sectional study design, which included 419 nurses from Jazan hospitals. A questionnaire was used to measure moral distress and its related factors. Results: The average total score for moral distress among the study participants is 134.14, with a standard deviation of 53.94. Moreover, the current study findings indicate that those over the age of 35 years who work as nurse managers, working in critical departments, have the intention to leave a position, have received ethical training or workshops, have provided care for COVID-19 cases, or work in a department with staff shortages are associated with the experience of higher-level moral stress. Conclusion: Nurses are recommended to be provided with ongoing education and resources in order to reduce moral distress and create a positive work atmosphere for nurses. Moreover, the current study sheds light on the importance of organizational support to provide enough resources and staffing in order to reduce moral distress among nurses. Further research is needed to focus on other health professionals and moral distress. Moreover, future studies are also required to explore the strategies to reduce moral distress levels among nurses.Keywords: moral distress, Jazan, nurses, hospital
Procedia PDF Downloads 947689 A Dynamic Symplectic Manifold Analysis for Wave Propagation in Porous Media
Authors: K. I. M. Guerra, L. A. P. Silva, J. C. Leal
Abstract:
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the traveling wave through the porous body. A solution for this equation is proposed after all boundary, and initial conditions are fixed, and it’s accepted that the solution lies in a manifold U of purely spatial dimensions and that is embedded in the Real n-dimensional manifold, with spatial and kinetic dimensions. It’s shown that the U manifold of lower dimensions than IRna, where it is embedded, inherits properties of the vector spaces existing inside the topology it lies on. Then, a second manifold (U*), embedded in another space called IRnb of stress dimensions, is proposed and there’s a non-degenerative function that maps it into the U manifold. This relation is proved as a transformation in between two corresponding admissible solutions of the differential equation in distinct dimensions and properties, leading to a more visual and intuitive understanding of the whole dynamic process of a stress wave through a porous medium and also highlighting the dimensional invariance of Terzaghi’s theory for any coordinate system.Keywords: poremechanics, soil dynamics, symplectic geometry, wave propagation
Procedia PDF Downloads 3007688 Neuropsychiatric Outcomes of Intensive Music Therapy in Stroke Rehabilitation A Premilitary Investigation
Authors: Honey Bryant, Elvina Chu
Abstract:
Stroke is the leading cause of disability in adults in Canada and directly related to depression, anxiety, and sleep disorders; with an estimated annual cost of $50 billion in health care. Strokes not only impact the individual but society as a whole. Current stroke rehabilitation does not include Music Therapy, although it has success in clinical research in the use of stroke rehabilitation. This study examines the use of neurologic music therapy (NMT) in conjunction with stroke rehabilitation to improve sleep quality, reduce stress levels, and promote neurogenesis. Existing research on NMT in stroke is limited, which means any conclusive information gathered during this study will be significant. My novel hypotheses are a.) stroke patients will become less depressed and less anxious with improved sleep following NMT. b.) NMT will reduce stress levels and promote neurogenesis in stroke patients admitted for rehabilitation. c.) Beneficial effects of NMT will be sustained at least short-term following treatment. Participants were recruited from the in-patient stroke rehabilitation program at Providence Care Hospital in Kingston, Ontario, Canada. All participants-maintained stroke rehabilitation treatment as normal. The study was spilt into two groups, the first being Passive Music Listening (PML) and the second Neurologic Music Therapy (NMT). Each group underwent 10 sessions of intensive music therapy lasting 45 minutes for 10 consecutive days, excluding weekends. Psychiatric Assessments, Epworth Sleepiness Scale (ESS), Hospital Anxiety & Depression Rating Scale (HADS), and Music Engagement Questionnaire (MusEQ), were completed, followed by a general feedback interview. Physiological markers of stress were measured through blood pressure measurements and heart rate variability. Serum collections reviewed neurogenesis via Brain-derived neurotrophic factor (BDNF) and stress markers of cortisol levels. As this study is still on-going, a formal analysis of data has not been fully completed, although trends are following our hypotheses. A decrease in sleepiness and anxiety is seen upon the first cohort of PML. Feedback interviews have indicated most participants subjectively felt more relaxed and thought PML was useful in their recovery. If the hypothesis is supported, larger external funding which will allow for greater investigation of the use of NMT in stroke rehabilitation. As we know, NMT is not covered under Ontario Health Insurance Plan (OHIP), so there is limited scientific data surrounding its uses as a clinical tool. This research will provide detailed findings of the treatment of neuropsychiatric aspects of stroke. Concurrently, a passive music listening study is being designed to further review the use of PML in rehabilitation as well.Keywords: music therapy, psychotherapy, neurologic music therapy, passive music listening, neuropsychiatry, counselling, behavioural, stroke, stroke rehabilitation, rehabilitation, neuroscience
Procedia PDF Downloads 1197687 Effect of Hot Rolling Conditions on Magnetic Properties of Fe-3%Si Non-Grain Oriented Electrical Steels
Authors: Emre Alan, Yusuf Yamanturk, Gokay Bas
Abstract:
Non-grain oriented electrical steels are high silicon containing steels in which the direction of magnetism is intended the same in any direction of the material. Major applications of non-grain-oriented electrical steels are electrical motors, generators, etc. where low magnetic losses are required. Selection of proper hot rolling process parameters is an important factor in order to produce a material that has desired magnetic properties. In this study, the effect of finishing and coiling temperatures on magnetic properties of Fe-3%Si non-grain oriented electrical steels will be investigated. Additionally, the effect of slab reheating temperature at same entry finishing temperature will be investigated by means of reduction in roughing mill pass number from 1-5 to 1-3.Keywords: electrical steels, hot rolling, magnetic properties, roughing mill
Procedia PDF Downloads 3307686 Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma
Authors: Muhammad Hanif, Muhammad Salik
Abstract:
In the present research work we present the optical emission studies of the Indium (In)-Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (InI) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.Keywords: indium-tin plasma, laser ablation, optical emission spectroscopy, electron temperature, electron number density
Procedia PDF Downloads 5327685 Antidiabetic Effect of Aqueous Extract of Cedrus deodara Roxb. Heartwood in Alloxan-Induced Diabetic Rats
Authors: Sourabh Jain, Vikas Jain, Dharmendar Kumar
Abstract:
The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level.Keywords: Cedrus deodara, heartwood, antioxidant, anti-diabetic, anti-inflammatory
Procedia PDF Downloads 3937684 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor
Authors: Keltoum Bouherine, Olivier Leroy
Abstract:
The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma
Procedia PDF Downloads 3337683 Students’ Perception of Guided Imagery Improving Anxiety before Examination: A Qualitative Study
Authors: Wong Ka Fai
Abstract:
Introduction: Many students are worried before an examination; that is a common picture worldwide. Health problems from stress before examination were insomnia, tiredness, isolation, stomach upset, and anxiety. Nursing students experienced high stress from the examination. Guided imagery is a healing process of applying imagination to help the body heal, survive, or live well. It can bring about significant physiological and biochemical changes, which can trigger the recovery process. A study of nursing students improving their anxiety before examination with guided imagery was proposed. Aim: The aim of this study was to explore the outcome of guided imagery on nursing students’ anxiety before examination in Hong Kong. Method: The qualitative study method was used. 16 first-year students studying nursing programme were invited to practice guided imagery to improve their anxiety before the examination period. One week before the examination, the semi-structured interviews with these students were carried out by the researcher. Result: From the content analysis of interview data, these nursing students showed considerable similarities in their anxiety perception. Nursing students’ perceived improved anxiety was evidenced by a reduction of stressful feelings, improved physical health, satisfaction with daily activities, and enhanced skills for solving problems and upcoming situations. Conclusion: This study indicated that guided imagery can be used as an alternative measure to improve students’ anxiety and psychological problems.Keywords: nursing students, perception, anxiety, guided imagery
Procedia PDF Downloads 827682 An Efficient Digital Baseband ASIC for Wireless Biomedical Signals Monitoring
Authors: Kah-Hyong Chang, Xin Liu, Jia Hao Cheong, Saisundar Sankaranarayanan, Dexing Pang, Hongzhao Zheng
Abstract:
A digital baseband Application-Specific Integrated Circuit (ASIC) is developed for a microchip transponder to transmit signals and temperature levels from biomedical monitoring devices. The transmission protocol is adapted from the ISO/IEC 11784/85 standard. The module has a decimation filter that employs only a single adder-subtractor in its datapath. The filtered output is coded with cyclic redundancy check and transmitted through backscattering Load Shift Keying (LSK) modulation to a reader. Fabricated using the 0.18-μm CMOS technology, the module occupies 0.116 mm² in chip area (digital baseband: 0.060 mm², decimation filter: 0.056 mm²), and consumes a total of less than 0.9 μW of power (digital baseband: 0.75 μW, decimation filter: 0.14 μW).Keywords: biomedical sensor, decimation filter, radio frequency integrated circuit (RFIC) baseband, temperature sensor
Procedia PDF Downloads 4017681 Understanding the Effects of Lamina Stacking Sequence on Structural Response of Composite Laminates
Authors: Awlad Hossain
Abstract:
Structural weight reduction with improved functionality is one of the targeted desires of engineers, which drives materials and structures to be lighter. One way to achieve this objective is through the replacement of metallic structures with composites. The main advantages of composite materials are to be lightweight and to offer high specific strength and stiffness. Composite materials can be classified in various ways based on the fiber types and fiber orientations. Fiber reinforced composite laminates are prepared by stacking single sheet of continuous fibers impregnated with resin in different orientation to get the desired strength and stiffness. This research aims to understand the effects of Lamina Stacking Sequence (LSS) on the structural response of a symmetric composite laminate, defined by [0/60/-60]s. The Lamina Stacking Sequence (LSS) represents how the layers are stacked together in a composite laminate. The [0/60/-60]s laminate represents a composite plate consists of 6 layers of fibers, which are stacked at 0, 60, -60, -60, 60 and 0 degree orientations. This laminate is also called symmetric (defined by subscript s) as it consists of same material and having identical fiber orientations above and below the mid-plane. Therefore, the [0/60/-60]s, [0/-60/60]s, [60/-60/0]s, [-60/60/0]s, [60/0/-60]s, and [-60/0/60]s represent the same laminate but with different LSS. In this research, the effects of LSS on laminate in-plane and bending moduli was investigated first. The laminate moduli dictate the in-plane and bending deformations upon loading. This research also provided all the setup and techniques for measuring the in-plane and bending moduli, as well as how the stress distribution was assessed. Then, the laminate was subjected to in-plane force load and bending moment. The strain and stress distribution at each ply for different LSS was investigated using the concepts of Macro-Mechanics. Finally, several numerical simulations were conducted using the Finite Element Analysis (FEA) software ANSYS to investigate the effects of LSS on deformations and stress distribution. The FEA results were also compared to the Macro-Mechanics solutions obtained by MATLAB. The outcome of this research helps composite users to determine the optimum LSS requires to minimize the overall deformation and stresses. It would be beneficial to predict the structural response of composite laminates analytically and/or numerically before in-house fabrication.Keywords: composite, lamina, laminate, lamina stacking sequence, laminate moduli, laminate strength
Procedia PDF Downloads 187680 The Effects of Alpha-Lipoic Acid Supplementation on Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Hamid Abbasi, Neda Jourabchi, Ranasadat Abedi, Kiarash Tajernarenj, Mehdi Farhoudi, Sarvin Sanaie
Abstract:
Background: Alpha lipoic acid (ALA), fat- and water-soluble, coenzyme with sulfuret content, has received considerable attention for its potential therapeutic role in diabetes, cardiovascular diseases, cancers, and central nervous disease. This investigation aims to evaluate the probable protective effects of ALA in stroke patients. Methods: Based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, This meta-analysis was performed. The PICO criteria for this meta-analysis were as follows: Population/Patients (P: stroke patients); Intervention (I: ALA); Comparison (C: control); Outcome (O: blood glucose, lipid profile, oxidative stress, inflammatory factors).In addition, Studies that were excluded from the analysis consisted of in vitro, in vivo, and ex vivo studies, case reports, quasi-experimental studies. Scopus, PubMed, Web of Science, EMBASE databases were searched until August 2023. Results: Of 496 records that were screened in the title/abstract stage, 9 studies were included in this meta-analysis. The sample sizes in the included studies vary between 28 and 90. The result of risk of bias was performed via risk of bias (RoB) in randomized-controlled trials (RCTs) based on the second version of the Cochrane RoB assessment tool. 8 studies had a definitely high risk of bias. Discussion: To the best of our knowledge, The present meta-analysis is the first study addressing the effectiveness of ALA supplementation in enhancing post-stroke metabolic markers, including lipid profile, oxidative stress, and inflammatory indices. It is imperative to acknowledge certain potential limitations inherent in this study. First of all, type of treatment (oral or intravenous infusion) could alter the bioavailability of ALA. Our study had restricted evidence regarding the impact of ALA supplementation on included outcomes. Therefore, further research is warranted to develop into the effects of ALA specifically on inflammation and oxidative stress. Funding: The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 72825). Registration: This study was registered in the International prospective register of systematic reviews (PROSPERO ID: CR42023461612).Keywords: alpha-lipoic acid, lipid profile, blood glucose, inflammatory factors, oxidative stress, meta-analysis, post-stroke
Procedia PDF Downloads 687679 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature
Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci
Abstract:
This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys
Procedia PDF Downloads 907678 A New Developed Formula to Determine the Shear Buckling Stress in Welded Aluminum Plate Girders
Authors: Badr Alsulami, Ahmed S. Elamary
Abstract:
This paper summarizes and presents main results of an in-depth numerical analysis dealing with the shear buckling resistance of aluminum plate girders. The studies conducted have permitted the development of a simple design expression to determine the critical shear buckling stress in aluminum web panels. This expression takes into account the effects of reduction of strength in aluminum alloys due to the welding process. Ultimate shear resistance (USR) of plate girders can be obtained theoretically using Cardiff theory or Hӧglund’s theory. USR of aluminum alloy plate girders predicted theoretically using BS8118 appear inconsistent when compared with test data. Theoretical predictions based on Hӧglund’s theory, are more realistic. Cardiff theory proposed to predict the USR of steel plate girders only. Welded aluminum alloy plate girders studied experimentally by others; the USR resulted from tests are reviewed. Comparison between the test results with the values obtained from Hӧglund’s theory, BS8118 design method, and Cardiff theory performed theoretically. Finally, a new equation based on Cardiff tension-field theory proposed to predict theoretically the USR of aluminum plate girders.Keywords: shear resistance, aluminum, Cardiff theory, Hӧglund's theory, plate girder
Procedia PDF Downloads 4287677 Microthermometry of Carbonated Rocks of the Hondita-Lomagorda Formations, the Tiger Cave Sector, Municipality of Yaguara, Colombia
Authors: Camila Lozano-Vivas, Camila Quevedo-Villamil, Ingrid Munoz-Quijano, Diego Loaiza
Abstract:
Colombia's limited oil reserves make the finding of new fields of extraction or the potentiate of the existing ones a more important task to do every day; the exploration projects that allow to have a better knowledge of the oil basins are essential. The upper Magdalena Valley basin - VSM, whose reserves are limited, has been one of the first basins for the exploration and production of hydrocarbons in Colombia. The Hondita and Lomagorda formations were deposited in the Late Cretaceous Middle Albian to the Coniacian and are characterized by being the hydrocarbon-generating rocks in the VSM basin oil system along with the Shale de Bambucá; therefore multiple studies have been made. In the oil industry, geochemical properties are used to understand the origin, migration, accumulation, and alteration of hydrocarbons and, in general, the evolution of the basin containing them. One of the most important parameters to understand this evolution is the formation temperature of the oil system. For this reason, a microthermometric study of fluid inclusions was carried out to recognize formation temperatures and to determine certain basic physicochemical variables, homogenization temperature, pressure, density and salinity of the fluid at the time of entrapment, providing evidence on the history of different events in different geological environments in the evolution of a sedimentary basin. Prior to this study, macroscopic and microscopic petrographic analyses of the samples collected in the field were performed. The results of the mentioned properties of the fluid inclusions in the different samples analyzed have salinities ranging from 20.22% to 26.37% eq. by weight NaCl, similar densities found in the ranges of 1.05 to 1.16 g/cc and an average homogenization temperature at 142.92°C, indicating that, at the time of their entanglement, the rock was in the window of generation of medium hydrocarbons –light with fragile characteristics of the rock that would make it useful to treat them as naturally fractured reservoirs.Keywords: homogenization temperature, fluid inclusions, microthermometry, salinity
Procedia PDF Downloads 1527676 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method
Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas
Abstract:
The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature
Procedia PDF Downloads 3767675 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 957674 Corrosion Investigation of Superalloys, Molybdenum and TZM in Chloride Molten Salts
Authors: Craig Jantzen, Tim Abram, Dirk Engelberg, Hugues Lambert, Daniel Cooper
Abstract:
Molten salts are of high interest for use as coolants in nuclear reactors due to favourable high temperature and thermodynamic properties. The corrosive behaviour of molten salts however pose a materials integrity challenge. Three Ni / Ni-Fe based and two Mo based alloys have been exposed to molten eutectics (LiCl-KCl at 59.5:40.5 mol% and KCl-MgCl2 at 68:32 mol%) at 600°C and 800°C for durations up to 500hrs. Corrosion was observed to preferentially attack alloy constituents in order of their reactivity, with chromium the most vulnerable and depleted element. Alloy weight-loss per unit area was calculated to give linear corrosion rates, discounting any initial rapid corrosion of impurities. Further analysis was carried out using ICP-MS, SEM and EDX techniques to give a more detailed view of the corrosion mechanisms.Keywords: molten salt, salt, corrosion, high temperature, licl, KCL, MgCl, molybdenum, nickel, superalloys
Procedia PDF Downloads 4537673 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation
Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang
Abstract:
This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.Keywords: urban heat, public health, climate change
Procedia PDF Downloads 997672 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles
Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer
Abstract:
Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation
Procedia PDF Downloads 3027671 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.Keywords: ceramic-metal, composites, powder metallurgy, sintering
Procedia PDF Downloads 4727670 An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production
Authors: Hamidreza Sahaleh
Abstract:
In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation.Keywords: oil recuperation, erosion mechanics, foamy oil, erosion module.
Procedia PDF Downloads 2707669 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature
Authors: Radovan Cobanovic, Milica Rankov Sicar
Abstract:
Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.Keywords: biodiesel, microbiology, room temperature, stability
Procedia PDF Downloads 2877668 Study of Temperature and Precipitation Changes Based on the Scenarios (IPCC) in the Caspian Sea City: Case Study in Gillan Province
Authors: Leila Rashidian, Mina Rajabali
Abstract:
Industrialization has made progress and comfort for human beings in many aspects. It is not only achievement for the global environment but also factor for destruction and disruption of the Earth's climate. In this study, we used LARS.WG model and down scaling of general circulation climate model HADCM-3 daily precipitation amounts, minimum and maximum temperature and daily sunshine hours. These data are provided by the meteorological organization for Caspian Sea coastal station such as Anzali, Manjil, Rasht, Lahijan and Astara since their establishment is from 1982 until 2010. According to the IPCC scenarios, including series A1b, A2, B1, we tried to simulate data from 2010 to 2040. The rainfall pattern has changed. So we have a rainfall distribution inappropriate in different months.Keywords: climate change, Lars.WG, HADCM3, Gillan province, climatic parameters, A2 scenario
Procedia PDF Downloads 2887667 Experimental Analysis of the Performance of a System for Freezing Fish Products Equipped with a Modulating Vapour Injection Scroll Compressor
Authors: Domenico Panno, Antonino D’amico, Hamed Jafargholi
Abstract:
This paper presents an experimental analysis of the performance of a system for freezing fish products equipped with a modulating vapour injection scroll compressor operating with R448A refrigerant. Freezing is a critical process for the preservation of seafood products, as it influences quality, food safety, and environmental sustainability. The use of a modulating scroll compressor with vapour injection, associated with the R448A refrigerant, is proposed as a solution to optimize the performance of the system, reducing energy consumption and mitigating the environmental impact. The stream injection modulating scroll compressor represents an advanced technology that allows you to adjust the compressor capacity based on the actual cooling needs of the system. Vapour injection allows the optimization of the refrigeration cycle, reducing the evaporation temperature and improving the overall efficiency of the system. The use of R448A refrigerant, with a low Global Warming Potential (GWP), is part of an environmental sustainability perspective, helping to reduce the climate impact of the system. The aim of this research was to evaluate the performance of the system through a series of experiments conducted on a pilot plant for the freezing of fish products. Several operational variables were monitored and recorded, including evaporation temperature, condensation temperature, energy consumption, and freezing time of seafood products. The results of the experimental analysis highlighted the benefits deriving from the use of the modulating vapour injection scroll compressor with the R448A refrigerant. In particular, a significant reduction in energy consumption was recorded compared to conventional systems. The modulating capacity of the compressor made it possible to adapt the cold production to variations in the thermal load, ensuring optimal operation of the system and reducing energy waste. Furthermore, the use of an electronic expansion valve highlighted greater precision in the control of the evaporation temperature, with minimal deviation from the desired set point. This helped ensure better quality of the final product, reducing the risk of damage due to temperature changes and ensuring uniform freezing of the fish products. The freezing time of seafood has been significantly reduced thanks to the configuration of the entire system, allowing for faster production and greater production capacity of the plant. In conclusion, the use of a modulating vapour injection scroll compressor operating with R448A has proven effective in improving the performance of a system for freezing fish products. This technology offers an optimal balance between energy efficiency, temperature control, and environmental sustainability, making it an advantageous choice for food industries.Keywords: scroll compressor, vapor injection, refrigeration system, EER
Procedia PDF Downloads 537666 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong
Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu
Abstract:
This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption, they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation and 15% in field measurement of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.Keywords: sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving
Procedia PDF Downloads 6397665 Effects of Process Parameters on the Yield of Oil from Coconut Fruit
Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude
Abstract:
Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.Keywords: coconut, oil-extraction, optimization, physicochemical, proximate
Procedia PDF Downloads 3567664 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province
Authors: Leila Rashidian, Abbas Ebrahimi
Abstract:
The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.Keywords: climate change, Lars WG, HADCM3, Gillan province, climatic parameters, A2 scenario
Procedia PDF Downloads 2197663 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: Antoine Lauvray, Fabien Poulhaon, Pierre Michaud, Pierre Joyot, Emmanuel Duc
Abstract:
Additive Friction Stir Manufacturing (AFSM) is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. Unlike in Friction Stir Welding (FSW) where abundant literature exists and addresses many aspects going from process implementation to characterization and modeling, there are still few research works focusing on AFSM. Therefore, there is still a lack of understanding of the physical phenomena taking place during the process. This research work aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system composed of the tool, the filler material, and the substrate and due to pure friction. Analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes, through numerical modeling followed by experimental validation, to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque, and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.Keywords: numerical model, additive manufacturing, friction, process
Procedia PDF Downloads 149