Search results for: unsaturated fatty acids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1142

Search results for: unsaturated fatty acids

902 Orotic Acid-Induced Fatty Liver in Mink: Characterization and Testing of Bioactive Peptides for Prevention and Treatment

Authors: Don Buddika Oshadi Malaweera, Lora Harris, Bruce Rathgeber, Chibuike C. Udenigwe, Kirsti Rouvinen-Watt

Abstract:

Fatty liver disease is among the three most severe health concerns for mink and believed to occur through the same mechanism as nursing sickness. In North America, nursing sickness affects about 45% of mink farms and in Canada, approximately 50,000 mink females is affected annually. Orotic acid (OA) plays a critical role in lipid metabolism and can increase hepatic lipids by enhancing Sterol regulatory element binding protein-1c expression and decreasing Carnitine palmitoyl transferase I activity. This study was conducted to identify particular pathways and regulatory control points involved in fatty liver development, and evaluate the effectiveness of arginine and bioactive peptides for prevention and treatment of fatty liver disease in mink. A total of 45 mink were used in 9 treatments. The experimental diets consisted of 1% OA, 2% L-arginine and 5% of whey protein hydrolysates. At the end of 10 days of experimental period, the mink were anaesthetized, sampled for blood and euthanized, samples were obtained for histological, biochemical and molecular assays. The blood samples will be analyzed for clinical chemistry and triacylglycerol. The liver samples will be analyzed for total lipid content and analyzed for 6 genes of interest involved in adipogenic transformation, ER stress, and liver inflammation.

Keywords: fatty liver, L-arginine, mink, orotic acid, whey protein hydrolysates

Procedia PDF Downloads 285
901 Highly Efficient Iron Oxide-Sulfonated Graphene Oxide Catalyst for Esterification and Trans-Esterification Reactions

Authors: Reena D. Souza, Tripti Vats, Prem F. Siril

Abstract:

Esterification of free fatty acid (oleic acid) and transesterification of waste cooking oil (WCO) with ethanol over graphene oxide (GO), GO-Fe2O3, sulfonated GO (GO-SO3H), and Fe2O3/GO-SO3H catalysts were examined in the present study. Iron oxide supported graphene-based acid catalyst (Fe2O3/GO-SO3H) exhibited highest catalytic activity. GO was prepared by modified Hummer’s process. The GO-Fe2O3 nanocomposites were prepared by the addition of NaOH to a solution containing GO and FeCl3. Sulfonation was done using concentrated sulfuric acid. Transmissionelectron microscopy (TEM) and atomic force microscopy (AFM) imaging revealed the presence of Fe2O3 particles having size in the range of 50-200 nm. Crystal structure was analyzed by XRD and defect states of graphene were characterized using Raman spectroscopy. The effects of the reaction variables such as catalyst loading, ethanol to acid ratio, reaction time and temperature on the conversion of fatty acids were studied. The optimum conditions for the esterification process were molar ratio of alcohol to oleic acid at 12:1 with 5 wt% of Fe2O3/GO-SO3H at 1000C with a reaction time of 4h yielding 99% of ethyl oleate. This is because metal oxide supported solid acid catalysts have advantages of having both strong Brønsted as well as Lewis acid properties. The biodiesel obtained by transesterification of WCO was characterized by 1H NMR and Gas Chromatography techniques. XRD patterns of the recycled catalyst evidenced that the catalyst structure was unchanged up to the 5th cycle, which indicated the long life of the catalyst.

Keywords: Fe₂O₃/GO-SO₃H, Graphene Oxide, GO-Fe₂O₃, GO-SO₃H, WCO

Procedia PDF Downloads 250
900 Determination of Unsaturated Soil Permeability Based on Geometric Factor Development of Constant Discharge Model

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

After Yogyakarta earthquake in 2006, the main problem that occurred in the first yard of Prambanan Temple is ponding area that occurred after rainfall. Soil characterization needs to be determined by conducting several processes, especially permeability coefficient (k) in both saturated and unsaturated conditions to solve this problem. More accurate and efficient field testing procedure is required to obtain permeability data that present the field condition. One of the field permeability test equipment is Constant Discharge procedure to determine the permeability coefficient. Necessary adjustments of the Constant Discharge procedure are needed to be determined especially the value of geometric factor (F) to improve the corresponding value of permeability coefficient. The value of k will be correlated with the value of volumetric water content (θ) of an unsaturated condition until saturated condition. The principle procedure of Constant Discharge model provides a constant flow in permeameter tube that flows into the ground until the water level in the tube becomes constant. Constant water level in the tube is highly dependent on the tube dimension. Every tube dimension has a shape factor called the geometric factor that affects the result of the test. Geometric factor value is defined as the characteristic of shape and radius of the tube. This research has modified the geometric factor parameters by using empty material tube method so that the geometric factor will change. Saturation level is monitored by using soil moisture sensor. The field test results were compared with the results of laboratory tests to validate the results of the test. Field and laboratory test results of empty tube material method have an average difference of 3.33 x 10-4 cm/sec. The test results showed that modified geometric factor provides more accurate data. The improved methods of constant discharge procedure provide more relevant results.

Keywords: constant discharge, geometric factor, permeability coefficient, unsaturated soils

Procedia PDF Downloads 273
899 Relationship between Conjugated Linoleic Acid Intake, Biochemical Parameters and Body Fat among Adults and Elderly

Authors: Marcela Menah de Sousa Lima, Victor Ushijima Leone, Natasha Aparecida Grande de Franca, Barbara Santarosa Emo Peters, Ligia Araujo Martini

Abstract:

Conjugated linoleic acid (CLA) intake has been constantly related to benefits to human health since having a positive effect on reducing body fat. The aim of the present study was to investigate the association between CLA intake and biochemical measurements and body composition of adults and the elderly. Subjects/Methods: 287 adults and elderly participants in an epidemiological study in Sao Paulo Brazil, were included in the present study. Participants had their dietary data obtained by two non-consecutive 24HR, a body composition assessed by dual-energy absorptiometry exam (DXA), and a blood collection. Mean differences and a correlation test was performed. For all statistical tests, a significance of 5% was considered. Results: CLA intake showed a positive correlation with HDL-c levels (r = 0.149; p = 0.011) and negative with VLDL-c levels (r = -0.134; p = 0.023), triglycerides (r = -0.135; p = 0.023) and glycemia (r = -0.171; p = 0.004), as well as negative correlation with visceral adipose tissue (VAT) (r = -0.124, p = 0.036). Evaluating individuals in two groups according to VAT values, a significant difference in CLA intake was observed (p = 0.041), being the group with the highest VAT values, the one with the lowest fatty acid intake. Conclusions: This study suggests that CLA intake is associated with a better lipid profile and lower visceral adipose tissue volume, which contributes to the investigation of the effects of CLA on obesity parameters. However, it is necessary to investigate the effects of CLA from milk and dairy products in the control adiposity.

Keywords: adiposity, dairy products, diet, fatty acids

Procedia PDF Downloads 113
898 COVID-19: Potential Effects of Nutritional Factors on Inflammation Relief

Authors: Maryam Nazari

Abstract:

COVID-19 is a respiratory disease triggered by the novel coronavirus, SARS-CoV-2, that has reached pandemic status today. Acute inflammation and immune cells infiltration into lung injuries result in multi-organ failure. The presence of other non-communicable diseases (NCDs) with systemic inflammation derived from COVID-19 may exacerbate the patient's situation and increase the risk for adverse effects and mortality. This pandemic is a novel situation and the scientific community at this time is looking for vaccines or drugs to treat the pathology. One of the biggest challenges is focused on reducing inflammation without compromising the correct immune response of the patient. In this regard, addressing the nutritional factors should not be overlooked not only as a matter of avoiding the presence of NCDs with severe infections but also as an adjunctive way to modulate the inflammatory status of the patients. Despite the pivotal role of nutrition in modifying immune response, due to the novelty of the COVID-19 disease, information about the effects of specific dietary agents is limited in this area. From the macronutrients point of view, protein deficiency (quantity or quality) has negative effects on the number of functional immunoglobulins and gut-associated lymphoid tissue (GALT). High biological value proteins or some amino acids like arginine and glutamine are well known for their ability to augment the immune system. Among lipids, fish oil has the ability to inactivate enveloped viruses, suppress pro-inflammatory prostaglandin production and block platelet-activating factors and their receptors. In addition, protectin D1, which is an Omega-3 PUFAs derivation, is a novel antiviral drug. So it seems that these fatty acids can reduce the severity and/or improve recovery of patients with COVID-19. Carbohydrates with lower glycemic index and fibers are associated with lower levels of inflammatory cytokines (CRP, TNF-α, and IL-6). Short-Chain Fatty acids not only exert a direct anti-inflammatory effect but also provide appropriate gut microbial, which is important in gastrointestinal issues related to COVID-19. From the micronutrients point of view, Vitamins A, C, D, E, iron, magnesium, zinc, selenium and copper play a vital role in the maintenance of immune function. Inadequate status in these nutrients may result in decreased resistance against COVID-19 infection. There are specific bioactive compounds in the diet that interact with the ACE2 receptor, which is the gateway for SARS and SARS-CoV-2, and thus controls the viral infection. Regarding this, the potential benefits of probiotics, resveratrol (a polyphenol found in grape), oleoylethanolamide (derived from oleic acid), and natural peroxisome proliferator-activated receptor γ agonists in foodstuffs (like curcumin, pomegranate, hot pepper) are suggested. Yet, it should be pointed out that most of these results have been reported in animal models and further human studies are needed to be verified.

Keywords: Covid-19, inflammation, nutrition, dietary agents

Procedia PDF Downloads 150
897 Use of Front-Face Fluorescence Spectroscopy and Multiway Analysis for the Prediction of Olive Oil Quality Features

Authors: Omar Dib, Rita Yaacoub, Luc Eveleigh, Nathalie Locquet, Hussein Dib, Ali Bassal, Christophe B. Y. Cordella

Abstract:

The potential of front-face fluorescence coupled with chemometric techniques, namely parallel factor analysis (PARAFAC) and multiple linear regression (MLR) as a rapid analysis tool to characterize Lebanese virgin olive oils was investigated. Fluorescence fingerprints were acquired directly on 102 Lebanese virgin olive oil samples in the range of 280-540 nm in excitation and 280-700 nm in emission. A PARAFAC model with seven components was considered optimal with a residual of 99.64% and core consistency value of 78.65. The model revealed seven main fluorescence profiles in olive oil and was mainly associated with tocopherols, polyphenols, chlorophyllic compounds and oxidation/hydrolysis products. 23 MLR regression models based on PARAFAC scores were generated, the majority of which showed a good correlation coefficient (R > 0.7 for 12 predicted variables), thus satisfactory prediction performances. Acid values, peroxide values, and Delta K had the models with the highest predictions, with R values of 0.89, 0.84 and 0.81 respectively. Among fatty acids, linoleic and oleic acids were also highly predicted with R values of 0.8 and 0.76, respectively. Factors contributing to the model's construction were related to common fluorophores found in olive oil, mainly chlorophyll, polyphenols, and oxidation products. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of Lebanese virgin olive oils.

Keywords: front-face fluorescence, Lebanese virgin olive oils, multiple Linear regressions, PARAFAC analysis

Procedia PDF Downloads 431
896 Do Immune Organ Weights Indicate Immunomodulation of Polyunsaturated Fatty Acids?

Authors: H. Al-Khalifa, A. Al-Nasser

Abstract:

The main immune organs in poultry are the thymus, spleen and bursa of Fabricius. During an immune response, mature lymphocytes and other immune cells interact with antigens in these tissues. Consequently, the mass of these organs can in some cases indicate immune status. The objective of the current study was to investigate the effect of feeding flaxseed on immune tissue weights. Cobb 500 broiler chickens were fed flaxseed at 15%, the control diet did not contain any flaxseed. Results showed that dietary supplementation with flaxseed did not affect the weights of the spleens of broiler chickens. However, it significantly lowered bursa weights (p<0.01), compared to the control diet. In addition, the bursae were thinner in appearance compared with bursii from chickens fed the control diets.

Keywords: bursa of fabricius, flaxseed, spleen, thymus

Procedia PDF Downloads 427
895 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils

Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana

Abstract:

This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.

Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction

Procedia PDF Downloads 38
894 Physicochemical and Biochemical Characterization of Olea europea Var. Oleaster Oil and Determination of Its Effects on Blood Parameters

Authors: Asma Gherib, Imen Merzougui, Cherifa Henchiri

Abstract:

This present study has allowed to evaluate the physico chemical characteristics, fatty acid composition and the hypolipidemic effect of Oleaster oil Olea europea var. Oleaster, from the area of El Kala, "Eastern Algeria" on rats "Wistar albinos". The physico chemical characteristics: acidity (0,73%), peroxide value (14, 16 meqO2/kg oil) and iodine value (74,08 g iodine/100 g of oil) are consistent with international standards. The dosage of FA revealed a wealth of oil with UFA (76,7%), mainly composed of 65.43% of MUFA whose major fatty acid is oleic acid (63,57%). The experiment on rats receiving a diet rich in saturated fats and hydrogenated oils revealed that the consumption of Oleaster oil at the dose of 10 g and 20 g for 15 and 30 days improves plasma lipid profile by decreasing the rates of TC, TG, TL, and LDL-C with an increase in the rate of HDL-C serum. The importance of these effects depends on the dose and period of treatment.

Keywords: oleaster oil, fatty acid, Olea europea, oleic acid, lipid profile

Procedia PDF Downloads 453
893 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study

Authors: Kulvinder Bajwa, Narsi R. Bishnoi

Abstract:

Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.

Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids

Procedia PDF Downloads 113
892 Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate

Authors: Najwa Othman, Norhidayah Suleiman, Gun Hean Chong

Abstract:

Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%.

Keywords: enzymatic hydrolysis, palm fatty acid distillate, supercritical fluid extraction, tocotrienols

Procedia PDF Downloads 116
891 The Effects of Dietary Flaxseed Oil Supplementations on Punicic Acid of the Yolks in Quail Muscle

Authors: Ozcan Baris Citil

Abstract:

This experiment was carried out to determine effects of Japanese quail diets which is supplemented with different levels of punicic acids and CLA compositions in Japanese quail. In this study, eighty laying quails at 12 weeks of age were used. They were divided into 4 tretament groups, each group included 20 quails. The diets in treatment groups contained different levels of flaxseed oil. At the end of the experiment lasted for 21 days, 5 quail taken from each group were subjected to analysis. Punicic acid content of muscle were determined by gas chromatography. Twenty five different fatty acid components were determinated in the compositions of quail muscle. No differences were found in oil content among the groups.

Keywords: quail egg yolk, punicic acid, flaxseed oil, gas chromatography

Procedia PDF Downloads 273
890 Capacity Building in Dietary Monitoring and Public Health Nutrition in the Eastern Mediterranean Region

Authors: Marisol Warthon-Medina, Jenny Plumb, Ayoub Aljawaldeh, Mark Roe, Ailsa Welch, Maria Glibetic, Paul M. Finglas

Abstract:

Similar to Western Countries, the Eastern Mediterranean Region (EMR) also presents major public health issues associated with the increased consumption of sugar, fat, and salt. Therefore, one of the policies of the World Health Organization’s (WHO) EMR is to reduce the intake of salt, sugar, and fat (Saturated fatty acids, trans fatty acids) to address the risk of non-communicable diseases (i.e. diabetes, cardiovascular disease, cancer) and obesity. The project objective is to assess status and provide training and capacity development in the use of improved standardized methodologies for updated food composition data, dietary intake methods, use of suitable biomarkers of nutritional value and determine health outcomes in low and middle-income countries (LMIC). Training exchanges have been developed with clusters of countries created resulting from regional needs including Sudan, Egypt and Jordan; Tunisia, Morocco, and Mauritania; and other Middle Eastern countries. This capacity building will lead to the development and sustainability of up-to-date national and regional food composition databases in LMIC for use in dietary monitoring assessment in food and nutrient intakes. Workshops were organized to provide training and capacity development in the use of improved standardized methodologies for food composition and food intake. Training needs identified and short-term scientific missions organized for LMIC researchers including (1) training and knowledge exchange workshops, (2) short-term exchange of researchers, (3) development and application of protocols and (4) development of strategies to reduce sugar and fat intake. An initial training workshop, Morocco 2018 was attended by 25 participants from 10 EMR countries to review status and support development of regional food composition. 4 training exchanges are in progress. The use of improved standardized methodologies for food composition and dietary intake will produce robust measurements that will reinforce dietary monitoring and policy in LMIC. The capacity building from this project will lead to the development and sustainability of up-to-date national and regional food composition databases in EMR countries. Supported by the UK Medical Research Council, Global Challenges Research Fund, (MR/R019576/1), and the World Health Organization’s Eastern Mediterranean Region.

Keywords: dietary intake, food composition, low and middle-income countries, status.

Procedia PDF Downloads 132
889 Effect of Phenolic Acids on Human Saliva: Evaluation by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, F. Orellana-Rodríguez, R. López-Solís

Abstract:

Phenolic compounds are secondary metabolites present in some foods, such as wine. Polyphenols comprise two main groups: flavonoids (anthocyanins, flavanols, and flavonols) and non-flavonoids (stilbenes and phenolic acids). Phenolic acids are low molecular weight non flavonoid compounds that are usually grouped into benzoic (gallic, vanillinic and protocatechuic acids) and cinnamic acids (ferulic, p-coumaric and caffeic acids). Likewise, tannic acid is an important polyphenol constituted mainly by gallic acid. Phenolic compounds are responsible for important properties in foods and drinks, such as color, aroma, bitterness, and astringency. Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. Astringency perception has been associated with interactions between flavanols present in some foods and salivary proteins. Despite the quantitative relevance of phenolic acids in food and beverages, there is no information about its effect on salivary proteins and consequently on the sensation of astringency. The objective of this study was assessed the interaction of several phenolic acids (gallic, vanillinic, protocatechuic, ferulic, p-coumaric and caffeic acids) with saliva. Tannic acid was used as control. Thus, solutions of each phenolic acids (5 mg/mL) were mixed with human saliva (1:1 v/v). After incubation for 5 min at room temperature, 15-μL aliquots of the mixtures were dotted on a cellulose membrane and allowed to diffuse. The dry membrane was fixed in 50 g/L trichloroacetic acid, rinsed in 800 mL/L ethanol and stained for protein with Coomassie blue for 20 min, destained with several rinses of 73 g/L acetic acid and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged and fifteen-μL aliquots of each supernatant were dotted on a cellulose membrane, allowed to diffuse and processed for protein staining, as indicated above. In this latter assay, reduced protein staining was taken as indicative of protein precipitation (precipitation test). The diffusion of the salivary protein was restricted by the presence of each phenolic acids (anti-diffusive effect), while tannic acid did not alter diffusion of the salivary protein. By contrast, phenolic acids did not provoke precipitation of the salivary protein, while tannic acid produced precipitation of salivary proteins. In addition, binary mixtures (mixtures of two components) of various phenolic acids with gallic acid provoked a restriction of saliva. Similar effect was observed by the corresponding individual phenolic acids. Contrary, binary mixtures of phenolic acid with tannic acid, as well tannic acid alone, did not affect the diffusion of the saliva but they provoked an evident precipitation. In summary, phenolic acids showed a relevant interaction with the salivary proteins, thus suggesting that these wine compounds can also contribute to the sensation of astringency.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 221
888 Dietary Diversification and Nutritional Education: A Strategy to Improve Child Food Security Status in the Rural Mozambique

Authors: Rodriguez Diego, Del Valle Martin, Hargreaves Matias, Riveros Jose Luis

Abstract:

Nutrient deficiencies due to a diet low in quantitative and qualitative terms, are prevalent throughout the developing world, especially in sub-Saharan Africa. Children and women of childbearing age are especially vulnerable. Limited availability, access and intake of animal foods at home and lack of knowledge about their value in the diet and the role they play in health, contribute to poor diet quality. Poor bioavailability of micronutrients in diets based on foods high in fiber and phytates, the low content of some micronutrients in these foods are further factors to consider. Goats are deeply embedded in almost every Sub-Saharan African rural culture, generally kept for their milk, meat, hair or leather. Goats have played an important role in African social life, especially in food security. Goat meat has good properties for human wellbeing, with a special role in lower income households. It has a high-quality protein (20 protein g/100 meat g) including all essential amino acids, good unsaturated/satured fatty acids relationship, and it is an important B-vitamin source with high micronutrients bioavailability. Mozambique has major food security problems, with poor food access and utilization, undiversified diets, chronic poverty and child malnutrition. Our objective was to design a nutritional intervention based on a dietary diversification, nutritional education, cultural beliefs and local resources, aimed to strengthen food security of children at Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. Two surveys were conducted first of socio-productive local databases and then to 100 rural households about livelihoods, food diversity and anthropometric measurements in children under 5 years. Our results indicate that the main economic activity is goat production, based on a native breed with two deliveries per year in the absence of any management. Adult goats weighted 27.2±10.5 kg and raised a height of 63.5±3.8 cm. Data showed high levels of poverty, with a food diversity score of 2.3 (0-12 points), where only 30% of households consume protein and 13% iron, zinc, and B12 vitamin. The main constraints to food security were poor access to water and low income to buy food. Our dietary intervention was based on improving diet quality by increasing the access to dried goat meat, fresh vegetables, and legumes, and its utilization by a nutritional education program. This proposal was based on local culture and living conditions characterized by the absence of electricity power and drinkable water. The drying process proposed would secure the food maintenance under local conditions guaranteeing food safety for a longer period. Additionally, an ancient local drying technique was rescued and used. Moreover, this kind of dietary intervention would be the most efficient way to improve the infant nutrition by delivering macro and micronutrients on time to these vulnerable populations.

Keywords: child malnutrition, dietary diversification, food security, goat meat

Procedia PDF Downloads 281
887 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.

Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks

Procedia PDF Downloads 415
886 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.

Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles

Procedia PDF Downloads 273
885 Recovery and Identification of Phenolic Acids in Honey Samples from Different Floral Sources of Pakistan Having Antimicrobial Activity

Authors: Samiyah Tasleem, Muhammad Abdul Haq, Syed Baqir Shyum Naqvi, Muhammad Abid Husnain, Sajjad Haider Naqvi

Abstract:

The objective of the present study was: a) to investigate the antimicrobial activity of honey samples of different floral sources of Pakistan, b) to recover the phenolic acids in them as a possible contributing factor of antimicrobial activity. Six honey samples from different floral sources, namely: Trachysperm copticum, Acacia species, Helianthus annuus, Carissa opaca, Zizyphus and Magnifera indica were used. The antimicrobial activity was investigated by the disc diffusion method against eight freshly isolated clinical isolates (Staphylococci aureus, Staphylococci epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Proteus vulgaris and Candida albicans). Antimicrobial activity of honey was compared with five commercial antibiotics, namely: doxycycline (DO-30ug/mL), oxytetracycline (OT-30ug/mL), clarithromycin (CLR–15ug/mL), moxifloxacin (MXF-5ug/mL) and nystatin (NT – 100 UT). The fractions responsible for antimicrobial activity were extracted using ethyl acetate. Solid phase extraction (SPE) was used to recover the phenolic acids of honey samples. Identification was carried out via High-Performance Liquid Chromatography (HPLC). The results indicated that antimicrobial activity was present in all honey samples and found comparable to the antibiotics used in the study. In the microbiological assay, the ethyl acetate honey extract was found to exhibit a very promising antimicrobial activity against all the microorganisms tested, indicating the existence of phenolic compounds. Six phenolic acids, namely: gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids were identified besides some unknown substance by HPLC. In conclusion, Pakistani honey samples showed a broad spectrum antibacterial and promising antifungal activity. Identification of six different phenolic acids showed that Pakistani honey samples are rich sources of phenolic compounds that could be the contributing factor of antimicrobial activity.

Keywords: Pakistani honey, antimicrobial activity, Phenolic acids eg.gallic, caffeic, ferulic, vanillic, benzoic and cinnamic acids

Procedia PDF Downloads 524
884 Effect of Ultrasound on the Hydrolysis of Soy Oil Catalyzed by 1,3-Specific Lipase Abstract

Authors: Jamal Abd Awadallak, Thiago Olinek Reinehr, Eduardo Raizer, Deise Molinari, Edson Antonio, Camila da Silva da Silva

Abstract:

The hydrolysis of soy oil catalyzed by 1,3-specific enzyme (Lecitase Ultra) in a well-stirred bioreactor was studied. Two forms of applications of the ultrasound were evaluated aiming to increase reaction rates, wherein the use of probe ultrasound associated with the use of surfactant to pre-emulsify the substrate showed the best results. Two different reaction periods were found: the first where the ultrasound has great influence on reaction rates, and the second where ultrasound influence is minimal. Studies on the time of pre-emulsification, surfactant concentration and enzyme concentration showed that the initial rate of hydrolysis depends on the interfacial area between the oil phase and the aqueous phase containing the enzyme.

Keywords: specific enzyme, free fatty acids, Hydrolysis, lecitase ultra, ultrasound

Procedia PDF Downloads 551
883 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis

Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh

Abstract:

This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte

Procedia PDF Downloads 280
882 Effects of Bile Acids and Lipase Supplementation in Low-Energy Diets on Growth Performance and Meat Quality in Broiler Chickens

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti

Abstract:

The study aimed to investigate the effect of bile acids and lipase supplementation in low-energy diets on growth performance and meat quality of broilers. Seven hundred day-old Cobb-500 broiler chicks with an average initial body weight of 45.9 ± 0.3 g were assigned to 5 dietary treatments, with five replications of 28 birds each in a completely randomized design. The five treatments were as follows: (i) HE: broilers received a diet with high energy content; (ii) LE: broilers received a diet with low energy content and energy content reduced by 100 kcal/kg as compared to HE; (iii) LEB: broilers received a diet similar to the LE group supplemented with 300 g/ton bile acids; (iv) LEL: broilers received a diet similar to the LE group supplemented with 180 g/ton lipase enzyme and (v) LEBL: broilers received a diet similar to the LE group supplemented with both 300 g/ton bile acids and 180 g/ton lipase enzyme. The experimental period lasted for 35 days. Broilers fed HE had a lower (P < 0.05) body weight (BW) gain and lower feed intake (1-35 d), but during finisher period (21-35 d), BW gain was similar with other treatments. Feed conversion ratio (FCR) was lower in HE and higher in LEBL group (P < 0.05), while the LE, LEB, and LEL had intermediate values. At 35 d no difference occurred between treatment for water holding capacity and pH of breast and thigh muscles (P > 0.05). The relative weight of pancreas was higher (P < 0.05) in LEB treatment but lower (P < 0.05) in LEL treatment. In conclusion, bile acids and lipase supplementation at 300 g/ton and 150g/ton of feed in low-energy diets respectively had no effect on broiler performance and meat quality. However, FCR was improved in HE treatment.

Keywords: bile acids, energy, enzyme, growth

Procedia PDF Downloads 93
881 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria

Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali

Abstract:

Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.

Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3

Procedia PDF Downloads 72
880 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn

Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem

Abstract:

Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.

Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective

Procedia PDF Downloads 176
879 Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture

Authors: Nneka Nkechi Uchegbu, Temitope Omolayo Fasuan

Abstract:

This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications.

Keywords: V. amygdalina leaf, bio-compounds, oil-aqueous mixture, amino acids

Procedia PDF Downloads 119
878 The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)

Authors: Vanessa Caroline De Barros Bonato, Bruna Lima Gomes, Luciano Freschi, Eduardo Purgatto

Abstract:

The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening.

Keywords: aroma compounds, fruit ripening, fruit quality, phytohormones

Procedia PDF Downloads 374
877 The Effect of Addition of White Mulberry Fruit on the Polyphenol Content in the New Developed Bioactive Bread

Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata

Abstract:

In recent years, proceed to the attractiveness of typical bakery products. Expanding the education and nutrition knowledge society will develop the production of functional foods, which has a positive impact on human health. Therefore, the aim of the present study was to evaluate the effect of the addition of white mulberry fruit on the content of biologically active compounds in the new designed functional bread premixes designed for selected disease: anemia, diabetes, obesity and cardiovascular disease. For flavonols and phenolic acids content UPLC was conducted, using an NovaPack C18 column and a gradient elution system. It was found that all attempts bread characterized by a high content of biologically active compounds: polyphenols, phenolic acids, and flavonoids. The highest total content of polyphenolic compounds found in the samples of bread for anemia, diabetes and cardiovascular disease both before and after storage. The analyzed sample differed in content of phenolic acids. The highest content of these compounds were found in samples of bread for anemia and diabetes. It was found that the analyzed sample contained phenolic acids that are derivatives of hydroxybenzoic and hydroxycinnamic acid. The new designed bread contained significant amounts of flavonols, of which the dominant was routine.

Keywords: mulberry, antioxidant, polyphenols, phenolic acids, flavonols

Procedia PDF Downloads 392
876 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 219
875 Bread-Making Properties of Rice Flour Dough Using Fatty Acid Salt

Authors: T. Hamaishi, Y. Morinaga, H. Morita

Abstract:

Introduction: Rice consumption in Japan has decreased, and Japanese government has recommended use of rice flour in order to expand the consumption of rice. There are two major protein components present in flour, called gliadin and glutenin. Gluten forms when water is added to flour and is mixed. As mixing continues, glutenin interacts with gliadin to form viscoelastic matrix of gluten. Rice flour bread does not expand as much as wheat flour bread. Because rice flour is not included gluten, it cannot construct gluten network in the dough. In recent years, some food additives have been used for dough-improving agent in bread making, especially surfactants has effect in order to improve dough extensibility. Therefore, we focused to fatty acid salt which is one of anionic surfactants. Fatty acid salt is a salt consist of fatty acid and alkali, it is main components of soap. According to JECFA(FAO/WHO Joint Expert Committee on Food Additives), salts of Myristic(C14), Palmitic(C16) and Stearic(C18) could be used as food additive. They have been evaluated ADI was not specified. In this study, we investigated to improving bread-making properties of rice flour dough adding fatty acid salt. Materials and methods: The sample of fatty acid salt is myristic (C14) dissolved in KOH solution to a concentration of 350 mM and pH 10.5. Rice dough was consisted of 100 g of flour using rice flour and wheat gluten, 5 g of sugar, 1.7 g of salt, 1.7g of dry yeast, 80 mL of water and fatty acid salt. Mixing was performed for 500 times by using hand. The concentration of C14K in the dough was 10 % relative to flour weight. Amount of gluten in the dough was 20 %, 30 % relative to flour weight. Dough expansion ability test was performed to measure physical property of bread dough according to the methods of Baker’s Yeast by Japan Yeast Industry Association. In this test, 150 g of dough was filled from bottom of the cylinder and fermented at 30 °C,85 % humidity for 120 min on an incubator. The height of the expansion in the dough was measured and determined its expansion ability. Results and Conclusion: Expansion ability of rice dough with gluten content of 20 %, 30% showed 316 mL, 341 mL for 120 min. When C14K adding to the rice dough, dough expansion abilities were 314 mL, 368 mL for 120 min, there was no significant difference. Conventionally it has been known that the rice flour dough contain gluten of 20 %. The considerable improvement of dough expansion ability was achieved when added C14K to wheat flour. The experimental result shows that c14k adding to the rice dough with gluten content more than 20 % was not improving bread-making properties. In conclusion, rice bread made with gluten content more than 20 % without C14K has been suggested to contribute to the formation of the sufficient gluten network.

Keywords: expansion ability, fatty acid salt, gluten, rice flour dough

Procedia PDF Downloads 225
874 Dependence of Free Fatty Acid and Chlorophyll Content on Thermal Stability of Extra Virgin Olive Oil

Authors: Yongjun Ahn, Sung Gyu Choi, Seung-Yeop Kwak

Abstract:

Selective removal of free fatty acid (FFA) and chlorophyll in extra virgin olive oil (EVOO) is necessary to enhance the thermal stability in the condition of the deep frying. In this work, we demonstrated improving the thermal stability of EVOO by selective removal of free fatty acid and chlorophyll using (3-Aminopropyl)trimethoxysilane (APTMS) functionalized mesoporous silica with controlled pore size. The adsorption kinetics of free fatty acid and chlorophyll into the mesoporous silica were quantitatively analyzed by Freundlich and Langmuir model. The highest chlorophyll adsorption efficiency was shown in the pore size at 5 nm, suggesting that the interaction between the silica and the chlorophyll could be optimized at this point. The amino-functionalized mesoporous silica showed drastically improved removal efficiency of FFA than the bare silica. Moreover, beneficial compounds like tocopherol and phenolic compounds maintained even after adsorptive removal. Extra virgin olive oil treated by aminopropyl-functionalized silica had a smoke point high enough to be used as commercial frying oil. Based on these results, it is expected to attract the considerable amount of interest toward facile adsorptive refining process of EVOO using pore size controlled and amino-functionalized mesoporous silica.

Keywords: mesoporous silica, extra virgin olive oil, selective adsorption, thermal stability

Procedia PDF Downloads 216
873 Modelling the Anaerobic Digestion of Esparto Paper Industry Wastewater Effluent in a Batch Digester Using IWA Anaerobic Digestion Model No. 1 (ADM1)

Authors: Boubaker Fezzani, Ridha Ben Cheikh, Tarek Rouissi

Abstract:

In this work the original ADM1, implemented in the simulation software package MATLAB/Simulink, was modified and adapted and applied to reproduce the experimental results of the mesophilic anaerobic digestion of Esperto paper industry wastewater in a batch digester. The data set from lab-scale experiment runs were used to calibrate and validate the model. The simulations’ results indicated that the modified ADM1 was able to predict reasonably well the steady state results of gas flows, methane and carbon dioxide contents, pH and total volatile fatty acids (TVFA) observed with all influents concentrations.

Keywords: anaerobic digestion, mathematical modelling, Simulation, ADM1, batch digester, esparto paper industry effluent, mesophilic temperature

Procedia PDF Downloads 379