Search results for: oxide morphology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2678

Search results for: oxide morphology

248 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 396
247 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 106
246 Basal Cell Carcinoma Excision Intraoperative Frozen Section for Tumor Clearance and Reconstructive Surgery: A Prospective Open Label Interventional Study

Authors: Moizza Tahir, Uzma Bashir, Aisha Akhtar, Zainab Ansari, Sameen Ansari, Muhammad Ali Tahir

Abstract:

Cancer burden has globally increased. Among cutaneous cancers basal cell carcinoma constitute vast majority of skin cancer. There is need for appropriate diagnostic, therapeutic and prognostic significance evaluation for skin cancers Present study report intraoperative frozen section (FS) histopathological clearance for excision of BCC in a tertiary care center and find the frequency of involvement of surgical margin with reference to anatomical site, with size and surgical technique. It was prospective open label interventional study conducted at Dermatology department of tertiary care hospital Rawalpindi Pakistan in lais on with histopathology department from January 2023 to April 2024. Total of thirty-six (n = 36) patients between age 45-80 years with basal cell carcinoma of 10-20mm on face were included following inclusion exclusion criteria by purposive sampling technique. Informed consent was taken. Surgical excision was performed and intraoperative frozen section histopathology clearance of tumor margin was taken from histopathologist on telephone. Surgical reconstruction was done. Final Histopathology report was reexamined on day 10th for margin and depth clearance. Descriptive statistics were calculated for age, gender, sun exposure, reconstructive technique, anatomical site, and tumor free margin report on frozen section analysis. Chi square test was employed for statistical significance of involvement of surgical margin with reference to anatomical site, size and decision on reconstructive surgical technique, p value of <0.05 was considered significant. Total of 36 patients of BCC were enrolled, males 12 (33.3%) and females were 24 (66.6%). Age ranged from 45 year to 80 year mean of 58.36 ±SD7.8. Size of BCC ranged from 10mm to 35mm mean of 25mm ±SD 0.63. Morphology was nodular 18 (50%), superficial spreading 11(30.6%), morphoeic 1 (2.8%) and ulcerative in 6(16.7%) cases. Intraoperative frozen section for histopathological margin clearance with 2-3 mm safety margin and surgical technique has p-value0.51, for anatomical site p value 0.24 and size p-0.84. Intraoperative frozen section (FS) histopathological clearance for BCC face with 2-3mm safety margin with reference to reconstructive technique, anatomical site and size of BCC were insignificant.

Keywords: basal cell carcinoma, tumor free amrgin, basal cell carcinoma and frozen section, safety margin

Procedia PDF Downloads 16
245 MARISTEM: A COST Action Focused on Stem Cells of Aquatic Invertebrates

Authors: Arzu Karahan, Loriano Ballarin, Baruch Rinkevich

Abstract:

Marine invertebrates, the highly diverse phyla of multicellular organisms, represent phenomena that are either not found or highly restricted in the vertebrates. These include phenomena like budding, fission, a fusion of ramets, and high regeneration power, such as the ability to create whole new organisms from either tiny parental fragment, many of which are controlled by totipotent, pluripotent, and multipotent stem cells. Thus, there is very much that can be learned from these organisms on the practical and evolutionary levels, further resembling Darwin's words, “It is not the strongest of the species that survives, nor the most intelligent, but the one most responsive to change”. The ‘stem cell’ notion highlights a cell that has the ability to continuously divide and differentiate into various progenitors and daughter cells. In vertebrates, adult stem cells are rare cells defined as lineage-restricted (multipotent at best) with tissue or organ-specific activities that are located in defined niches and further regulate the machinery of homeostasis, repair, and regeneration. They are usually categorized by their morphology, tissue of origin, plasticity, and potency. The above description not always holds when comparing the vertebrates with marine invertebrates’ stem cells that display wider ranges of plasticity and diversity at the taxonomic and the cellular levels. While marine/aquatic invertebrates stem cells (MISC) have recently raised more scientific interest, the know-how is still behind the attraction they deserve. MISC, not only are highly potent but, in many cases, are abundant (e.g., 1/3 of the entire animal cells), do not locate in permanent niches, participates in delayed-aging and whole-body regeneration phenomena, the knowledge of which can be clinically relevant. Moreover, they have massive hidden potential for the discovery of new bioactive molecules that can be used for human health (antitumor, antimicrobial) and biotechnology. The MARISTEM COST action (Stem Cells of Marine/Aquatic Invertebrates: From Basic Research to Innovative Applications) aims to connect the European fragmented MISC community. Under this scientific umbrella, the action conceptualizes the idea for adult stem cells that do not share many properties with the vertebrates’ stem cells, organizes meetings, summer schools, and workshops, stimulating young researchers, supplying technical and adviser support via short-term scientific studies, making new bridges between the MISC community and biomedical disciplines.

Keywords: aquatic/marine invertebrates, adult stem cell, regeneration, cell cultures, bioactive molecules

Procedia PDF Downloads 136
244 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 117
243 Platelet Volume Indices: Emerging Markers of Diabetic Thrombocytopathy

Authors: Mitakshara Sharma, S. K. Nema

Abstract:

Diabetes mellitus (DM) is metabolic disorder prevalent in pandemic proportions, incurring significant morbidity and mortality due to associated vascular angiopathies. Platelet related thrombogenesis plays key role in pathogenesis of these complications. Most patients with type II DM suffer from preventable vascular complications and early diagnosis can help manage these successfully. These complications are attributed to platelet activation which can be recognised by the increase in Platelet Volume Indices(PVI) viz. Mean Platelet Volume(MPV) and Platelet Distribution Width(PDW). This study was undertaken with the aim of finding a relationship between PVI and vascular complications of Diabetes mellitus, their importance as a causal factor in these complications and use as markers for early detection of impending vascular complications in patients with poor glycaemic status. This is a cross-sectional study conducted for 2 years with total 930 subjects. The subjects were segregated in 03 groups on basis of glycosylated haemoglobin (HbA1C) as: - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose(IFG) with 300 individuals in IFG and non-diabetic group & 330 individuals in diabetic group. The diabetic group was further divided into two groups: - (a) Diabetic subjects with diabetes related vascular complications (b) Diabetic subjects without diabetes related vascular complications. Samples for HbA1C and platelet indices were collected using Ethylene diamine tetracetic acid(EDTA) as anticoagulant and processed on SYSMEX-XS-800i autoanalyser. The study revealed stepwise increase in PVI from non-diabetics to IFG to diabetics. MPV and PDW of diabetics, IFG and non diabetics were 17.60 ± 2.04, 11.76 ± 0.73, 9.93 ± 0.64 and 19.17 ± 1.48, 15.49 ± 0.67, 10.59 ± 0.67 respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). MPV & PDW of subjects with and without diabetes related complications were (15.14 ± 1.04) fl & (17.51±0.39) fl and (18.96 ± 0.83) fl & (20.09 ± 0.98) fl respectively with a significant p value 0.00.The current study demonstrates raised platelet indices & reduced platelet counts in association with rising glycaemic levels and diabetes related vascular complications across various study groups & showed that platelet morphology is altered with increasing glycaemic levels. These changes can be known by measurements of PVI which are important, simple, cost effective, effortless tool & indicators of impending vascular complications in patients with deranged glycaemic control. PVI should be researched and explored further as surrogate markers to develop a clinical tool for early recognition of vascular changes related to diabetes and thereby help prevent them. They can prove to be more useful in developing countries with limited resources. This study is multi-parameter, comprehensive with adequately powered study design and represents pioneering effort in India on account of the fact that both Platelet indices (MPV & PDW) along with platelet count have been evaluated together for the first time in Diabetics, non diabetics, patients with IFG and also in the diabetic patients with and without diabetes related vascular complications.

Keywords: diabetes, HbA1C, IFG, MPV, PDW, PVI

Procedia PDF Downloads 218
242 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 209
241 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits

Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav

Abstract:

The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.

Keywords: dove, duck, egret, esophagus, goshawk, kite

Procedia PDF Downloads 411
240 Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils

Authors: Violina Angelova, Krasimir Ivanov, Stefan Krustev, Dimitar Dimitrov

Abstract:

Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils.

Keywords: availability, chemical extractants, heavy metals, mobile forms

Procedia PDF Downloads 326
239 Bacterial Recovery of Copper Ores

Authors: Zh. Karaulova, D. Baizhigitov

Abstract:

At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.

Keywords: bacterial recovery, copper ore, bioleaching, bacterial inoculum

Procedia PDF Downloads 46
238 Vitex agnus-castus Anti-Inflammatory, Antioxidants Characters and Anti-Tumor Effect in Ehrlich Ascites Carcinoma Model

Authors: Abeer Y. Ibrahim, Faten M. Ibrahim, Samah A. El-Newary, Saber F. Hendawy

Abstract:

Objective: Appreciation of in-vitro anti-inflammatory and antioxidant characters of Vitex agnus-castus berries alcoholic extract and fractions, as well as in-vivo antitumor ability of alcoholic extract and chloroform fraction against Ehrlich ascites carcinoma is the aim of this study. Material and methods: Antioxidant properties of crude alcoholic extract of vitex berries as well as petroleum ether, chloroform, ethyl acetate and butanol fractions were evaluated, in-vitro assessments, as compared with standard materials, l-ascorbic acid (vitamin C) and butylated hydroxyl toluene(BHT). The anti-inflammatory activity was investigated in cyclooxygenase (COX)-1 and COX-2 inhibition assays. Moreover, in-vivo antitumor effect of vitex berries alcoholic and chloroform extracts were evaluated using Ehrlich ascites carcinoma model. Data were presented as mean±SE, and data were analyzed by one-way analysis of variance test. Results and conclusion: Berries crude extract showed potent antioxidant activity followed with its fractions ethyl acetate and chloroform as compared with standard (V.C and BHT). Ethyl acetate fraction showed good reduction capability, metal ion chelation, hydrogen peroxide scavenging, nitric oxide scavenging and superoxide anion scavenging. Meanwhile, chloroform fraction produced the highest free radical scavenging activity and total antioxidant capacity. In respectable of lipid peroxidation inhibition, crude alcoholic extract and its fractions cleared weak inhibition in comparing with standard materials. Anti-inflammatory activity of V. agnus-castus berries chloroform fraction of vitex was best COX-2 inhibitor (IC₅₀, 135.41 µg/ ml) as compared to vitex alcoholic extract or ethyl acetate fraction with weak inhibitory effect on COX-1 (IC50, 778.432 µg/ ml), where the lowest effect on COX-1 was recorded with alcoholic extract. Alcoholic extract and its fractions showed weak COX-1 inhibition activity, whereas COX-2 was inhibited (100%), compared with celecoxib drug (72% at 1000ppm). The crude alcoholic and chloroform extracts of V. agnus-castus barries significantly reduced the viable Ehrlich cell count and increased nonviable count with amelioration of all hematological parameters. This amelioration was reflected on increasing median survival time and significant increase (P < 0.05) in lifespan.

Keywords: anti-inflammatory, antioxidants, ehrlich ascites carcinoma, Vitex agnus-castus

Procedia PDF Downloads 121
237 The Functions of Spatial Structure in Supporting Socialization in Urban Parks

Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech

Abstract:

Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.

Keywords: spatial structure, social activities, sketch map, urban park, way-finding

Procedia PDF Downloads 276
236 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.

Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone

Procedia PDF Downloads 231
235 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt

Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.

Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests

Procedia PDF Downloads 105
234 Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique

Authors: Monica Enculescu, A. Evanghelidis, I. Enculescu

Abstract:

Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016.

Keywords: electrospinning, luminescence, polymer nanofibers, scanning electron microscopy

Procedia PDF Downloads 183
233 Informed Urban Design: Minimizing Urban Heat Island Intensity via Stochastic Optimization

Authors: Luis Guilherme Resende Santos, Ido Nevat, Leslie Norford

Abstract:

The Urban Heat Island (UHI) is characterized by increased air temperatures in urban areas compared to undeveloped rural surrounding environments. With urbanization and densification, the intensity of UHI increases, bringing negative impacts on livability, health and economy. In order to reduce those effects, it is required to take into consideration design factors when planning future developments. Given design constraints such as population size and availability of area for development, non-trivial decisions regarding the buildings’ dimensions and their spatial distribution are required. We develop a framework for optimization of urban design in order to jointly minimize UHI intensity and buildings’ energy consumption. First, the design constraints are defined according to spatial and population limits in order to establish realistic boundaries that would be applicable in real life decisions. Second, the tools Urban Weather Generator (UWG) and EnergyPlus are used to generate outputs of UHI intensity and total buildings’ energy consumption, respectively. Those outputs are changed based on a set of variable inputs related to urban morphology aspects, such as building height, urban canyon width and population density. Lastly, an optimization problem is cast where the utility function quantifies the performance of each design candidate (e.g. minimizing a linear combination of UHI and energy consumption), and a set of constraints to be met is set. Solving this optimization problem is difficult, since there is no simple analytic form which represents the UWG and EnergyPlus models. We therefore cannot use any direct optimization techniques, but instead, develop an indirect “black box” optimization algorithm. To this end we develop a solution that is based on stochastic optimization method, known as the Cross Entropy method (CEM). The CEM translates the deterministic optimization problem into an associated stochastic optimization problem which is simple to solve analytically. We illustrate our model on a typical residential area in Singapore. Due to fast growth in population and built area and land availability generated by land reclamation, urban planning decisions are of the most importance for the country. Furthermore, the hot and humid climate in the country raises the concern for the impact of UHI. The problem presented is highly relevant to early urban design stages and the objective of such framework is to guide decision makers and assist them to include and evaluate urban microclimate and energy aspects in the process of urban planning.

Keywords: building energy consumption, stochastic optimization, urban design, urban heat island, urban weather generator

Procedia PDF Downloads 109
232 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 154
231 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 83
230 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy

Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu

Abstract:

Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.

Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films

Procedia PDF Downloads 232
229 Gross and Clinical Anatomy of the Skull of Adult Chinkara, Gazella bennettii

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Habib Ur Rehman, Saima Ashraf, Imad Khan, Muqader Shah

Abstract:

The objective of this study was (1) to study gross morphological, osteometric and clinical important landmarks in the skull of adult Chinkara to obtain baseline data and (2) to study sexual dimorphism in male and female adult Chinkara through osteometry. For this purpose, after performing postmortem examination, the carcass of adult Chinkara of known sex and age was buried in the locality of the Manglot Wildlife Park and Ungulate Breeding Centre, Nizampur, Pakistan; after a specific period of time, the bones were unearthed. Gross morphological features and various osteometric parameters of the skull were studied in the University of Veterinary and Animal Sciences, Lahore, Pakistan. The shape of the Chinkara skull was elongated and had thirty-two bones. The skull was comprised of the cranial and the facial part. The facial region of the skull was formed by maxilla, incisive, palatine, vomar, pterygoid, frontal, parietal, nasal, incisive, turbinates, mandible and hyoid apparatus. The bony region of the cranium of Chinkara was comprised of occipital, ethmoid, sphenoid, interparietal, parietal, temporal, and frontal bone. The foramina identified in the facial region of the skull of Chinkara were infraorbital, supraorbital foramen, lacrimal, sphenopalatine, maxillary and caudal palatine foramina. The foramina of the cranium of the skull of the Chinkara were the internal acoustic meatus, external acoustic meatus, hypoglossal canal, transverse canal, sphenorbital fissure, carotid canal, foramen magnum, stylomastoid foramen, foramen rotundum, foramen ovale and jugular foramen, and the rostral and the caudal foramina that formed the pterygoid canal. The measured craniometric parameters did not show statistically significant differences (p > 0.05) between male and female adult Chinkara except Palatine bone, OI, DO, IOCDE, OCT, ICW, IPCW, and PCPL were significantly higher (p > 0.05) in male than female Chinkara and mean values of the mandibular parameters except b and h were significantly (p < 0.5) higher in male Chinkara than female Chinkara. Sexual dimorphism exists in some of the orbital and foramen magnum parameters, while high levels of sexual dimorphism identified in mandible. In conclusion, morphocraniometric studies of Chinkara skull made it possible to identify species-specific skull and use clinical measurements during practical application.

Keywords: Chinkara, skull, morphology, morphometrics, sexual dimorphism

Procedia PDF Downloads 263
228 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 264
227 Understanding the Reasons for Flooding in Chennai and Strategies for Making It Flood Resilient

Authors: Nivedhitha Venkatakrishnan

Abstract:

Flooding in urban areas in India has become a usual ritual phenomenon and a nightmare to most cities, which is a consequence of man-made disruption resulting in disaster. The City planning in India falls short of withstanding hydro generated disasters. This has become a barrier and challenge in the process of development put forth by urbanization, high population density, expanding informal settlements, environment degradation from uncollected and untreated waste that flows into natural drains and water bodies, this has disrupted the natural mechanism of hazard protection such as drainage channels, wetlands and floodplains. The magnitude and the impact of the mishap was high because of the failure of development policies, strategies, plans that the city had adopted. In the current scenario, cities are becoming the home for future, with economic diversification bringing in more investment into cities especially in domains of Urban infrastructure, planning and design. The uncertainty of the Urban futures in these low elevated coastal zones faces an unprecedented risk and threat. The study on focuses on three major pillars of resilience such as Recover, Resist and Restore. This process of getting ready to handle the situation bridges the gap between disaster response management and risk reduction requires a shift in paradigm. The study involved a qualitative research and a system design approach (framework). The initial stages involved mapping out of the urban water morphology with respect to the spatial growth gave an insight of the water bodies that have gone missing over the years during the process of urbanization. The major finding of the study was missing links between traditional water harvesting network was a major reason resulting in a manmade disaster. The research conceptualized the ideology of a sponge city framework which would guide the growth through institutional frameworks at different levels. The next stage was on understanding the implementation process at various stage to ensure the shift in paradigm. Demonstration of the concepts at a neighborhood level where, how, what are the functions and benefits of each component. Quantifying the design decision with rainwater harvest, surface runoff and how much water is collected and how it could be collected, stored and reused. The study came with further recommendation for Water Mitigation Spaces that will revive the traditional harvesting network.

Keywords: flooding, man made disaster, resilient city, traditional harvesting network, waterbodies

Procedia PDF Downloads 124
226 Effect of Pre-bonding Storage Period on Laser-treated Al Surfaces

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

In recent years, the use of aluminium has further expanded and is expected to replace steel in the future as vehicles become lighter and more recyclable in order to reduce greenhouse gas (GHG) emissions and improve fuel economy. In line with this, structures and components are becoming increasingly multi-material, with different materials, including aluminium, being used in combination to improve mechanical utility and performance. A common method of assembling dissimilar materials is mechanical fastening, but it has several drawbacks, such as increased manufacturing processes and the influence of substrate-specific mechanical properties. Adhesive bonding and fusion bonding are methods that overcome the above disadvantages. In these two joining methods, surface pre-treatment of the substrate is always necessary to ensure the strength and durability of the joint. Previous studies have shown that laser surface treatment improves the strength and durability of the joint. Yan et al. showed that laser surface treatment of aluminium alloys changes α-Al2O3 in the oxide layer to γ-Al2O3. As γ-Al2O3 has a large specific surface area, is very porous and chemically active, laser-treated aluminium surfaces are expected to undergo physico-chemical changes over time and adsorb moisture and organic substances from the air or storage atmosphere. The impurities accumulated on the laser-treated surface may be released at the adhesive and bonding interface by the heat input to the bonding system during the joining phase, affecting the strength and durability of the joint. However, only a few studies have discussed the effect of such storage periods on laser-treated surfaces. This paper, therefore, investigates the ageing of laser-treated aluminium alloy surfaces through thermal analysis, electrochemical analysis and microstructural observations.AlMg3 of 0.5 mm and 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fibre laser at 1060 nm wavelength, 70 W maximum power and 55 kHz repetition frequency. The aluminium surface was then analysed using SEM, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) after storage in air for various periods ranging from one day to several months TGA and FTIR analysed impurities adsorbed on the aluminium surface, while CV revealed changes in the true electrochemically active surface area. SEM also revealed visual changes on the treated surface. In summary, the changes in the laser-treated aluminium surface with storage time were investigated, and the final results were used to determine the appropriate storage period.

Keywords: laser surface treatment, pre-treatment, adhesion, bonding, corrosion, durability, dissimilar material interface, automotive, aluminium alloys

Procedia PDF Downloads 55
225 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 130
224 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study

Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis

Abstract:

The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.

Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand

Procedia PDF Downloads 173
223 Assessment of Microclimate in Abu Dhabi Neighborhoods: On the Utilization of Native Landscape in Enhancing Thermal Comfort

Authors: Maryam Al Mheiri, Khaled Al Awadi

Abstract:

Urban population is continuously increasing worldwide and the speed at which cities urbanize creates major challenges, particularly in terms of creating sustainable urban environments. Rapid urbanization often leads to negative environmental impacts and changes in the urban microclimates. Moreover, when rapid urbanization is paired with limited landscape elements, the effects on human health due to the increased pollution, and thermal comfort due to Urban Heat Island effects are increased. Urban Heat Island (UHI) describes the increase of urban temperatures in urban areas in comparison to its rural surroundings, and, as we discuss in this paper, it impacts on pedestrian comfort, reducing the number of walking trips and public space use. It is thus very necessary to investigate the quality of outdoor built environments in order to improve the quality of life incites. The main objective of this paper is to address the morphology of Emirati neighborhoods, setting a quantitative baseline by which to assess and compare spatial characteristics and microclimate performance of existing typologies in Abu Dhabi. This morphological mapping and analysis will help to understand the built landscape of Emirati neighborhoods in this city, whose form has changed and evolved across different periods. This will eventually help to model the use of different design strategies, such as landscaping, to mitigate UHI effects and enhance outdoor urban comfort. Further, the impact of different native plants types and native species in reducing UHI effects and enhancing outdoor urban comfort, allowing for the assessment of the impact of increasing landscaped areas in these neighborhoods. This study uses ENVI-met, an analytical, three-dimensional, high-resolution microclimate modeling software. This micro-scale urban climate model will be used to evaluate existing conditions and generate scenarios in different residential areas, with different vegetation surfaces and landscaping, and examine their impact on surface temperatures during summer and autumn. In parallel to these simulations, field measurement will be included to calibrate the Envi-met model. This research therefore takes an experimental approach, using simulation software, and a case study strategy for the evaluation of a sample of residential neighborhoods. A comparison of the results of these scenarios constitute a first step towards making recommendations about what constitutes sustainable landscapes for Abu Dhabi neighborhoods.

Keywords: landscape, microclimate, native plants, sustainable neighborhoods, thermal comfort, urban heat island

Procedia PDF Downloads 284
222 Safety of Implementation the Gluten - Free Diet in Children with Autism Spectrum Disorder

Authors: J. Jessa

Abstract:

Background: Autism is a pervasive developmental disorder, the incidence of which has significantly increased in recent years. Children with autism have impairments in social skills, communication, and imagination. Children with autism has more common than healthy children feeding problems: food selectivity, problems with gastrointestinal tract: diarrhea, constipations, abdominal pain, reflux and others. Many parents of autistic children report that after implementation of gluten-, casein- and sugar free diet those symptoms disappear and even cognitive functions become better. Some children begin to understand speech and to communicate with parents, regain eye contact, become more calm, sleep better and has better concentration. Probably at the root of this phenomenon lies elimination from the diet peptides construction of which is similar to opiates. Enhanced permeability of gut causes absorption of not fully digested opioid-like peptides from food, like gluten and casein and probably others (proteins from soy and corn) which impact on brain of autistic children. Aim of the study: The aim of the study is to assess the safety of gluten-free diet in children with autism, aged 2,5-7. Methods: Participants of the study (n=70) – children aged 2,5-7 with autism are divided into 3 groups. The first group (research group) are patients whose parents want to implement a gluten-free diet. The second group are patients who have been recommended to eliminate from the diet artificial substances, such as preservatives, artificial colors and flavors, and others (control group 1). The third group (control group 2) are children whose parents did not agree for implementation of the diet. Caregivers of children on the diet are educated about the specifics of the diet and how to avoid malnutrition. At the start of the study we exclude celiac disease. Before the implementation of the diet we performe a blood test for patients (morphology, ferritin, total cholesterol, dry peripheral blood drops to detect some genetic metabolic diseases), plasma aminogram) and urine tests (excretion of ions: Mg, Na, Ca, the profile of organic acids in urine), which assess nutritional status as well as the psychological test assessing the degree of the child's psychological functioning (PEP-R). All of these tests will be repeated after one year from the implementation of the diet. Results: To the present moment we examined 42 children with autism. 12 of children are on gluten- free diet. Our preliminary results are promising. Parents of 9 of them report that, there is a big improvement in child behavior, concentration, less aggression incidents, better eye contact and better verbal skills. Conclusion: Our preliminary results suggest that dietary intervention may positively affect developmental outcome for some children diagnosed with ASD.

Keywords: gluten free diet, autism spectrum disorder, autism, blood test

Procedia PDF Downloads 303
221 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures

Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño

Abstract:

Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.

Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde

Procedia PDF Downloads 299
220 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy

Authors: Mehwish Jamil Noor

Abstract:

Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.

Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)

Procedia PDF Downloads 175
219 Applicability and Reusability of Fly Ash and Base Treated Fly Ash for Adsorption of Catechol from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Modeling

Authors: S. Agarwal, A. Rani

Abstract:

Catechol is a natural polyphenolic compound that widely exists in higher plants such as teas, vegetables, fruits, tobaccos, and some traditional Chinese medicines. The fly ash-based zeolites are capable of absorbing a wide range of pollutants. But the process of zeolite synthesis is time-consuming and requires technical setups by the industries. The marketed costs of zeolites are quite high restricting its use by small-scale industries for the removal of phenolic compounds. The present research proposes a simple method of alkaline treatment of FA to produce an effective adsorbent for catechol removal from wastewater. The experimental parameter such as pH, temperature, initial concentration and adsorbent dose on the removal of catechol were studied in batch reactor. For this purpose the adsorbent materials were mixed with aqueous solutions containing catechol ranging in 50 – 200 mg/L initial concentrations and then shaken continuously in a thermostatic Orbital Incubator Shaker at 30 ± 0.1 °C for 24 h. The samples were withdrawn from the shaker at predetermined time interval and separated by centrifugation (Centrifuge machine MBL-20) at 2000 rpm for 4 min. to yield a clear supernatant for analysis of the equilibrium concentrations of the solutes. The concentrations were measured with Double Beam UV/Visible spectrophotometer (model Spectrscan UV 2600/02) at the wavelength of 275 nm for catechol. In the present study, the use of low-cost adsorbent (BTFA) derived from coal fly ash (FA), has been investigated as a substitute of expensive methods for the sequestration of catechol. The FA and BTFA adsorbents were well characterized by XRF, FE-SEM with EDX, FTIR, and surface area and porosity measurement which proves the chemical constituents, functional groups and morphology of the adsorbents. The catechol adsorption capacities of synthesized BTFA and native material were determined. The adsorption was slightly increased with an increase in pH value. The monolayer adsorption capacities of FA and BTFA for catechol were 100 mg g⁻¹ and 333.33 mg g⁻¹ respectively, and maximum adsorption occurs within 60 minutes for both adsorbents used in this test. The equilibrium data are fitted by Freundlich isotherm found on the basis of error analysis (RMSE, SSE, and χ²). Adsorption was found to be spontaneous and exothermic on the basis of thermodynamic parameters (ΔG°, ΔS°, and ΔH°). Pseudo-second-order kinetic model better fitted the data for both FA and BTFA. BTFA showed large adsorptive characteristics, high separation selectivity, and excellent recyclability than FA. These findings indicate that BTFA could be employed as an effective and inexpensive adsorbent for the removal of catechol from wastewater.

Keywords: catechol, fly ash, isotherms, kinetics, thermodynamic parameters

Procedia PDF Downloads 101