Search results for: transmission parameters
7911 Scanning Transmission Electron Microscopic Analysis of Gamma Ray Exposed Perovskite Solar Cells
Authors: Aleksandra Boldyreva, Alexander Golubnichiy, Artem Abakumov
Abstract:
Various perovskite materials have surprisingly high resistance towards high-energy electrons, protons, and hard ionization, such as X-rays and gamma-rays. Superior radiation hardness makes a family of perovskite semiconductors an attractive candidate for single- and multijunction solar cells for the space environment and as X-ray and gamma-ray detectors. One of the methods to study the radiation hardness of different materials is by exposing them to gamma photons with high energies (above 500 keV) Herein, we have explored the recombination dynamics and defect concentration of a mixed cation mixed halide perovskite Cs0.17FA0.83PbI1.8Br1.2 with 1.74 eV bandgap after exposure to a gamma-ray source (2.5 Gy/min). We performed an advanced STEM EDX analysis to reveal different types of defects formed during gamma exposure. It was found that 10 kGy dose results in significant improvement of perovskite crystallinity and homogeneous distribution of I ions. While the absorber layer withstood gamma exposure, the hole transport layer (PTAA) as well as indium tin oxide (ITO) were significantly damaged, which increased the interface recombination rate and reduction of fill factor in solar cells. Thus, STEM analysis is a powerful technique that can reveal defects formed by gamma exposure in perovskite solar cells. Methods: Data will be collected from perovskite solar cells (PSCs) and thin films exposed to gamma ionisator. For thin films 50 μL of the Cs0.17FA0.83PbI1.8Br1.2 solution in DMF was deposited (dynamically) at 3000 rpm followed by quenching with 100 μL of ethyl acetate (dropped 10 sec after perovskite precursor) applied at the same spin-coating frequency. The deposited Cs0.17FA0.83PbI1.8Br1.2 films were annealed for 10 min at 100 °C, which led to the development of a dark brown color. For the solar cells, 10% suspension of SnO2 nanoparticles (Alfa Aesar) was deposited at 4000 rpm, followed by annealing on air at 170 ˚C for 20 min. Next, samples were introduced into a nitrogen glovebox for the deposition of all remaining layers. Perovskite film was applied in the same way as in thin films described earlier. Solution of poly-triaryl amine PTAA (Sigma Aldrich) (4 mg in chlorobenzene) was applied at 1000 rpm atop of perovskite layer. Next, 30 nm of VOx was deposited atop the PTAA layer on the whole sample surface using the physical vapor deposition (PVD) technique. Silver electrodes (100 nm) were evaporated in a high vacuum (10-6 mbar) through a shadow mask, defining the active area of each device as ~0.16 cm2. The prepared samples (thin films and solar cells) were packed in Al lamination foil inside the argon glove box. The set of samples consisted of 6 thin films and 6 solar cells, which were exposed to 6, 10, and 21 kGy (2 samples per dose) with 137Cs gamma-ray source (E = 662 keV) with a dose rate of 2.5 Gy/min. The exposed samples will be studied on a focused ion beam (FIB) on a dual-beam scanning electron microscope from ThermoFisher, the Helios G4 Plasma FIB Uxe, operating with a xenon plasma.Keywords: perovskite solar cells, transmission electron microscopy, radiation hardness, gamma irradiation
Procedia PDF Downloads 307910 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention
Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova
Abstract:
Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes
Procedia PDF Downloads 1677909 Thinking about Drawing: The Evolution of Architectural Education in China After 1949
Authors: Wang Yanze
Abstract:
Architectural design results from the interaction between space and drawing. Stemming from the Beaux-Arts architectural education, drawing kept its dominant position in teaching and learning process for centuries. However, this education system is being challenged in the present time due to the development of the times. Based on the architectural education of China after 1949, a brief introduction to the history of the evolution of the design concept and drawing is given in this paper. Illustrating with the reference to the students’ works in Nanjing Institute of Technology, the predecessor of Southeast University, in China, the paper analyses the relationship between concept and representation, as well as the participation of Space, the modernism discourse. This process contains the transmission of the character of architects, the renovation of drawing skills and the profound social background. With different purposes, the emphasis on representation tends to be combined with the operation on space, and the role of drawing in architectural design process also changes. Therefore, based on the continuity of the traditional architectural education system, the discussion on the “Drawing of Space” in contemporary education system is proposed.Keywords: architectural education, beaux-arts, drawing, modernism
Procedia PDF Downloads 4867908 Multiscale Process Modeling of Ceramic Matrix Composites
Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya
Abstract:
Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.Keywords: digital engineering, finite elements, manufacturing, molecular dynamics
Procedia PDF Downloads 1007907 Finite Difference Based Probabilistic Analysis to Evaluate the Impact of Correlation Length on Long-Term Settlement of Soft Soils
Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi
Abstract:
Probabilistic analysis has become one of the most popular methods to quantify and manage geotechnical risks due to the spatial variability of soil input parameters. The correlation length is one of the key factors of quantifying spatial variability of soil parameters which is defined as a distance within which the random variables are correlated strongly. This paper aims to assess the impact of correlation length on the long-term settlement of soft soils improved with preloading. The concept of 'worst-case' spatial correlation length was evaluated by determining the probability of failure of a real case study of Vasby test fill. For this purpose, a finite difference code was developed based on axisymmetric consolidation equations incorporating the non-linear elastic visco-plastic model and the Karhunen-Loeve expansion method. The results show that correlation length has a significant impact on the post-construction settlement of soft soils in a way that by increasing correlation length, probability of failure increases and the approach to asymptote.Keywords: Karhunen-Loeve expansion, probability of failure, soft soil settlement, 'worst case' spatial correlation length
Procedia PDF Downloads 1697906 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine
Authors: Hany El Said Fawaz
Abstract:
This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length
Procedia PDF Downloads 2487905 Optimization of Double-Layered Microchannel Heat Sinks
Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang
Abstract:
This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance
Procedia PDF Downloads 4937904 Effect of Integrity of the Earthing System on the Rise of Earth Potential
Authors: N. Ullah, A. Haddad, F. Van Der Linde
Abstract:
This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.Keywords: bonding, earthing, EPR, integrity, system
Procedia PDF Downloads 3317903 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid
Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus
Abstract:
Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid
Procedia PDF Downloads 2487902 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD
Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer
Abstract:
Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film
Procedia PDF Downloads 2967901 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3
Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris
Abstract:
Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition
Procedia PDF Downloads 2937900 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish
Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb
Abstract:
This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters
Procedia PDF Downloads 3137899 Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area
Authors: Marina Bubalo, Davor Romić, Stjepan Husnjak, Helena Bakić
Abstract:
Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions.Keywords: agricultural area, nitrate, factorial correspondence analysis, water quality
Procedia PDF Downloads 2617898 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.Keywords: communication, LED, Li-Fi, Wi-Fi
Procedia PDF Downloads 3487897 Azaridachta Indica (Neem) Seed Oil Effect in Experimental Arthritis – Biochemical Parameters Assessment
Authors: Sasan Khademnematolahi, Kevine Kamga Silihe, Katarína Pružinská, Martina Chrastina, Elisabeth Louise Ndjengue Mindang, František Dráfi, Katarína Bauerová
Abstract:
Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Neem has various pharmaceutical activities, such as antioxidant and anti-inflammatory, due to the content of bioactive compounds like nimbolide, azadirachtin, and gedunin.Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1 and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was most effective from all therapies investigated.Keywords: adjuvant, neem, methotrexate, arthritis
Procedia PDF Downloads 487896 Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation
Authors: Nawel Ouennoughi, Kamel Daoud
Abstract:
During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient.Keywords: coacervation, gum Arabic, microencapsulation, gelatin
Procedia PDF Downloads 2707895 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel
Authors: Bijit Kalita, R. Jayaganthan
Abstract:
Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing
Procedia PDF Downloads 1207894 Determining Water Use Efficiency of Mung Bean (Vigna radiata L.) under Arid Climatic Conditions
Authors: Awais Ahmad, Mostafa Muhammad Selim, Ali Abdullah Alderfasi
Abstract:
Water limitation is undoubtedly a critical environmental constraint limiting the crop production under arid and semiarid areas. Mung bean is susceptible to both drought and water logging stresses. Therefore, present study was conducted to assess the water deficit stress consequences of yield components and water use efficiency in Mung bean. A field experiment was conducted at Educational Farm, Crop Production Department, College of Food and Agricultural Sciences, Kind Saud University, Saudi Arabia. Trail comprised of four irrigation levels — total amount of irrigation divided into irrigation intervals — (3, 5, 7 and 9 days interval) and three Mung bean genotypes; Kawmay-1, VC-2010 and King from Egypt, Thailand and China respectively. Experiment was arranged under split plot design having irrigation as main while genotype as subplot treatment, and replicated thrice. Plant height, 100 seed weight, biological yield, seed yield, harvest index and water use efficiency were recorded at harvesting. Results revealed that decrease in irrigation have significantly hampered all the studied parameters. Mung bean genotypes have also shown significant differences for all parameters, whereas irrigation genotype interaction was highly significant for seed yield, harvest index and water use efficiency (WUE) while it was significant for biological yield. Plant height and 100 seed weight were recorded non-significant for irrigation genotype interaction. A statistically highly significant correlation among recorded parameters was observed. Minimum irrigation interval (3 days) significantly produced maximum values while VC-2010 comparatively performed better under low irrigation levels. It was concluded that Mung bean may be successfully adopted under Saudi Arabian climate but it needs high water or frequent irrigation, however, genotypic differences are a hope to develop some improved varieties with high water use efficiency.Keywords: mung bean, irrigation intervals, water use efficiency, genotypes, yield
Procedia PDF Downloads 2757893 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety
Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar
Abstract:
The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality
Procedia PDF Downloads 1597892 Commissioning of a Flattening Filter Free (FFF) using an Anisotropic Analytical Algorithm (AAA)
Authors: Safiqul Islam, Anamul Haque, Mohammad Amran Hossain
Abstract:
Aim: To compare the dosimetric parameters of the flattened and flattening filter free (FFF) beam and to validate the beam data using anisotropic analytical algorithm (AAA). Materials and Methods: All the dosimetric data’s (i.e. depth dose profiles, profile curves, output factors, penumbra etc.) required for the beam modeling of AAA were acquired using the Blue Phantom RFA for 6 MV, 6 FFF, 10MV & 10FFF. Progressive resolution Optimizer and Dose Volume Optimizer algorithm for VMAT and IMRT were are also configured in the beam model. Beam modeling of the AAA were compared with the measured data sets. Results: Due to the higher and lover energy component in 6FFF and 10 FFF the surface doses are 10 to 15% higher compared to flattened 6 MV and 10 MV beams. FFF beam has a lower mean energy compared to the flattened beam and the beam quality index were 6 MV 0.667, 6FFF 0.629, 10 MV 0.74 and 10 FFF 0.695 respectively. Gamma evaluation with 2% dose and 2 mm distance criteria for the Open Beam, IMRT and VMAT plans were also performed and found a good agreement between the modeled and measured data. Conclusion: We have successfully modeled the AAA algorithm for the flattened and FFF beams and achieved a good agreement with the calculated and measured value.Keywords: commissioning of a Flattening Filter Free (FFF) , using an Anisotropic Analytical Algorithm (AAA), flattened beam, parameters
Procedia PDF Downloads 3047891 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding
Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng
Abstract:
Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding
Procedia PDF Downloads 3087890 Design and Implementation of LabVIEW Based Relay Autotuning Controller for Level Setup
Authors: Manoj M. Sarode, Sharad P. Jadhav, Mukesh D. Patil, Pushparaj S. Suryawanshi
Abstract:
Even though the PID controller is widely used in industrial process, tuning of PID parameters are not easy. It is a time consuming and requires expert people. Another drawback of PID controller is that process dynamics might change over time. This can happen due to variation of the process load, normal wear and tear etc. To compensate for process behavior change over time, expert users are required to recalibrate the PID gains. Implementation of model based controllers usually needs a process model. Identification of process model is time consuming job and no guaranty of model accuracy. If the identified model is not accurate, performance of the controller may degrade. Model based controllers are quite expensive and the whole procedure for the implementation is sometimes tedious. To eliminate such issues Autotuning PID controller becomes vital element. Software based Relay Feedback Autotuning Controller proves to be efficient, upgradable and maintenance free controller. In Relay Feedback Autotune controller PID parameters can be achieved with a very short span of time. This paper presents the real time implementation of LabVIEW based Relay Feedback Autotuning PID controller. It is successfully developed and implemented to control level of a laboratory setup. Its performance is analyzed for different setpoints and found satisfactorily.Keywords: autotuning, PID, liquid level control, recalibrate, labview, controller
Procedia PDF Downloads 3957889 Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome
Authors: Amany Ragab, Nashwa Khairat Abousamra, Omayma Saleh, Asmaa Higazy
Abstract:
Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects.Keywords: insulin resistance, obesity, metabolic syndrome, coagulation
Procedia PDF Downloads 1387888 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles
Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra
Abstract:
A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin
Procedia PDF Downloads 3967887 Numerical Investigation of Fiber-Reinforced Polymer (FRP) Panels Resistance to Blast Loads
Authors: Sameh Ahmed, Khaled Galal
Abstract:
Fiber-reinforced polymer (FRP) sandwich panels are increasingly making their way into structural engineering applications. One of these applications is the blast mitigation. This is attributed to FRP ability of absorbing considerable amount of energy relative to their low density. In this study, FRP sandwich panels are numerically studied using an explicit finite element code ANSYS AUTODYN. The numerical model is then validated with the experimental field tests in the literature. The inner core configurations that have been studied in the experimental field tests were formed from different orientations of the honeycomb shape. On the other hand, the conducted numerical study has proposed a new core configuration. The new core configuration is formulated from a combination of woven and honeycomb shapes. Throughout this study, two performance parameters are considered; the amount of the energy absorbed by the panels and the peak deformation of the panels. Following, a parametric study has been conducted with more variations of the studied parameters to examine the enhancement of the panels' performance. It is found that the numerical results have shown a good agreement with the experimental measurements. Furthermore, the analyses have revealed that using the proposed core configuration obviously enhances the FRP panels’ behavior when subjected to blast loads.Keywords: blast load, fiber reinforced polymers, finite element modeling, sandwich panels
Procedia PDF Downloads 3137886 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate
Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee
Abstract:
Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound
Procedia PDF Downloads 4067885 Comparative Analysis of Photosynthetic and Antioxidative Responses of Two Species of Anabaena under Ni and As(III) Stress
Authors: Shivam Yadav, Neelam Atri
Abstract:
Cyanobacteria, the photosynthetic prokaryotes are indispensable components of paddy soil contribute substantially to the nitrogen economy however often appended with metal load. They are well known to play crucial roles in maintenance of soil fertility and rice productivity. Nickel is one such metal that plays a vital role in the cellular physiology, however at higher concentrations it exerts adverse effects. Arsenic is another toxic metalloid that negatively affects the cyanobacterial proliferation. However species-specific comparative responses under As and Ni is largely unknown. The present study focuses on the comparative effects of nickel (Ni2+) and arsenite (As(III)) on two diazotrophic cyanobacterial species (Anabaena doliolum and Anabaena sp. PCC7120) in terms of antioxidative aspects. Oxidative damage measured in terms of lipid peroxidation and peroxide content was significantly higher after As(III) than Ni treatment as compared to control. Similarly, all the studied enzymatic and non-enzymatic parameters of antioxidative defense system except glutathione reductase (GR) showed greater induction against As(III) than Ni. Moreover, integrating comparative analysis of all studied parameters also demonstrated interspecies variation in terms of stress adaptive strategies reflected through higher sensitivity of Anabaena doliolum over Anabaena PCC7120.Keywords: antioxidative system, arsenic, cyanobacteria, nickel
Procedia PDF Downloads 1557884 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis
Authors: Florge Francis A. Sy
Abstract:
Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width
Procedia PDF Downloads 1267883 Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives
Authors: Lamia L. G. Al-Mahamad, Benjamin R. Horrocks, Andrew Houlton
Abstract:
Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms.Keywords: hydrogel, metal ions, nanowire, nucleoside
Procedia PDF Downloads 2667882 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum
Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu
Abstract:
Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.
Procedia PDF Downloads 391