Search results for: flooding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 359

Search results for: flooding

359 Employing GIS to Analyze Areas Prone to Flooding: Case Study of Thailand

Authors: Sanpachai Huvanandana, Settapong Malisuwan, Soparwan Tongyuak, Prust Pannachet, Anong Phoepueak, Navneet Madan

Abstract:

Many regions of Thailand are prone to flooding due to tropical climate. A commonly increasing precipitation in this continent results in risk of flooding. Many efforts have been implemented such as drainage control system, multiple dams, and irrigation canals. In order to decide where the drainages, dams, and canal should be appropriately located, the flooding risk area should be determined. This paper is aimed to identify the appropriate features that can be used to classify the flooding risk area in Thailand. Several features have been analyzed and used to classify the area. Non-supervised clustering techniques have been used and the results have been compared with ten years average actual flooding area.

Keywords: flood area clustering, geographical information system, flood features

Procedia PDF Downloads 295
358 Designing an Agent-Based Model of SMEs to Assess Flood Response Strategies and Resilience

Authors: C. Li, G. Coates, N. Johnson, M. Mc Guinness

Abstract:

In the UK, flooding is responsible for significant losses to the economy due to the impact on businesses, the vast majority of which are Small and Medium Enterprises (SMEs). Businesses of this nature tend to lack formal plans to aid their response to and recovery from disruptive events such as flooding. This paper reports on work on how an agent-based model (ABM) is being developed based on interview data gathered from SMEs at-risk of flooding and/or have direct experience of flooding. The ABM will enable simulations to be performed allowing investigations of different response strategies which SMEs may employ to lessen the impact of flooding, thus strengthening their resilience.

Keywords: ABM, flood response, SMEs, business continuity

Procedia PDF Downloads 313
357 Effectiveness of Infrastructure Flood Control Due to Development Upstream Land Use: Case Study of Ciliwung Watershed

Authors: Siti Murniningsih, Evi Anggraheni

Abstract:

Various infrastructures such as dams, flood control dams and reservoirs have been developed in the 19th century until the 20th century. These infrastructures are very effective in controlling the river flows and in preventing inundation in the urban area prone to flooding. Flooding in the urban area often brings large impact, affecting every aspect of life and also environment. Ciliwung is one of the rivers allegedly contributes to the flooding problems in Jakarta; various engineering work has been done in Ciliwung river to help controlling the flooding. One of the engineering work is to build Ciawi Dam and Sukamahi Dam. In this research, author is doing the flood calculation with Nakayasu Method, while the previous flooding in that case study is computed using Level Pool Routine. The effectiveness of these dams can be identified by using flood simulation of existing condition and compare it to the flood simulation after the dam construction. The final goal of this study is to determine the effectiveness of flood mitigation infrastructure located at upstream area in reducing the volume of flooding in Jakarta.

Keywords: effectiveness, flood simulation, infrastructure flooding, level pool routine

Procedia PDF Downloads 259
356 Vulnerability Assessment for Protection of Ghardaia City to the Inundation of M’zabWadi

Authors: Mustapha Kamel Mihoubi, Reda Madi

Abstract:

The problem of natural disasters in general and flooding in particular is a topic which marks a memorable action in the world and specifically in cities and large urban areas. Torrential floods and faster flows pose a major problem in urban area. Indeed, a better management of risks of floods becomes a growing necessity that must mobilize technical and scientific means to curb the adverse consequences of this phenomenon, especially in the Saharan cities in arid climate. The aim of this study is to deploy a basic calculation approach based on a hydrologic and hydraulic quantification for locating the black spots in urban areas generated by the flooding and to locate the areas that are vulnerable to flooding. The principle of flooding method is applied to the city of Ghardaia to identify vulnerable areas to inundation and to establish maps management and prevention against the risks of flooding.

Keywords: Alea, Beni Mzab, cartography, HEC-RAS, inundation, torrential, vulnerability, wadi

Procedia PDF Downloads 311
355 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 147
354 Experimental Study on Flooding Phenomena in a Three-Phase Direct Contact Heat Exchanger for the Utilisation in Solar Pond Applications

Authors: Hameed B. Mahood, Ali Sh. Baqir, Alasdair N. Campbell

Abstract:

Experiments to study the limitation of flooding inception of three-phase direct contact condenser have been carried out in a counter-current small diameter vertical condenser. The total column height was 70 cm and 4 cm diameter. Only 48 cm has been used as an active three-phase direct contact condenser height. Vapour pentane with three different initial temperatures (40, 43.5 and 47.5 °C) and water with a constant temperature (19 °C) have been used as a dispersed phase and a continuous phase respectively. Five different continuous phase mass flow rate and four different dispersed phase mass flow rate have been tested throughout the experiments. Dimensionless correlation based on the previous common flooding correlation is proposed to calculate the up flow flooding inception of the three-phase direct contact condenser.

Keywords: Three-phase heat exchanger, condenser, solar energy, flooding phenomena

Procedia PDF Downloads 339
353 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 103
352 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 400
351 Domestic Rooftop Rainwater Harvesting for Prevention of Urban Flood in the Gomti Nagar Region of Lucknow, Uttar Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Urban flooding is a common occurrence throughout Asia. Almost every city is vulnerable to urban floods in some fashion, and city people are particularly vulnerable. Pluvial and fluvial flooding are the most prominent causes of urban flooding in the Gomti Nagar region of Lucknow, Uttar Pradesh, India. The pluvial flooding is regarded to be less damaging because it is caused by heavy rainfall, Seasonal rainfall fluctuations, water flows off concrete infrastructures, blockages of the drainage system, and insufficient drainage capacity or low infiltration capacity. However, this study considers pluvial flooding in Lucknow to be a significant source of cumulative damage over time, and the risks of such events are increasing as a result of changes in ageing infrastructure, hazard exposure, rapid urbanization, massive water logging and global warming. As a result, urban flooding has emerged as a critical field of study. The popularity of analytical approaches to project the spatial extent of flood dangers has skyrocketed. To address future urban flood resilience, more effort is needed to enhance both hydrodynamic models and analytical tools to simulate risks under present and forecast conditions. Proper urban planning with drainage system and ample space for high infiltration capacity are required to reduce urban flooding. A better India with no urban flooding is a pipe dream that can be realized by putting household rooftop rainwater collection systems in every structure. According to the current study, domestic RTRWHs are strongly recommended as an alternative source of water, as well as to prevent surface runoff and urban floods in this region of Lucknow, urban areas of India.

Keywords: rooftop rainwater harvesting, urban flood, pluvial flooding, fluvial flooding

Procedia PDF Downloads 85
350 Effect of Polymer Residues for Wastewater Treatment from Petroleum Production

Authors: Chayonnat Thanamun, Kreangkrai Maneeintr

Abstract:

For petroleum industry, polymer flooding is the one of the main methods in enhanced oil recovery (EOR) that is used water-soluble polymer such as partially hydrolyzed polyacrylamide (HPAM) to increase oil production. It is added to the flooding water to improve the mobility ratio in the flooding process. During the polymer flooding process, water is produced as a by-product along with oil and gas production. This produced water is a mixture of inorganic and organic compound. Moreover, produced water is more difficult to treat than that from water flooding. In this work, the effect of HPAM residue on the wastewater treatment from polymer flooding is studied. Polyaluminium chloride (PAC) is selected to use as a flocculant. Therefore, the objective of this study is to evaluate the effect of polymer residues in produced water on the wastewater treatment by using PAC. The operating parameters of this study are flocculant dosage ranging from 300,400 and 500 mg/L temperature from 30-50 Celsius degree and HPAM concentrations from 500, 1000 and 2000 mg/L. Furthermore, the turbidity, as well as total suspended solids (TSS), are also studied. The results indicated that with an increase in HPAM concentration, the TSS and turbidity increase gradually with the increasing of coagulant dosage under the same temperature. Also, the coagulation-flocculation performance is improved with the increasing temperature. This can be applied to use in the wastewater treatment from oil production before this water can be injected back to the reservoir.

Keywords: wastewater treatment, petroleum production, polyaluminium chloride, polyacrylamide

Procedia PDF Downloads 153
349 Impact of Flooding on Food Calorie Intake and Health Outcomes among Small Holder Farm Households in Koton Karfe Local Government Area of Kogi State, Nigeria

Authors: Cornelius Michael Ekenta, Aderonke Bashirat Mohammed, Sefi Ahmed

Abstract:

The research examined the impact of flooding on food calorie intake and health challenges among smallholder farm households in Koton Karfe Local Government Area of Kogi State, Nigeria. Purposive and random sampling techniques were used to select 130 farm households in selected villages in the area. Primary data were generated through the administration of a well-structured questionnaire. Data were analyzed with descriptive statistics, Double Difference Estimator (DDE), Calorie Intake Estimation Function, t-test, and multiple regressions. The result shows that farm households lost an average of 132, 950kg of selected crops amounting to about N20m ($56, 542) loose in income. Food daily calorie intake indicates a loss of an average of 715.18Kcal, showing a significant difference in calorie intake before and after flooding (t = 2.0629) at 5% probability. Furthermore, the health challenges most prevalent during flooding were malaria fever, typhoid fever, cholera, and dysentery. The determinants of daily calorie intake were age, household size, level of income, flooding, health challenges, and food price. The study concluded that flooding had negative impacts on crop output and income, daily food calorie intact, and health challenges of a farm household in the study area. It was recommended that the State Government should make adequate and proper arrangements to relocate residents of the area at the warning of possible flooding by the National Metrological Centre and should, through the State Emergency Management Agency (SEMA), provide relieve items to the residents to cushion the effects of the flooding.

Keywords: calorie, cholera, flooding, health challenges, impact

Procedia PDF Downloads 145
348 Digital Elevation Model Analysis of Potential Prone Flood Disaster Watershed Citarum Headwaters Bandung

Authors: Faizin Mulia Rizkika, Iqbal Jabbari Mufti, Muhammad R. Y. Nugraha, Fadil Maulidir Sube

Abstract:

Flooding is an event of ponding on the flat area around the river as a result of the overflow of river water was not able to be accommodated by the river and may cause damage to the infrastructure of a region. This study aimed to analyze the data of Digital Elevation Model (DEM) for information that plays a role in the mapping of zones prone to flooding, mapping the distribution of zones prone to flooding that occurred in the Citarum upstream using secondary data and software (ArcGIS, MapInfo), this assessment was made distribution map of flooding, there were 13 counties / districts dam flood-prone areas in Bandung, and the most vulnerable districts are areas Baleendah-Dayeuhkolot-Bojongsoang-Banjaran. The area has a low slope and the same limits with boundary rivers and areas that have excessive land use, so the water catchment area is reduced.

Keywords: mitigation, flood, citarum, DEM

Procedia PDF Downloads 389
347 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model

Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han

Abstract:

Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.

Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model

Procedia PDF Downloads 362
346 The Application of Polymers in Enhanced Oil Recovery: Recent Trends

Authors: Reza M. Rudd, Ali Saeedi, Colin Wood

Abstract:

In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding.

Keywords: EOR, EGR, polymer flooding, profile modification, mobility control, nanocomposite hydrogels, CO2 flooding, polymeric surfactants

Procedia PDF Downloads 567
345 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.

Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability

Procedia PDF Downloads 124
344 Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud

Authors: Mohammad Reza Kavianpour, Arsalan Behzadifard Pour, Ali Aghazadeh Cloudy, Abolfazl Moqimi

Abstract:

In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone.

Keywords: flood management, SWMM, runoff, flood zone

Procedia PDF Downloads 612
343 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage

Authors: Oh Hyeon Jeon, WooYoung Jung

Abstract:

In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.

Keywords: weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo simulation, permeability coefficient

Procedia PDF Downloads 353
342 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir

Authors: Sukruthai Sapniwat, Falan Srisuriyachai

Abstract:

Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.

Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation

Procedia PDF Downloads 330
341 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 143
340 Measuring Flood Risk concerning with the Flood Protection Embankment in Big Flooding Events of Dhaka Metropolitan Zone

Authors: Marju Ben Sayed, Shigeko Haruyama

Abstract:

Among all kinds of natural disaster, the flood is a common feature in rapidly urbanizing Dhaka city. In this research, assessment of flood risk of Dhaka metropolitan area has been investigated by using an integrated approach of GIS, remote sensing and socio-economic data. The purpose of the study is to measure the flooding risk concerning with the flood protection embankment in big flooding events (1988, 1998 and 2004) and urbanization of Dhaka metropolitan zone. In this research, we considered the Dhaka city into two parts; East Dhaka (outside the flood protection embankment) and West Dhaka (inside the flood protection embankment). Using statistical data, we explored the socio-economic status of the study area population by comparing the density of population, land price and income level. We have drawn the cross section profile of the flood protection embankment into three different points for realizing the flooding risk in the study area, especially in the big flooding year (1988, 1998 and 2004). According to the physical condition of the study area, the land use/land cover map has been classified into five classes. Comparing with each land cover unit, historical weather station data and the socio-economic data, the flooding risk has been evaluated. Moreover, we compared between DEM data and each land cover units to find out the relationship with flood. It is expected that, this study could contribute to effective flood forecasting, relief and emergency management for a future flood event in Dhaka city.

Keywords: land use, land cover change, socio-economic, Dhaka city, GIS, flood

Procedia PDF Downloads 297
339 Performance of CO₂/N₂ Foam in Enhanced Oil Recovery

Authors: Mohamed Hassan, Rahul Gajbhiye

Abstract:

The high mobility and gravity override of CO₂ gas can be minimized by generating the CO₂ foam with the aid of surfactant. However, CO₂ is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO₂ foam is overcome by adding N₂ in small fraction to enhance the foam generation of CO₂ at supercritical conditions. This study shows how the addition of small quantity of N₂ helps in generating the CO₂ foam and performance of the CO₂/N₂ mixture foam in enhanced oil recovery. To investigate the performance of CO₂/N₂ foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical CO₂ - 50°C and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N₂ fraction was optimized based on foam generation and stability tests. Every gas or foam flooding was preceded by seawater injection to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO₂ and CO₂/N₂ foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO₂ gas injection processes. Additionally, the performance CO₂/N₂ foam injection was better than CO₂ foam injection.

Keywords: CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency

Procedia PDF Downloads 277
338 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 183
337 “Towards Creating a Safe Future”: An Assessment of the Causes of Flooding in Nsanje District, Lower Shire Malawi

Authors: Davie Hope Moyo

Abstract:

The environment is a combination of two things: resources and hazards. One of the hazards that is a result of environmental changes is the occurrence of flooding. Floods are one of the disasters that are highly feared by people because they have a huge impact on the human population and their environment. In recent years, flooding disasters in the Nsanje district are increasing in both frequency and magnitude. This study aims to understand the root causes of this phenomenon. To understand the causes of flooding, this study focused on the case of TA Ndamera in the Nsanje district, southern Malawi. People in the Nsanje district face disruption in their day-to-day life because of floods that affect their communities. When floods happen, people lose their property, land, livestock, and even lives. The study was carried out in order to have a better understanding of the root causes of floods. The findings of this study may help the government and other development agencies to put in place mitigation measures that will make Nsanje District resilient to the occurrence of future flood hazards. Data was collected from the area of TA Ndamera in order to assess the causes of flooding in the district. Interviews, transect walks, and researcher observation was done to appreciate the topography of the district and evaluate other factors that are making the people become vulnerable to the impacts of flooding in the district. It was found that flooding in the district is mainly caused by heavy rainfall in the upper shire, settlements along river banks, deforestation, and the topography of the district in general. The research study ends by providing recommendation strategies that need to be put in place to increase the resilience of the communities to future flood hazards. The research recommends the development of indigenous knowledge systems to alert people of incoming floods, construction of evacuation centers to ease pressure on schools, savings, and insurance schemes, construction of dykes, desilting rivers, and afforestation.

Keywords: disaster causes, mitigation, safety measures, Nsanje Malawi

Procedia PDF Downloads 85
336 Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy

Authors: Zviad Ghadua, Biswa Bhattacharya

Abstract:

The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.

Keywords: flash flood, Bayesian, flash flood guidance, FFG, forecasting, Posina

Procedia PDF Downloads 137
335 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand

Authors: Waraporn Wimuktalop

Abstract:

This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.

Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding

Procedia PDF Downloads 235
334 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 193
333 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 478
332 Urban River As Living Infrastructure: Tidal Flooding And Sea Level Rise In A Working Waterway In Hampton Roads, Virginia

Authors: William Luke Hamel

Abstract:

Existing conceptions of urban flooding caused by tidal fluctuations and sea-level rise have been inadequately conceptualized by metrics of resilience and methods of flow modeling. While a great deal of research has been devoted to the effects of urbanization on pluvial flooding, the kind of tidal flooding experienced by locations like Hampton Roads, Virginia, has not been adequately conceptualized as being a result of human factors such as urbanization and gray infrastructure. Resilience from sea level rise and its associated flooding has been pioneered in the region with the 2015 Norfolk Resilience Plan from 100 Resilient Cities as well as the 2016 Norfolk Vision 2100 plan, which envisions different patterns of land use for the city. Urban resilience still conceptualizes the city as having the ability to maintain an equilibrium in the face of disruptions. This economic and social equilibrium relies on the Elizabeth River, narrowly conceptualized. Intentionally or accidentally, the river was made to be a piece of infrastructure. Its development was meant to serve the docks, shipyards, naval yards, and port infrastructure that gives the region so much of its economic life. Inasmuch as it functions to permit the movement of cargo; the raising and lowering of ships to be repaired, commissioned, or decommissioned; or the provisioning of military vessels, the river as infrastructure is functioning properly. The idea that the infrastructure is malfunctioning when high tides and sea-level rise create flooding is predicated on the idea that the infrastructure is truly a human creation and can be controlled. The natural flooding cycles of an urban river, combined with the action of climate change and sea-level rise, are only abnormal so much as they encroach on the development that first encroached on the river. The urban political ecology of water provides the ability to view the river as an infrastructural extension of urban networks while also calling for its emancipation from stationarity and human control. Understanding the river and city as a hydrosocial territory or as a socio-natural system liberates both actors from the duality of the natural and the social while repositioning river flooding as a normal part of coexistence on a floodplain. This paper argues for the adoption of an urban political ecology lens in the analysis and governance of urban rivers like the Elizabeth River as a departure from the equilibrium-seeking and stability metrics of urban resilience.

Keywords: urban flooding, political ecology, Elizabeth river, Hampton roads

Procedia PDF Downloads 169
331 Effect of Mangrove Forests in Coastal Flood and Erosion

Authors: Majid Samiee Zenoozian

Abstract:

This paper studies the susceptibility of local settlements in the gulf of Oman mangrove forest zone to flooding and progressesconsiderate of acuities and reactions to historical and present coastal flooding.it is indirect thaterosionsproduced in coastal zones by the change of mangrove undergrowthsubsequent from the enduring influence of persons since the late 19th century. Confronted with the increasing impact of climate change on climate ambitiousalarms such as flooding and biodiversity damage, handling the relationship between mangroves and their atmosphere has become authoritative for their defense. Coastal flood dangers are increasing quickly. We offer high resolution approximations of the financial value of mangroves forests for flood risk discount. We progress a probabilistic, process-based estimate of the properties of mangroves on avoidanceharms to people and property. More significantly, it also establishes how the incessantsqualor of this significant ecosystem has the potential to unfavorably influence the future cyclone persuadeddangers in the area.

Keywords: mangrove forest, coastal, flood, erosion

Procedia PDF Downloads 117
330 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 153