Search results for: enzymatic hydrolysis
336 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes
Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J
Abstract:
The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery
Procedia PDF Downloads 14335 Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel
Authors: Rosli Mohd Yunus, Zianor Azrina Zianon Abdin, Mohammad Dalour Hossen Beg, Ridzuan Ramli
Abstract:
Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology.Keywords: nanocellulose, oil palm, hydrogel, water treatment
Procedia PDF Downloads 267334 Effect of Hemicellulase on Extraction of Essential Oil from Algerian Artemisia campestris
Authors: Khalida Boutemak, Nasssima Benali, Nadji Moulai-Mostefa
Abstract:
Effect of enzyme on the yield and chemical composition of Artemisia campestris essential oil is reported in the present study. It was demonstrated that enzyme facilitated the extraction of essential oil with increase in oil yield and did not affect any noticeable change in flavour profile of the volatile oil. Essential oil was tested for antibacterial activity using Escherichia coli; which was extremely sensitive against control with the largest inhibition (29mm), whereas Staphylococcus aureus was the most sensitive against essential oil obtained from enzymatic pre-treatment with the largest inhibition zone (25mm). The antioxidant activity of the essential oil with hemicellulase pre-treatment (EO2) and control sample (EO1) was determined through reducing power. It was significantly lower than the standard drug (vitamin C) in this order: vitamin C˃EO2˃EO1.Keywords: Artemisia campestris, enzyme pre-treatment, hemicellulase, antibacterial activity, antioxidant activity
Procedia PDF Downloads 328333 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies
Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru
Abstract:
Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil
Procedia PDF Downloads 372332 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection
Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar
Abstract:
Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic
Procedia PDF Downloads 187331 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties
Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar
Abstract:
Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature
Procedia PDF Downloads 395330 Modelling and Simulation of Bioethanol Production from Food Waste Using CHEMCAD Software
Authors: Kgomotso Matobole, Noluzuko Monakali, Hilary Rutto, Tumisang Seodigeng
Abstract:
On a global scale, there is an alarming generation of food waste. Food waste is generated across the food supply chain. Worldwide urbanization, as well as global economic growth, have contributed to this amount of food waste the environment is receiving. Food waste normally ends on illegal dumping sites when not properly disposed, or disposed to landfills. This results in environmental pollution due to inadequate waste management practices. Food waste is rich in organic matter and highly biodegradable; hence, it can be utilized for the production of bioethanol, a type of biofuel. In so doing, alternative energy will be created, and the volumes of food waste will be reduced in the process. This results in food waste being seen as a precious commodity in energy generation instead of a pollutant. The main aim of the project was to simulate a biorefinery, using a software called CHEMCAD 7.12. The resulting purity of the ethanol from the simulation was 98.9%, with the feed ratio of 1: 2 for food waste and water. This was achieved by integrating necessary unit operations and optimisation of their operating conditions.Keywords: fermentation, bioethanol, food waste, hydrolysis, simulation, modelling
Procedia PDF Downloads 373329 Synthesis and Antibacterial Evaluation of Natural Bioactive 3,4-DihydroisocoumarinAnalogues
Authors: Hummera Rafique, Aamer Saeed
Abstract:
Synthesis of structural analogues of various well known bioactive natural 3,4-dihydroisocoumarins viz. Scorzocreticin, Annulatomarin, Montroumarin, and Thunberginol B, have been carried out starting from 3,5-dimethoxy-4-methylphenyl acetic acid. 3,5-Dimethoxy-4-methylphenyl acetic acid was then condensed with various aryl acid chlorides (a-e) to afford the corresponding 6,8-dimethoxy-7-methyl-3-aryl isocoumarins (5a-e). The alkaline hydrolysis of isocoumarins yields keto-acids (3a-e), which were then reduced to hydroxyacids, followed by cyclodehydration with acetic anhydride furnish corresponding 3,4-dihydroisocoumarins (7a-e). Finally, demethylation of 3,4-dihydroisocoumarins was carried out to afford 6,8-dihydroxy-7-methyl-3-aryl-3,4-dihydroisocoumarins (7a-e). Antibacterial evaluation of all the synthesized compounds were carried out against ten bacterial strains, it was concluded that isocoumarins (5a-e) and 3,4-dihydroisocoumarins (7a-e) are more active against gram positive bacteria then gram negative. However, the 6,8-dihydroxy-3,4-dihydroisocoumarin derivatives (8a-e) are more active against gram negative then gram positive.Keywords: 3, 5-Dimethoxy-4-methylhomophthalic acid, natural 3, 4-Dihydroisocoumarin analogues, antibacterial activity, isocoumarins, demethylation
Procedia PDF Downloads 402328 Determination of Micronutrients in the Fruit of Cydonia oblonga Miller
Authors: Madrakhimova Sakhiba, Matmurotov Bakhtishod, Boltaboyava Zilola, Matchanov Alimjan
Abstract:
Analyzing the chemical composition of locally consumed food products is one of the urgent problems in the health sector today. Taking this into account, it analyzed the microelement content of Cydonia oblonga Miller (COM) fruit growing in the Republic of Uzbekistan using the ISP MS inductively coupled mass spectrometry method. fruits brought to a constant mass in the analysis were mineralized in a mixture of nitric acid-HNO₃ and hydrogen peroxide-H₂O₂ in a ratio of 3:2. The mineralized extract was diluted to 50 milliliters with double-distilled water and analyzed. The results of the analysis showed that the fruit is rich in micronutrients necessary for the human body, especially potassium-K and phosphorus-P among macroelements, Strontium-Sr and barium-Ba from microelements are more than other microelements. It was observed that the amount of trace elements contained in COM fruit does not exceed the permissible standards. Therefore, it can be recommended to eat this fruit every day to prevent various diseases that occur in the human body.Keywords: cydonia oblonga miller, macroelement, microelement, inductively coupled mass spectrometry, hydrolysis, mineralization
Procedia PDF Downloads 68327 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide
Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji
Abstract:
Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin
Procedia PDF Downloads 411326 Strategies for the Oral Delivery of Oligonucleotides
Authors: Venkat Garigapati
Abstract:
To date, more than a dozen oligonucleotide products are approved as injectable products for clinical use. However, there is no single oligo nucleotide product approved for clinical use. Oral delivery of oligo nucleotides is patient friendly administration however, many challenges involved in the development of oral formulation. Over the course of last twenty plus years, the research in this space aimed to address these challenges. This paper describes the issues involved in solubility, stability, enzymatic (nuclease) induced degradation, and permeation of nucleotides in the Gastrointestinal (GI) and how to overcome these challenges. Also, the translation of in vitro data to in vivo models hinders the formulation development. This paper describes the challenges involved in the development of Oligo Nucleotide products for oral administration. It also discusses the chemistry and formulation strategies for oral administration of oligonucleotides.Keywords: oral adminstration, oligo nucleotides, stability, permeation, gastrointestinal tract
Procedia PDF Downloads 83325 Activation of Caspase 3 by Terpenoids and Flavonoids in Cancer Cell Lines
Authors: Nusrat Masood, Vijaya Dubey, Suaib Luqman
Abstract:
Caspase 3, a member of cysteine-aspartic acid protease family, is an imperative indicator for cell death particularly when substantiating apoptosis. Thus, caspase 3 is an interesting target for the discovery and development of anticancer agent. We adopted a four level assessment of both terpenoids and flavonoids and thus experimentally performed the enzymatic assay in cell free system as well as in cancer cell line which was validated through real time expression and molecular interaction studies. A significant difference was observed with both the class of natural products indicating terpenoids as better activators of caspase 3 compared to flavonoids both in the cell free system as well as in cell lines. The expression analysis, activation constant and binding energy also correlate well with the enzyme activity. Overall, terpenoids had an unswerving effect on caspase 3 in all the tested system while flavonoids indirectly affect enzyme activity.Keywords: Caspase 3, terpenoids, flavonoids, activation constant, binding energy
Procedia PDF Downloads 237324 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia
Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla
Abstract:
Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus
Procedia PDF Downloads 113323 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 167322 Microfluidic Paper-Based Electrochemical Biosensor
Authors: Ahmad Manbohi, Seyyed Hamid Ahmadi
Abstract:
A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R² > 0.980) in the range of 0-80 mM for glucose, 0.09–0.9 mM for dopamine, and 0–50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.Keywords: biological fluids, biomarkers, microfluidic paper-based electrochemical biosensors, Multiplex
Procedia PDF Downloads 281321 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses
Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard
Abstract:
Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.Keywords: cheese, miniature, model, pseudomonas spp, spoilage
Procedia PDF Downloads 132320 miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer
Authors: Rezvan Najafi, Korosh Heydari, Massoud Saidijam
Abstract:
5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for apoptosis detection. The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC.Keywords: colorectal cancer, miR-200c, 5-FU resistance, E-cadherin, PTEN
Procedia PDF Downloads 164319 Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors
Authors: Paweł Stączek, Tomasz Plech, Aleksandra Strzelczyk, Katarzyna Dzitko, Monika Wujec, Edyta Kuśmierz, Piotr Paneth, Agata Paneth
Abstract:
In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors.Keywords: bioactivity, drug design, topoisomerase, molecular modeling
Procedia PDF Downloads 566318 Production and Characterisation of Lipase from a Novel Streptomyces.sp - Its Molecular Identification
Authors: C. Asha Poorna, N. S. Pradeep
Abstract:
The biological function of lipase is to catalyze the hydrolysis of triacylglycerols to give free fatty acid, diacylglycerols, mono-acylglycerols and glycerol. They constitute the most important group of biocatalysts for biotechnological applications. The aim of the present study was to identify the lipolytic activity of Streptomyces sp. From soil sample collected from the sacred groves of southern Kerala. The culture conditions of the isolate were optimised and the enzyme was purified and characterised. The purification was attempted with acetone precipitation. The isolate observed to have high lipolytic activity and identified to be of Streptomyces strain. The purification was attempted with acetone precipitation. The purified enzyme observed to have an apparent molecular mass of ~60kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed maximum activity at 60oC and pH-8. The lipase showed tolerance towards different organic solvents like ethanol and methanol that are commonly used in transesterification reactions to displace alcohol from triglycerides contained in renewable resources to yield fatty acid alkyl esters known as biodiesel.Keywords: lipase, Streptomyces, biodiesel, fatty acid, transesterification
Procedia PDF Downloads 326317 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells
Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri
Abstract:
Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions
Procedia PDF Downloads 146316 Barrier Properties of Starch-Ethylene Vinyl Alcohol Nanocomposites
Authors: Farid Amidi Fazli
Abstract:
Replacement of plastics used in the food industry seems to be a serious issue to overcome mainly the environmental problems in recent years. This study investigates the hydrophilicity and permeability properties of starch biopolymer which ethylene vinyl alcohol (EVOH) (0-10%) and nanocrystalline cellulose (NCC) (1 -15%) were used to enhance its properties. Starch -EVOH nanocomposites were prepared by casting method in different formulations. NCC production by acid hydrolysis was confirmed by scanning electron microscopy. Solubility, water vapor permeability, water vapor transmission rate and moisture absorbance were measured on each of the nanocomposites. The results were analyzed by SAS software. The lowest moisture absorbance was measured in pure starch nanocomposite containing 8% NCC. The lowest permeability to water vapor belongs to starch nanocomposite containing 8% NCC and the sample containing 7.8% EVOH and 13% NCC. Also, the lowest solubility was observed in the composite contains the highest amount of EVOH. Applied Process resulted in production of bio films which have good resistance to water vapor permeability and solubility in water. The use of NCC and EVOH leads to reduced moisture absorbance property of the biofilms.Keywords: starch, EVOH, nanocrystalline cellulose, hydrophilicity
Procedia PDF Downloads 410315 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme
Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇
Abstract:
Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.Keywords: glutathione reductase, antimalaria, inhibitor, enzyme
Procedia PDF Downloads 268314 Microwave-Assisted Inorganic Salt Pretreatment of Sugarcane Leaf Waste
Authors: Preshanthan Moodley, E. B. Gueguim-Kana
Abstract:
The objective of this study was to develop a method to pretreat sugarcane leaf waste using microwave-assisted (MA) inorganic salt. The effects of process parameters of salt concentration, microwave power intensity and pretreatment time on reducing sugar yield from enzymatically hydrolysed sugarcane leaf waste were investigated. Pretreatment models based on MA-NaCl, MA-ZnCl2 and MA-FeCl3 were developed. Maximum reducing sugar yield of 0.406 g/g was obtained with 2 M FeCl3 at 700W for 3.5 min. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in lignocellulosic structure after MA-FeCl3 pretreatment with 71.5 % hemicellulose solubilization. This pretreatment was further assessed on sorghum leaves and Napier grass under optimal MA-FeCl3 conditions. A 2 fold and 3.1-fold increase in sugar yield respectively were observed compared to previous reports. This pretreatment was highly effective for enhancing enzymatic saccharification of lignocellulosic biomass.Keywords: acid, pretreatment, salt, sugarcane leaves
Procedia PDF Downloads 451313 Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert
Authors: T. Bettaieb, S. Soufi, S. Arbaoui
Abstract:
Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures.Keywords: chilling tolerance, enzymatic activity, stevia rebaudiana bert, low thermal stress
Procedia PDF Downloads 441312 Qualitative Characteristics of Meat from Lambs Fed Hydrolyzed Sugarcane
Authors: V. Endo, A. G. Silva Sobrinho, F. A. Almeida, N. L. L. Lima, G. M. Manzi, L. G. A. Cirne, N. M. B. L. Zeola
Abstract:
We used 24 Ile de France lambs, weighing between 15 and 32 kg (BW). Treatments were supplemented with concentrate: “in nature” sugarcane (IN), sugarcane hydrolyzed using 0.6% calcium oxide (CaO) under aerobic condition (AER), and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA), constituting a completely randomized design with eight repetitions per treatment. Lambs were housed in individual stalls and fed into the through, allowing 10% of leftovers. Lambs were slaughtered when body weight reached 32 kg. The following parameters were determined on Longissimus lumborum muscle of hot and cold carcasses: pH and color, 45 minutes and 24 hours after slaughtering. Qualitative analysis of the meat were performed in the loins, water-holding capacity (WHC), cooking loss (CL), and shear force (SF). We used a completely randomized design with three treatments and eight repetitions. Means were compared by Tukey test at 5% significance. A higher value for redness (a*) 45 minutes after slaughter (10.48) was found for lambs fed sugarcane hydrolyzed under anaerobic conditions. The other qualitative characteristics of meat were not affected by treatments (P >0.05). The comparison of meat quality resulting from the treatments shows that it is possible to feed in nature sugarcane to lambs, thus waiving hydrolyses process and the spending with alkalizing agent.Keywords: oxide, hydrolysis, meat quality, pH
Procedia PDF Downloads 559311 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production
Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh
Abstract:
Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation
Procedia PDF Downloads 569310 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics
Authors: Leyla Esfandiari
Abstract:
Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.Keywords: diagnostics, nanopore, nucleic acids, sensor
Procedia PDF Downloads 462309 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid
Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus
Abstract:
Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid
Procedia PDF Downloads 245308 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites
Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il
Abstract:
Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.Keywords: composite, flexural strength, matrix, sisal fibre
Procedia PDF Downloads 393307 Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum
Authors: B. Atika, S. Lehmann, E. Wimmer
Abstract:
The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles.Keywords: Red Flour Beetle, defensive stink gland, benzoquinones, sulfate transporter, sulfatase-modifying factor enzyme 1
Procedia PDF Downloads 153