Search results for: genetic transformation
2965 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles
Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh
Abstract:
This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs
Procedia PDF Downloads 2122964 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system
Procedia PDF Downloads 2642963 Impact of Covid-19 on Digital Transformation
Authors: Tebogo Sethibe, Jabulile Mabuza
Abstract:
The COVID-19 pandemic has been commonly referred to as a ‘black swan event’; it has changed the world, from how people live, learn, work and socialise. It is believed that the pandemic has fast-tracked the adoption of technology in many organisations to ensure business continuity and business sustainability; broadly said, the pandemic has fast-tracked digital transformation (DT) in different organisations. This paper aims to study the impact of the COVID-19 pandemic on DT in organisations in South Africa by focusing on the changes in IT capabilities in the DT framework. The research design is qualitative. The data collection was through semi-structured interviews with information communication technology (ICT) leaders representing different organisations in South Africa. The data were analysed using the thematic analysis process. The results from the study show that, in terms of ICT in the organisation, the pandemic had a direct and positive impact on ICT strategy and ICT operations. In terms of IT capability transformation, the pandemic resulted in the optimisation and expansion of existing IT capabilities in the organisation and the building of new IT capabilities to meet emerging business needs. In terms of the focus of activities during the pandemic, there seems to be a split in organisations between the primary focus being on ‘digital IT’ or ‘traditional IT’. Overall, the findings of the study show that the pandemic had a positive and significant impact on DT in organisations. However, a definitive conclusion on this would require expanding the scope of the research to all the components of a comprehensive DT framework. This study is significant because it is one of the first studies to investigate the impact of the COVID-19 pandemic on organisations, on ICT in the organisation, on IT capability transformation and, to a greater extent, DT. The findings from the study show that in response to the pandemic, there is a need for: (i) agility in organisations; (ii) organisations to execute on their existing strategy; (iii) the future-proofing of IT capabilities; (iv) the adoption of a hybrid working model; and for (v) organisations to take risks and embrace new ideas.Keywords: digital transformation, COVID-19, bimodal-IT, digital transformation framework
Procedia PDF Downloads 1782962 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy
Procedia PDF Downloads 2572961 Klippel Feil Syndrome: A Case Report and Review of Literature
Authors: Rim Frikha, Nouha Bouayed Abdelmoula, Afifa Sellami, Salima Daoud, Tarek Rebai
Abstract:
Klippel-Feil Syndrome (KFS) is characterized by congenital vertebral fusion of the cervical spine resulting from faulty segmentation along the embryo's developing axis. A wide spectrum of associated anomalies may be present. This heterogeneity has complicated elucidation of the genetic etiology and management of the syndrome. We report a case of an isolated Klippel-Feil Syndrome with C5-C6 fusion on the cervical spine. It‘s the rarest form of congenital fused cervical vertebrae which is predisposed to the risk of spinal cord injury and neurologic problems. The aim of this paper was to review clinical heterogeneity; radiographic abnormalities and genetic etiology in Klippel-Feil Syndrome. We insist in comprehensive evaluation and delineation of diagnostic and prognostic classes.Keywords: Klippel–Feil anomaly, genetic, clinical heterogeneity, radiographic abnormalities
Procedia PDF Downloads 4842960 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing
Authors: Khaled Salah
Abstract:
Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.Keywords: genetic algorithm, simulated annealing, model reduction, transfer function
Procedia PDF Downloads 1432959 Genetic Diversity of Sugar Beet Pollinators
Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević
Abstract:
Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet
Procedia PDF Downloads 4602958 Data-Focused Digital Transformation for Smart Net-Zero Cities: A Systems Thinking Approach
Authors: Farzaneh Mohammadi Jouzdani, Vahid Javidroozi, Monica Mateo Garcia, Hanifa Shah
Abstract:
The emergence of developing smart net-zero cities in recent years has attracted significant attention and interest from worldwide communities and scholars as a potential solution to the critical requirement for urban sustainability. This research-in-progress paper aims to investigate the development of smart net-zero cities to propose a digital transformation roadmap for smart net-zero cities with a primary focus on data. Employing systems thinking as an underpinning theory, the study advocates for the necessity of utilising a holistic strategy for understanding the complex interdependencies and interrelationships that characterise urban systems. The proposed methodology will involve an in-depth investigation of current data-driven approaches in the smart net-zero city. This is followed by utilising predictive analysis methods to evaluate the holistic impact of the approaches on moving toward a Smart net-zero city. It is expected to achieve systemic intervention followed by a data-focused and systemic digital transformation roadmap for smart net-zero, contributing to a more holistic understanding of urban sustainability.Keywords: smart city, net-zero city, digital transformation, systems thinking, data integration, data-driven approach
Procedia PDF Downloads 232957 ISSR Based Molecular Phylogeny in Naturally Growing Suaeda Populations of Saudi Arabia
Authors: Mohammed Abdullah Basahi
Abstract:
The objective of the present study was to identify the phylogenetic relationships and determine genetic diversity among Suaeda genotypes growing in Saudi Arabia and to find out whether these could be a potential source for genetic diversity. A set of nineteen genotypes was analyzed using twenty-four ISSR primers. Clear amplified polymorphic DNA products were obtained from the screening of twenty-four ISSR primers on nineteen genotypes that allowed selection of ten primers and the results were reproducible. Nineteen genotypes were revealed a unique profile with ten ISSR primers and thus it can be used for the DNA fingerprinting. Different primers produced a different level of polymorphism among the nineteen genotypes. The number of polymorphic bands per primer varied from 5 to 14 with an average of 8 bands per primer. The results revealed that the genotypes differed for ISSR markers. The genetic similarity based on Nei and Li’s ranged from 0.450 to 0.930. Cluster analysis was conducted based on ISSR data to group the Suaeda genotypes and to construct a dendrogram. Four groups can be distinguished by truncating the dendrogram at GS value of 0.54. ISSR markers showed high level of polymorphism among the genotypes examined. The present study indicates that ISSR markers could be successfully used in genetic characterization and diversity in Suaeda.Keywords: suaeda, DNA fingerprinting, ISSR, Saudi Arabia
Procedia PDF Downloads 3312956 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle
Abstract:
The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm
Procedia PDF Downloads 3072955 Molecular Detection and Isolation of Benzimidazole Resistant Haemonchus contortus from Pakistan
Authors: K. Ali, M. F. Qamar, M. A. Zaman, M. Younus, I. Khan, S. Ehtisham-ul-Haque, R. Tamkeen, M. I. Rashid, Q. Ali
Abstract:
This study centers on molecular identification of Haemonchus contortus and isolation of Benz-imidazoles (BZ) resistant strains. Different abattoirs’ of two geographic regions of Punjab (Pakistan) were frequently visited for the collection of worms. Out of 1500 (n=1500) samples that were morphologically confirmed as H. contortus, 30 worms were subjected to molecular procedures for isolation of resistant strains. Resistant worms (n=8) were further subjected to DNA gene sequencing. Bio edit sequence alignment editor software was used to detect the possible mutation, deletion, replacement of nucleotides. Genetic diversity was noticed and genetic variation existing in β-tubulin isotype 1 of the H. contortus population of small ruminants of different regions considered in this study. H. contortus showed three different type of genetic sequences. 75%, 37.5%, 25% and 12.5% of the studied samples showed 100% query cover and identity with isolates and clones of China, UK, Australia and other countries, respectively. Interestingly the neighbor countries such as India and Iran haven’t many similarities with the Pakistani isolates. Thus, it suggests that population density of same genetic makeup H. contortus is scattered worldwide rather than clustering in a single region.Keywords: Haemonchus contortus, Benzimidazole resistant, β-tubulin-1 gene, abattoirs
Procedia PDF Downloads 1752954 Procedure to Optimize the Performance of Chemical Laser Using the Genetic Algorithm Optimizations
Authors: Mohammedi Ferhate
Abstract:
This work presents details of the study of the entire flow inside the facility where the exothermic chemical reaction process in the chemical laser cavity is analyzed. In our paper we will describe the principles of chemical lasers where flow reversal is produced by chemical reactions. We explain the device for converting chemical potential energy laser energy. We see that the phenomenon thus has an explosive trend. Finally, the feasibility and effectiveness of the proposed method is demonstrated by computer simulationKeywords: genetic, lasers, nozzle, programming
Procedia PDF Downloads 942953 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration
Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong
Abstract:
This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation
Procedia PDF Downloads 1872952 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production
Authors: Deepak Loura
Abstract:
Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance
Procedia PDF Downloads 712951 Case Study of Gender Mainstreaming in Rand Water: A Journey of Transformation
Authors: Saki Makume
Abstract:
Misogyny is a serious problem in the world that is predominantly patriarchal. South Africa is a very unequal society, so are the companies in this country. After 1994, laws were promulgated to outlaw unfair discrimination, amongst them discrimination based on gender. The presentation aims to share the experiences and learnings of Rand Water through its transformation journey. The environment was so hostile to women in the workplace that policies and practices excluded or unfairly discriminated against women. The paper will be in the form of a case study, predominantly qualitative and to a lesser extent quantitative. The results will show that the number of women at Board, Executive and Management levels have increased; and policies amended to be gender sensitive. Policies were developed that specifically protected women’s rights e.g. sexual harassment. A program like TechnoGirl was introduced to lure girl learners to Rand Water.Keywords: gender mainstreaming, policies, transformation, unfair discrimination
Procedia PDF Downloads 2772950 Defuzzification of Periodic Membership Function on Circular Coordinates
Authors: Takashi Mitsuishi, Koji Saigusa
Abstract:
This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates
Procedia PDF Downloads 3092949 Control of a Quadcopter Using Genetic Algorithm Methods
Authors: Mostafa Mjahed
Abstract:
This paper concerns the control of a nonlinear system using two different methods, reference model and genetic algorithm. The quadcopter is a nonlinear unstable system, which is a part of aerial robots. It is constituted by four rotors placed at the end of a cross. The center of this cross is occupied by the control circuit. Its motions are governed by six degrees of freedom: three rotations around 3 axes (roll, pitch and yaw) and the three spatial translations. The control of such system is complex, because of nonlinearity of its dynamic representation and the number of parameters, which it involves. Numerous studies have been developed to model and stabilize such systems. The classical PID and LQ correction methods are widely used. If the latter represent the advantage to be simple because they are linear, they reveal the drawback to require the presence of a linear model to synthesize. It also implies the complexity of the established laws of command because the latter must be widened on all the domain of flight of these quadcopter. Note that, if the classical design methods are widely used to control aeronautical systems, the Artificial Intelligence methods as genetic algorithms technique receives little attention. In this paper, we suggest comparing two PID design methods. Firstly, the parameters of the PID are calculated according to the reference model. In a second phase, these parameters are established using genetic algorithms. By reference model, we mean that the corrected system behaves according to a reference system, imposed by some specifications: settling time, zero overshoot etc. Inspired from the natural evolution of Darwin's theory advocating the survival of the best, John Holland developed this evolutionary algorithm. Genetic algorithm (GA) possesses three basic operators: selection, crossover and mutation. We start iterations with an initial population. Each member of this population is evaluated through a fitness function. Our purpose is to correct the behavior of the quadcopter around three axes (roll, pitch and yaw) with 3 PD controllers. For the altitude, we adopt a PID controller.Keywords: quadcopter, genetic algorithm, PID, fitness, model, control, nonlinear system
Procedia PDF Downloads 4312948 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.Keywords: equation of state, modification, ammonia, genetic algorithm
Procedia PDF Downloads 3822947 Impact of Population Size on Symmetric Travelling Salesman Problem Efficiency
Authors: Wafa' Alsharafat, Suhila Farhan Abu-Owida
Abstract:
Genetic algorithm (GA) is a powerful evolutionary searching technique that is used successfully to solve and optimize problems in different research areas. Genetic Algorithm (GA) considered as one of optimization methods used to solve Travel salesman Problem (TSP). The feasibility of GA in finding a TSP solution is dependent on GA operators; encoding method, population size, termination criteria, in general. In specific, crossover and its probability play a significant role in finding possible solutions for Symmetric TSP (STSP). In addition, the crossover should be determined and enhanced in term reaching optimal or at least near optimal. In this paper, we spot the light on using a modified crossover method called modified sequential constructive crossover and its impact on reaching optimal solution. To justify the relevance of a parameter value in solving the TSP, a set comparative analysis conducted on different crossover methods values.Keywords: genetic algorithm, crossover, mutation, TSP
Procedia PDF Downloads 2272946 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation
Authors: Ekin Nurbaş
Abstract:
One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing
Procedia PDF Downloads 1462945 Ethical Considerations in In-Utero Gene Editing
Authors: Shruti Govindarajan
Abstract:
In-utero gene editing with CRISPR-Cas9 opens up new possibilities for treating genetic disorders during pregnancy while still in mother’s womb. By targeting genetic mutations in the early stages of fetal development, this approach could potentially prevent severe conditions—like cystic fibrosis, sickle cell anemia, and muscular dystrophy—from causing harm. CRISPR-Cas9, which allows precise DNA edits, could be delivered into fetal cells through vectors such as adeno-associated viruses (AAVs) or nanoparticles, correcting disease-causing mutations and possibly offering lifelong relief from these disorders. For families facing severe genetic diagnoses, in-utero gene editing could provide a transformative option. However, technical challenges remain, including ensuring that gene editing only targets the intended cells and verifying long-term safety. Ethical considerations are also at the forefront of this technology. The editing of a fetus's genes brings up difficult questions about consent, especially since these genetic changes will affect the child’s entire life without their input. There's also concern over possible unintended side effects, or changes passed down to future generations. Moreover, if used beyond therapeutic purposes, this technology could be misused for ‘enhancements,’ like selecting for certain physical or cognitive traits, raising concerns about inequality and social pressures. In this way, in-utero gene editing brings both exciting potential and complex moral questions. As research progresses, addressing these scientific and ethical concerns will be key to ensuring that this technology is used responsibly, prioritizing safety, fairness, and a focus on alleviating genetic disease. A cautious and inclusive approach, along with clear regulations, will be essential to realizing the benefits of in-utero gene editing while protecting against unintended consequences.Keywords: in-utero gene editing, CRISPR, bioethics, genetic disorder
Procedia PDF Downloads 72944 Stakeholder Voices in Digital Evolution: Challenges Faced by SMEs in Automotive Supply Chain
Authors: Mohammed Sharaf, Alireza Shokri, Adrian Small, Toby Bridges
Abstract:
This paper investigates digital transformation challenges in SMEs within the automotive supply chain. A case study approach and participant observation revealed significant data management and process optimization barriers, corroborated by a conceptual model. Stakeholder feedback, visualized through a pie chart, emphasized data management and process efficiency as primary concerns. Recommended strategies include implementing advanced data systems, process simplification, and enhancing digital skills. Despite the single-case study limitation, the findings offer actionable insights for SMEs to leverage Industry 4.0 technologies effectively. This research contributes to the strategic roadmap necessary for SMEs to achieve competitive digital transformation.Keywords: automotive supply chain, digital transformation, industry 4.0
Procedia PDF Downloads 342943 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 202942 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand
Authors: Salinee Thumronglaohapun
Abstract:
The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm
Procedia PDF Downloads 1242941 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 1552940 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers
Authors: Fayyaz Rasool, Shakeela Parveen
Abstract:
The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita
Procedia PDF Downloads 4492939 Molecular Survey and Genetic Diversity of Bartonella henselae Strains Infecting Stray Cats from Algeria
Authors: Naouelle Azzag, Nadia Haddad, Benoit Durand, Elisabeth Petit, Ali Ammouche, Bruno Chomel, Henri J. Boulouis
Abstract:
Bartonella henselae is a small, gram negative, arthropod-borne bacterium that has been shown to cause multiple clinical manifestations in humans including cat scratch disease, bacillary angiomatosis, endocarditis, and bacteremia. In this research, we report the results of a cross sectional study of Bartonella henselae bacteremia in stray cats from Algiers. Whole blood of 227 stray cats from Algiers was tested for the presence of Bartonella species by culture and for the evaluation of the genetic diversity of B. henselae strains by multi-locus variable number of tandem repeats assay (MLVA). Bacteremia prevalence was 17% and only B. henselae was identified. Type I was the predominant type (64%). MLVA typing of 259 strains from 30 bacteremic cats revealed 52 different profiles. 51 of these profiles were specific to Algerian cats/identified for the first time. 20/30 cats (67%) harbored 2 to 7 MLVA profiles simultaneously. The similarity of MLVA profiles obtained from the same cat, neighbor-joining clustering and structure-neighbor clustering showed that such a diversity likely results from two different mechanisms occurring either independently or simultaneously independent infections and genetic drift from a primary strain.Keywords: Bartonella, cat, MLVA, genetic
Procedia PDF Downloads 1492938 The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete
Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan
Abstract:
Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.Keywords: addiction, athletic performance, genotype, sport genetics
Procedia PDF Downloads 2132937 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony
Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika
Abstract:
This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization
Procedia PDF Downloads 3522936 Genetic Assessment of The Managed Gharial Population In The Girwa River, India
Authors: Surya Prasad Sharma, Suyash Katdare, Syed Ainul Hussain
Abstract:
Human-induced factors contributed to the population decline of crocodylians in India which became evident by the mid-20th century when authorities forewarned the extinction risk for the crocodile and proposed regulation in the crocodile trade. The proposed action led to the enactment of national and international wildlife regulations to prohibit the trade-in of crocodile skins and parts. Subsequently, conservation translocation programs were initiated to restore the species in the wild through a 'head-start' approach. In India, the crocodile conservation program, which began in the early 1970s, has been one of India's longest-running conservation initiatives. The gharial (Gavialis gangeticus) population has benefitted, and the gharial number increased rapidly owing to these efforts. The immediate risk of extinction was averted as the gharial has recovered due to decades-long cumulative conservation efforts, the consideration of the genetic for monitoring the recovery of the recovered populations is still lacking. Hence, we assessed the genetic diversity of the Girwa gharial population in India using six polymorphic nuclear microsatellites loci and mitochondrial control region. The number of alleles per loci ranged between 2 to 5, and the allelic richness (Ar) was 2.67 ± 0.49, and the observed (Ho) and expected (He) heterozygosities were 0.42 ± 0.08 and 0.42 ± 0.09, respectively. The M-ratio yielded a value of (0.41 ± 0.16) lower than critical M, suggesting a genetic bottleneck in the Girwa population. We observed more mitochondrial control region haplotypes in the Girwa population than previously reported in the largest gharial population in the Chambal River. Overall, our study indicates that genetic diversity remains low despite the recovery in the Girwa population. Hence, we recommend a range-wide genetic assessment of gharial populations using high-throughput techniques to identify the source population and plan future translocation programs.Keywords: conservation translocation, recovery, crocodile, bottleneck
Procedia PDF Downloads 108