Search results for: statistical machine translation
6870 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 966869 Size Reduction of Images Using Constraint Optimization Approach for Machine Communications
Authors: Chee Sun Won
Abstract:
This paper presents the size reduction of images for machine-to-machine communications. Here, the salient image regions to be preserved include the image patches of the key-points such as corners and blobs. Based on a saliency image map from the key-points and their image patches, an axis-aligned grid-size optimization is proposed for the reduction of image size. To increase the size-reduction efficiency the aspect ratio constraint is relaxed in the constraint optimization framework. The proposed method yields higher matching accuracy after the size reduction than the conventional content-aware image size-reduction methods.Keywords: image compression, image matching, key-point detection and description, machine-to-machine communication
Procedia PDF Downloads 4186868 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1776867 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1056866 Turning Points in the Development of Translator Training in the West from the 1980s to the Present
Authors: B. Sayaheen
Abstract:
The translator’s competence is one of the topics that has received a great deal of research in the field of translation studies because such competencies are still debatable and not yet agreed upon. Besides, scholars tackle this topic from different points of view. Approaches to teaching these competencies have gone through some developments. This paper aims at investigating these developments, exploring the major turning points and shifts in the developments of teaching methods in translator training. The significance of these turning points and the external or internal causes will also be discussed. Based on the past and present status of teaching approaches in translator training, this paper tries to predict the future of these approaches. This paper is mainly concerned with developments of teaching approaches in the West since the 1980s to the present. The reason behind choosing this specific period is not because translator training started in the 1980s but because most criticism of the teacher-centered approach started at that time. The implications of this research stem from the fact that it identifies the turning points and the causes that led teachers to adopt student-centered approaches rather than teacher-centered approaches and then to incorporate technology and the Internet in translator training. These reasons were classified as external or internal reasons. Translation programs in the West and in other cultures can benefit from this study. Translation programs in the West can notice that teaching translation is geared toward incorporating more technologies. If these programs already use technology and the Internet to teach translation, they might benefit from the assumed future direction of teaching translation. On the other hand, some non-Western countries, and to be specific some professors, are still applying the teacher-centered approach. Moreover, these programs should include technology and the Internet in their teaching approaches to meet the drastic changes in the translation process, which seems to rely more on software and technologies to accomplish the translator’s tasks. Finally, translator training has borrowed many of its approaches from other disciplines, mainly language teaching. The teaching approaches in translator training have gone through some developments, from teacher-centered to student-centered and then toward the integration of technologies and the Internet. Both internal and external causes have played a crucial role in these developments. These borrowed approaches should be comprehensively evaluated in order to see if they achieve the goals of translator training. Such evaluation may lead us to come up with new teaching approaches developed specifically for translator training. While considering these methods and designing new approaches, we need to keep an eye on the future needs of the market.Keywords: turning points, developments, translator training, market, The West
Procedia PDF Downloads 1146865 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems
Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini
Abstract:
Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.Keywords: quantum, machine learning, kernel, non-markovianity
Procedia PDF Downloads 1806864 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 586863 Conceptual Design of a Customer Friendly Variable Volume and Variable Spinning Speed Washing Machine
Authors: C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar
Abstract:
In this paper using smart materials we have proposed a specially manufactured variable volume spin tub for loading clothes for negating the vibration to a certain extent for getting better operating performance. Additionally, we have recommended a variable spinning speed rotor for handling varieties of garments for an efficient washing, aiming for increasing the life span of both the garments and the machine. As a part of the conflicting dynamic constraints and demands of the customer friendly design optimization of a lucrative and cosmetic washing machine we have proposed a drier and a desalination system capable to supply desirable heat and a pleasing fragrance to the garments. We thus concluded that while incorporating variable volume and variable spinning speed tub integrated with a drier and desalination system, the washing machine could meet the varieties of domestic requirements of the customers cost-effectively.Keywords: customer friendly washing machine, drier design, quick cloth cleaning, variable tub volume washing machine, variable spinning speed washing machine
Procedia PDF Downloads 2566862 Development of a Harvest Mechanism for the Kahramanmaraş Chili Pepper
Authors: O. E. Akay, E. Güzel, M. T. Özcan
Abstract:
The pepper has quite a rich variety. The development of a single harvesting machine for all kinds of peppers is a difficult research topic. By development of harvesting mechanisms, we could be able to facilitate the pepper harvesting problems. In this study, an experimental harvesting machine was designed for chili pepper. Four-bar mechanism was used for the design of the prototype harvesting machine. At the result of harvest trials, 80% of peppers were harvested and 8% foreign materials were collected. These results have provided some tips on how to apply to large-scale pepper Four-bar mechanism of the harvest machine.Keywords: kinematic simulation, four bar linkage, harvest mechanization, pepper harvest
Procedia PDF Downloads 3466861 Design of Neural Predictor for Vibration Analysis of Drilling Machine
Authors: İkbal Eski
Abstract:
This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.Keywords: artificial neural network, vibration analyses, drilling machine, robust
Procedia PDF Downloads 3926860 Research on Axial End Flux Leakage and Detent Force of Transverse Flux PM Linear Machine
Authors: W. R. Li, J. K. Xia, R. Q. Peng, Z. Y. Guo, L. Jiang
Abstract:
According to 3D magnetic circuit of the transverse flux PM linear machine, distribution law is presented, and analytical expression of axial end flux leakage is derived using numerical method. Maxwell stress tensor is used to solve detent force of mover. A 3D finite element model of the transverse flux PM machine is built to analyze the flux distribution and detent force. Experimental results of the prototype verified the validity of axial end flux leakage and detent force theoretical derivation, the research on axial end flux leakage and detent force provides a valuable reference to other types of linear machine.Keywords: axial end flux leakage, detent force, flux distribution, transverse flux PM linear machine
Procedia PDF Downloads 4496859 Deleterious SNP’s Detection Using Machine Learning
Authors: Hamza Zidoum
Abstract:
This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM
Procedia PDF Downloads 3776858 Going Global by Going Local-How Website Localization and Translation Can Break the Internet Language Barrier and Contribute to Globalization
Authors: Hela Fathallah
Abstract:
With 6,500 spoken languages all over the world but 80 percent of online content available only in 10 languages – English, Chinese, Spanish, Japanese, Arabic, Portuguese, German, French, Russian, and Korean – language represents a barrier to the universal access to knowledge, information and services that the internet wants to provide. Translation and its related fields of localization, interpreting, globalization, and internationalization, remove that barrier for billions of people worldwide, unlocking new markets for technology companies, mobile device makers, service providers and language vendors as well. This paper gathers different surveys conducted in different regions of the world that demonstrate a growing demand for consumption of web content with distinctive values and in languages others than the aforementioned ones. It also adds new insights to the contribution of translation in languages preservation. The idea that English is the language of internet and that, in a globalized world, everyone should learn English to cope with new technologies is no longer true. This idea has reached its limits. It collides with cultural diversity and differences around the world and generates an accelerated rate of languages extinction. Studies prove that internet exacerbates this rate and web giants such as Facebook or Google are, today, facing the impact of such a misconception of globalization. For internet and dot-com companies, localization is the solution; they are spending a significant amount of time to understand what people want and to figure out how to provide it. They are committed to making their content accessible, if not in all the languages spoken today, at least in most of them, and to adapting it to most cultures. Technology has broken down the barriers of time and space, and it will break down the language barrier as well by undertaking a process of translation and localization and through a new definition of globalization that takes into consideration these two processes.Keywords: globalization, internet, localization, translation
Procedia PDF Downloads 3626857 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 2266856 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 236855 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms
Authors: Sagri Sharma
Abstract:
Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine
Procedia PDF Downloads 4296854 Translation Skills and Language Acquisition
Authors: Frieda Amitai
Abstract:
The field of Translation Studies includes both descriptive and applied aspects, one of which is developing curricula. Within this topic there are theories dealing with curricula aimed at translator training, and theories meant to explore teaching translation as means through which awareness to language is developed in order to enhance language knowledge. An example of the latter is a unique study program in Israeli high schools – Teaching Translation Skills Program (TTSP). This study program has been taught in Israel for more than two decades and is aimed at raising students' meta-linguistic awareness as well as their language proficiency in both source language and target language in order to enable them become better language learners. The objective of the current research was to examine whether the goals of this program are achieved – increase in students' metalinguistic awareness and language proficiency. A follow-up case study was aimed at examining the level of proficiency which would develop most by this way of teaching English. The study was conducted in two stages – before and after participating in the program. 400 subjects took part in the first stage, and 100 took part in the second. In both parts of the study, participants were given the same five tasks in both Hebrew and English in addition to a questionnaire, in which they were asked about their own knowledge of Hebrew and in comparison to that of their peers. Their teachers were asked about the success of the program and about the methodology they use in class. Findings show significant change in the level of meta-linguistic awareness of the students as well as their language proficiency. A comparison between their answers before and after the program shows that their meta-linguistic awareness increased, as did their ability to recognize linguistic mistakes. These findings serve as strong evidence for the positive effect such study program has on the development of meta-linguistic awareness and linguistic knowledge. The follow-up case study tests the change among weaker language learners.Keywords: comparison, metalinguistic awareness, language learning, translation skills
Procedia PDF Downloads 3556853 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Authors: Yi Huang, Clemens Guehmann
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model
Procedia PDF Downloads 2856852 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2266851 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 3476850 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 4806849 Tradition and Modernity in Translation Studies: The Case of Undergraduate and Graduate Programs at Unicamp, Brazil
Authors: Erica Lima
Abstract:
In Brazil, considering the (little) age of translation studies, it can be argued that the University of Campinas is traditionally an important place for graduate studies in translation. The story is told from the accreditation for the Masters, in 1987, and the Doctoral program, in 1993, within the Graduate Program in Applied Linguistics. Since the beginning, the program boasted cutting-edge research, with theoretical reflections on various aspects, and with different methodological trends. However, on the one hand, the graduate studies development was continuously growing, but on the other, it is not what was observed in the undergraduate degree program. Currently, there are only a few disciplines of Translation Theory and Practice, which does not seem to respond to student aspirations. The objective of this paper is to present the characteristics of the university’s graduate program as something profitable, considering the concern in relating the research to the historical moment in which we are living, with research conducted in a socially compromised environment and committed to the impact that it will cause ethically and socially, as well as to question the undergraduate program paths. The objective is also to discuss and propose changes, considering the limited scope currently achieved. In light of the information age, in which we have an avalanche of information, we believe that the training of translators in the undergraduate degree should be reviewed, with the goal of retracing current paths and following others that are consistent with our historical period, marked by virtual and real, by the shuffling of borders and languages, the need for new language policies, greater inclusion, and more acceptance of others. We conclude that we need new proposals for the development of the translator in an undergraduate program, and also present suggestions to be implemented in the graduate program.Keywords: graduate Brazilian program, undergraduate Brazilian program, translator’s education, Unicamp
Procedia PDF Downloads 3346848 Simulated Translator-Client Relations in Translator Training: Translator Behavior around Risk Management
Authors: Maggie Hui
Abstract:
Risk management is not a new concept; however, it is an uncharted area as applied to the translation process and translator training. Risk managers are responsible for managing risk, i.e. adopting strategies with the intention to minimize loss and maximize gains in spite of uncertainty. Which risk strategy to use often depends on the frequency of an event (i.e. probability) and the severity of its outcomes (i.e. impact). This is basically the way translation/localization project managers handle risk management. Although risk management could involve both positive and negative impacts, impact seems to be always negative in professional translators’ management models, e.g. how many days of project time are lost or how many clients are lost. However, for analysis of translation performance, the impact should be possibly positive (e.g. increased readability of the translation) or negative (e.g. loss of source-text information). In other words, the straight business model of risk management is not directly applicable to the study of risk management in the rendition process. This research aims to explore trainee translators’ risk managing while translating in a simulated setting that involves translator-client relations. A two-cycle experiment involving two roles, the translator and the simulated client, was carried out with a class of translation students to test the effects of the main variable of peer-group interaction. The researcher made use of a user-friendly screen-voice recording freeware to record subjects’ screen activities, including every word the translator typed and every change they made to the rendition, the websites they browsed and the reference tools they used, in addition to the verbalization of their thoughts throughout the process. The research observes the translation procedures subjects considered and finally adopted, and looks into the justifications for their procedures, in order to interpret their risk management. The qualitative and quantitative results of this study have some implications for translator training: (a) the experience of being a client seems to reinforce the translator’s risk aversion; (b) there is a wide gap between the translator’s internal risk management and their external presentation of risk; and (c) the use of role-playing simulation can empower students’ learning by enhancing their attitudinal or psycho-physiological competence, interpersonal competence and strategic competence.Keywords: risk management, role-playing simulation, translation pedagogy, translator-client relations
Procedia PDF Downloads 2616847 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance
Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem
Abstract:
Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles
Procedia PDF Downloads 3596846 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class
Authors: Marta Lisowska
Abstract:
The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence
Procedia PDF Downloads 956845 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis
Procedia PDF Downloads 3016844 Translation in Greek and Psychometric Properties of the 9-Item Internet Gaming Disorder Scale-Short Form (IGDS9-Sf)
Authors: Aspasia Simpsi
Abstract:
The aim of this study was to translate into Greek and then validate the psychometric properties of the Internet Gaming Disorder Scale–Short-Form (IGDS9-SF) (Pontes & Griffiths, 2015). This is the first short standardized psychometric tool to assess Internet Gaming Disorder (IGD) according to the DSM-V nine clinical criteria and among the most frequently examined. The translation of the test was done through the process of back-translation. To gain a better insight into the psychometric properties of this test, the questionnaire included demographic questions and the Greek version of the Internet Addiction Test (Young, 1998). The participants of the study were 241 adolescents aged between 12 to 18. They were nationally recruited in Greece through an online survey that was hosted on the platform of Qualtrics. Analysis revealed excellent reliability with Cronbach’s alpha coefficients α = .939 for IGDS9-SF and α = .940 for IAT. The use of Pearson product-moment correlation revealed a significant positive relationship between IGDS9-SF and IAT r (241) =.45, p < .001. Due to inconsistencies in terminology and tests in the field of IGD, what is recommended for future research is a consensus regarding IGD testing and research.Keywords: internet gaming disorder, IGDS9-SF, psychometric properties, internet addiction
Procedia PDF Downloads 566843 Synchronous Generator in Case Voltage Sags for Different Loads
Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura
Abstract:
This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.Keywords: power quality, voltage sag, synchronous generator, infinite system
Procedia PDF Downloads 6796842 Supply Chains Resilience within Machine-Made Rug Producers in Iran
Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz
Abstract:
In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience
Procedia PDF Downloads 1626841 Google Translate: AI Application
Authors: Shaima Almalhan, Lubna Shukri, Miriam Talal, Safaa Teskieh
Abstract:
Since artificial intelligence is a rapidly evolving topic that has had a significant impact on technical growth and innovation, this paper examines people's awareness, use, and engagement with the Google Translate application. To see how familiar aware users are with the app and its features, quantitative and qualitative research was conducted. The findings revealed that consumers have a high level of confidence in the application and how far people they benefit from this sort of innovation and how convenient it makes communication.Keywords: artificial intelligence, google translate, speech recognition, language translation, camera translation, speech to text, text to speech
Procedia PDF Downloads 154