Search results for: accessibility score
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2751

Search results for: accessibility score

321 Data Model to Predict Customize Skin Care Product Using Biosensor

Authors: Ashi Gautam, Isha Shukla, Akhil Seghal

Abstract:

Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.

Keywords: biosensors, data model, machine learning, skin care

Procedia PDF Downloads 97
320 Quality of Life after Damage Control Laparotomy for Trauma

Authors: Noman Shahzad, Amyn Pardhan, Hasnain Zafar

Abstract:

Introduction: Though short term survival advantage of damage control laparotomy in management of critically ill trauma patients is established, there is little known about the long-term quality of life of these patients. Facial closure rate after damage control laparotomy is reported to be 20-70 percent. Abdominal wall reconstruction in those who failed to achieve facial closure is challenging and can potentially affect quality of life of these patients. Methodology: We conducted retrospective matched cohort study. Adult patients who underwent damage control laparotomy from Jan 2007 till Jun 2013 were identified through medical record. Patients who had concomitant disabling brain injury or limb injuries requiring amputation were excluded. Age, gender and presentation time matched non exposure group of patients who underwent laparotomy for trauma but no damage control were identified for each damage control laparotomy patient. Quality of life assessment was done via telephonic interview at least one year after the operation, using Urdu version of EuroQol Group Quality of Life (QOL) questionnaire EQ5D after permission. Wilcoxon signed rank test was used to compare QOL scores and McNemar test was used to compare individual parameters of QOL questionnaire. Study was approved by institutional ethical review committee. Results: Out of 32 patients who underwent damage control laparotomy during study period, 20 fulfilled the selection criteria for which 20 matched controls were selected. Median age of patients (IQ Range) was 33 (26-40) years. Facial closure rate in damage control laparotomy group was 40% (8/20). One third of those who did not achieve facial closure (4/12) underwent abdominal wall reconstruction. Self-reported QOL score of damage control laparotomy patients was significantly worse than non-damage control group (p = 0.032). There was no statistically significant difference in two groups regarding individual QOL measures. Significantly, more patients in damage control group were requiring use of abdominal binder, and more patients in damage control group had to either change their job or had limitations in continuing previous job. Our study was not adequately powered to detect factors responsible for worse QOL in damage control group. Conclusion: Quality of life of damage control patients is worse than their age and gender matched patients who underwent trauma laparotomy but not damage control. Adequately powered studies need to be conducted to explore factors responsible for this finding for potential improvement.

Keywords: damage control laparotomy, laparostomy, quality of life

Procedia PDF Downloads 279
319 Applying the Underwriting Technique to Analyze and Mitigate the Credit Risks in Construction Project Management

Authors: Hai Chien Pham, Thi Phuong Anh Vo, Chansik Park

Abstract:

Risks management in construction projects is important to ensure the positive feasibility of the projects in which financial risks are most concerned while construction projects always run on a credit basis. Credit risks, therefore, require unique and technical tools to be well managed. Underwriting technique in credit risks, in its most basic sense, refers to the process of evaluating the risks and the potential exposure of losses. Risks analysis and underwriting are applied as a must in banks and financial institutions who are supporters for constructions projects when required. Recently, construction organizations, especially contractors, have recognized the significant increasing of credit risks which caused negative impacts to project performance and profit of construction firms. Despite the successful application of underwriting in banks and financial institutions for many years, there are few contractors who are applying this technique to analyze and mitigate the credit risks of their potential owners before signing contracts with them for delivering their performed services. Thus, contractors have taken credit risks during project implementation which might be not materialized due to the bankruptcy and/or protracted default made by their owners. With this regard, this study proposes a model using the underwriting technique for contractors to analyze and assess credit risks of their owners before making final decisions for the potential construction contracts. Contractor’s underwriters are able to analyze and evaluate the subjects such as owner, country, sector, payment terms, financial figures and their related concerns of the credit limit requests in details based on reliable information sources, and then input into the proposed model to have the Overall Assessment Score (OAS). The OAS is as a benchmark for the decision makers to grant the proper limits for the project. The proposed underwriting model is validated by 30 subjects in Asia Pacific region within 5 years to achieve their OAS, and then compare output OAS with their own practical performance in order to evaluate the potential of underwriting model for analyzing and assessing credit risks. The results revealed that the underwriting would be a powerful method to assist contractors in making precise decisions. The contribution of this research is to allow the contractors firstly to develop their own credit risk management model for proactively preventing the credit risks of construction projects and continuously improve and enhance the performance of this function during project implementation.

Keywords: underwriting technique, credit risk, risk management, construction project

Procedia PDF Downloads 208
318 Analysis of the Interest of High School Students in Tirana for Physical Activity, Sports and Foreign Languages

Authors: Zylfi Shehu, Shpetim Madani, Bashkim Delia

Abstract:

Context: The study focuses on the interest and engagement of high school students in Tirana, Albania, in physical activity, sports, and foreign languages. It acknowledges the numerous physiological benefits of physical activity, such as cardiovascular health and improved mood. It also recognizes the importance of physical activity in childhood and adolescence for proper skeletal development and long-term health. Research Aim: The main purpose of the study is to investigate and analyze the preferences and interests of male and female high school students in Tirana regarding their functional development, physical activity, sports participation, and choice of foreign languages. The aim is to provide insights for the students and teachers to guide future objectives and improve the quality of physical education. Methodology: The study employed a survey-based approach, targeting both male and female students in public high schools in Tirana. A total of 410 students aged 15 to 19 years old, participated in the study. The data collected from the survey were processed using Excel and presented through tables and graphs. Findings: The results revealed that team sports were more favored by the students, with football being the preferred choice among males, while basketball and volleyball were more popular among females. Additionally, English was found to be the most preferred foreign language, selected by a higher percentage of females (38.57%) compared to males (16.90%). German followed as the second preferred language. Theoretical Importance: This study contributes to the understanding of students' interests in physical activity, sports, and foreign languages in Tirana's high schools. The findings highlight the need to focus on specific sports and languages to cater to students' preferences and guide future educational objectives. It also emphasizes the importance of physical education in promoting students' overall well-being and highlights potential areas for policy and program improvement. Data Collection and Analysis Procedures: The study collected data through surveys administered to high school students in Tirana. The survey responses were processed and analyzed using Excel, and the findings were presented through tables and graphs. The data analysis allowed for the identification of preferences and trends among male and female students, providing valuable insights for future decision-making. Question Addressed: The study aimed to address the question of high school students' interest in physical activity, sports, and foreign languages. It sought to understand the preferences and choices made by students in Tirana and investigate factors such as gender, family income, and accessibility to extracurricular sports activities. Conclusion: The study revealed that high school students in Tirana show a preference for team sports, with football being the most favored among males and basketball and volleyball among females. English was found to be the most preferred foreign language. The findings provide important insights for educators and policymakers to enhance physical education programs and consider students' preferences and interests to foster a more effective learning environment. The study also emphasizes the importance of physical activity and sports in promoting students' physical and mental well-being.

Keywords: female, male, foreign languages, sports, physical education, high school students

Procedia PDF Downloads 94
317 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 23
316 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue

Authors: Liana Claudia Salanță, Anca Corina Fărcaș

Abstract:

Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.

Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits

Procedia PDF Downloads 35
315 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 69
314 Relationship between Prolonged Timed up and Go Test and Worse Cardiometabolic Diseases Risk Factors Profile in a Population Aged 60-65 Years

Authors: Bartłomiej K. Sołtysik, Agnieszka Guligowska, Łukasz Kroc, Małgorzata Pigłowska, Elizavetta Fife, Tomasz Kostka

Abstract:

Introduction: Functional capacity is one of the basic determinants of health in older age. Functional capacity may be influenced by multiple disorders, including cardiovascular and metabolic diseases. Nevertheless, there is relatively little evidence regarding the association of functional status and cardiometabolic risk factors. Aim: The aim of this research is to check possible association between functional capacity and cardiovascular risk factor in a group of younger seniors. Materials and Methods: The study group consisted of 300 participants aged 60-65 years (50% were women). Total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glucose, uric acid, body mass index (BMI), waist-to-height ratio (WHtR) and blood pressure were measured. Smoking status and physical activity level (by Seven Day Physical Activity Recall Questionnaire ) were analysed. Functional status was assessed with the Timed Up and Go (TUG) Test. The data were compared according to gender, and then separately for both sexes regarding prolonged TUG score (>7 s). The limit of significance was set at p≤0.05 for all analyses. Results: Women presented with higher serum lipids and longer TUG. Men had higher blood pressure, glucose, uric acid, the prevalence of hypertension and history of heart infarct. In women group, those with prolonged TUG displayed significantly higher obesity rate (BMI, WHTR), uric acid, hypertension and ischemic heart disease (IHD), but lower physical activity level, TC or LDL-C. Men with prolonged TUG were heavier smokers, had higher TG, lower HDL and presented with higher prevalence of diabetes and IHD. Discussion: This study shows association between functional status and risk profile of cardiometabolic disorders. In women, the relationship of lower functional status to cardiometabolic diseases may be mediated by overweight/obesity. In men, locomotor problems may be related to smoking. Higher education level may be considered as a protective factor regardless of gender.

Keywords: cardiovascular risk factors, functional capacity, TUG test, seniors

Procedia PDF Downloads 287
313 Interplay of Physical Activity, Hypoglycemia, and Psychological Factors: A Longitudinal Analysis in Diabetic Youth

Authors: Georges Jabbour

Abstract:

Background and aims: This two-year follow-up study explores the long-term sustainability of physical activity (PA) levels in young people with type 1 diabetes, focusing on the relationship between PA, hypoglycemia, and behavioral scores. The literature highlights the importance of PA and its health benefits, as well as the barriers to engaging in PA practices. Studies have shown that individuals with high levels of vigorous physical activity have higher fear of hypoglycemia (FOH) scores and more hypoglycemia episodes. Considering that hypoglycemia episodes are a major barrier to physical activity, and many studies reported a negative association between PA and high FOH scores, it cannot be guaranteed that those experiencing hypoglycemia over a long period will remain active. Building on that, the present work assesses whether high PA levels, despite elevated hypoglycemia risk, can be maintained over time. The study tracks PA levels at one and two years, correlating them with hypoglycemia instances and Fear of Hypoglycemia (FOH) scores. Materials and methods: A self-administered questionnaire was completed by 61 youth with T1D, and their PA was assessed. Hypoglycemia episodes, fear of hypoglycemia scores and HbA1C levels were collected. All assessments were realized at baseline (visit 0: V0), one year (V1) and two years later (V2). For the purpose of the present work, we explore the relationships between PA levels, hypoglycemia episodes, and FOH scores at each time point. We used multiple linear regression to model the mean outcomes for each exposure of interest. Results: Findings indicate no changes in total moderate to vigorous PA (MVPA) and VPA levels among visits, and HbA1c (%) was negatively correlated with the total amount of VPA per day in minutes (β= -0.44; p=0.01, β= -0.37; p=0.04, and β= -0.66; p=0.01 for V0, V1, and V2, respectively). Our linear regression model reported a significant negative correlation between VPA and FOH across the visits (β=-0.59, p=0.01; β= -0.44, p=0.01; and β= -0.34, p=0.03 for V0, V1, and V2, respectively), and HbA1c (%) was influenced by both the number of hypoglycemic episodes and FOH score at V2 (β=0.48; p=0.02 and β=0.38; p=0.03, respectively). Conclusion: The sustainability of PA levels and HbA1c (%) in young individuals with type 1 diabetes is influenced by various factors, including fear of hypoglycemia. Understanding these complex interactions is essential for developing effective interventions to promote sustained PA levels in this population. Our results underline the necessity of a multi-strategic approach to promoting active lifestyles among diabetic youths. This approach should synergize PA enhancement with vigilant glucose monitoring and effective FOH management.

Keywords: physical activity, hypoglycemia, fear of hypoglycemia, youth

Procedia PDF Downloads 26
312 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 10
311 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients

Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad

Abstract:

Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.

Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus

Procedia PDF Downloads 186
310 Food Intake Pattern and Nutritional Status of Preschool Children of Chakma Ethnic Community

Authors: Md Monoarul Haque

Abstract:

Nutritional status is a sensitive indicator of community health and nutrition among preschool children, especially the prevalence of undernutrition that affects all dimensions of human development and leads to growth faltering in early life. The present study is an attempt to assess the food intake pattern and nutritional status of pre-school Chakma tribe children. It was a cross-sectional community based study. The subjects were selected purposively. This study was conducted at Savar Upazilla of Rangamati. Rangamati is located in the Chittagong Division. Anthropometric data height and weight of the study subjects were collected by standard techniques. Nutritional status was measured using Z score according WHO classification. χ2 test, independent t-test, Pearson’s correlation, multiple regression and logistic regression was performed as P<0.05 level of significance. Statistical analyses were performed by appropriate univariate and multivariate techniques using SPSS windows 11.5. Moderate (-3SD to <-2SD) to severe underweight (<-3SD) were 23.8% and 76.2% study subjects had normal weight for their age. Moderate (-3SD to <-2SD) to severe (<-3SD) stunted children were only 25.6% and 74.4% children were normal and moderate to severe wasting were 14.7% whereas normal child was 85.3%. Significant association had been found between child nutritional status and monthly family income, mother education and occupation of father and mother. Age, sex and incomes of the family, education of mother and occupation of father were significantly associated with WAZ and HAZ of the study subjects (P=0.0001, P=0.025, P=0.001 and P=0.0001, P=0.003, P=0.031, P=0.092, P=0.008). Maximum study subjects took local small fish and some traditional tribal food like bashrool, jhijhipoka and pork very much popular food among tribal children. Energy, carbohydrate and fat intake was significantly associated with HAZ, WAZ, BAZ and MUACZ. This study demonstrates that malnutrition among tribal children in Bangladesh is much better than national scenario in Bangladesh. Significant association was found between child nutritional status and family monthly income, mother education and occupation of father and mother. Most of the study subjects took local small fish and some traditional tribal food. Significant association was also found between child nutritional status and dietary intake of energy, carbohydrate and fat.

Keywords: food intake pattern, nutritional status, preschool children, Chakma ethnic community

Procedia PDF Downloads 505
309 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms

Authors: Habtamu Ayenew Asegie

Abstract:

Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.

Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction

Procedia PDF Downloads 38
308 Development of a 3D Model of Real Estate Properties in Fort Bonifacio, Taguig City, Philippines Using Geographic Information Systems

Authors: Lyka Selene Magnayi, Marcos Vinas, Roseanne Ramos

Abstract:

As the real estate industry continually grows in the Philippines, Geographic Information Systems (GIS) provide advantages in generating spatial databases for efficient delivery of information and services. The real estate sector is not only providing qualitative data about real estate properties but also utilizes various spatial aspects of these properties for different applications such as hazard mapping and assessment. In this study, a three-dimensional (3D) model and a spatial database of real estate properties in Fort Bonifacio, Taguig City are developed using GIS and SketchUp. Spatial datasets include political boundaries, buildings, road network, digital terrain model (DTM) derived from Interferometric Synthetic Aperture Radar (IFSAR) image, Google Earth satellite imageries, and hazard maps. Multiple model layers were created based on property listings by a partner real estate company, including existing and future property buildings. Actual building dimensions, building facade, and building floorplans are incorporated in these 3D models for geovisualization. Hazard model layers are determined through spatial overlays, and different scenarios of hazards are also presented in the models. Animated maps and walkthrough videos were created for company presentation and evaluation. Model evaluation is conducted through client surveys requiring scores in terms of the appropriateness, information content, and design of the 3D models. Survey results show very satisfactory ratings, with the highest average evaluation score equivalent to 9.21 out of 10. The output maps and videos obtained passing rates based on the criteria and standards set by the intended users of the partner real estate company. The methodologies presented in this study were found useful and have remarkable advantages in the real estate industry. This work may be extended to automated mapping and creation of online spatial databases for better storage, access of real property listings and interactive platform using web-based GIS.

Keywords: geovisualization, geographic information systems, GIS, real estate, spatial database, three-dimensional model

Procedia PDF Downloads 158
307 Toward the Destigmatizing the Autism Label: Conceptualizing Celebratory Technologies

Authors: LouAnne Boyd

Abstract:

From the perspective of self-advocates, the biggest unaddressed problem is not the symptoms of an autism spectrum diagnosis but the social stigma that accompanies autism. This societal perspective is in contrast to the focus on the majority of interventions. Autism interventions, and consequently, most innovative technologies for autism, aim to improve deficits that occur within the person. For example, the most common Human-Computer Interaction research projects in assistive technology for autism target social skills from a normative perspective. The premise of the autism technologies is that difficulties occur inside the body, hence, the medical model focuses on ways to improve the ailment within the person. However, other technological approaches to support people with autism do exist. In the realm of Human Computer Interaction, there are other modes of research that provide critique of the medical model. For example, critical design, whose intended audience is industry or other HCI researchers, provides products that are the opposite of interventionist work to bring attention to the misalignment between the lived experience and the societal perception of autism. For example, parodies of interventionist work exist to provoke change, such as a recent project called Facesavr, a face covering that helps allistic adults be more independent in their emotional processing. Additionally, from a critical disability studies’ perspective, assistive technologies perpetuate harmful normalizing behaviors. However, these critical approaches can feel far from the frontline in terms of taking direct action to positively impact end users. From a critical yet more pragmatic perspective, projects such as Counterventions lists ways to reduce the likelihood of perpetuating ableism in interventionist’s work by reflectively analyzing a series of evolving assistive technology projects through a societal lens, thus leveraging the momentum of the evolving ecology of technologies for autism. Therefore, all current paradigms fall short of addressing the largest need—the negative impact of social stigma. The current work introduces a new paradigm for technologies for autism, borrowing from a paradigm introduced two decades ago around changing the narrative related to eating disorders. It is the shift from reprimanding poor habits to celebrating positive aspects of eating. This work repurposes Celebratory Technology for Neurodiversity and intended to reduce social stigma by targeting for the public at large. This presentation will review how requirements were derived from current research on autism social stigma as well as design sessions with autistic adults. Congruence between these two sources revealed three key design implications for technology: provide awareness of the autistic experience; generate acceptance of the neurodivergence; cultivate an appreciation for talents and accomplishments of neurodivergent people. The current pilot work in Celebratory Technology offers a new paradigm for supporting autism by shifting the burden of change from the person with autism to address changing society’s biases at large. Shifting the focus of research outside of the autistic body creates a new space for a design that extends beyond the bodies of a few and calls on all to embrace humanity as a whole.

Keywords: neurodiversity, social stigma, accessibility, inclusion, celebratory technology

Procedia PDF Downloads 72
306 Effects of Mental Skill Training Programme on Direct Free Kick of Grassroot Footballers in Lagos, Nigeria

Authors: Mayowa Adeyeye, Kehinde Adeyemo

Abstract:

The direct free kick is considered a great opportunity to score a goal but this is not always the case amidst Nigerian and other elite footballers. This study, therefore, examined the extent to which an 8 weeks mental skill training programme is effective for improving accuracy in direct free kick in football. Sixty (n-60) students of Pepsi Football Academy participated in the study. They were randomly distributed into two groups of positive self-talk group (intervention n-30) and control group (n-30). The instrument used in the collection of data include a standard football goal post while the research materials include a dummy soccer wall, a cord, an improvised vanishing spray, a clipboard, writing materials, a recording sheet, a self-talk log book, six standard 5 football, cones, an audiotape and a compact disc. The Weinberge and Gould (2011) mental skills training manual was used. The reliability coefficient of the apparatus following a pilot study stood at 0.72. Before the commencement of the mental skills training programme, the participants were asked to take six simulated direct free kick. At the end of each physical skills training session after the pre-test, the researcher spent at least 15 minutes with the groups exposing them to the intervention. The mental skills training programme alongside physical skills training took place in two different locations for the different groups under study, these included Agege Stadium Main bowl Football Pitch (Imagery Group), and Ogba Ijaye (Control Group). The mental skills training programme lasted for eight weeks. After the completion of the mental skills training programme, all the participants were asked to take another six simulated direct free kick attempts using the same field used for the pre-test to determine the efficacy of the treatments. The pre-test and post-test data were analysed using inferential statistics of t-test, while the alpha level was set at 0.05. The result revealed significant differences in t-test for positive self-talk and control group. Based on the findings, it is recommended that athletes should be exposed to positive self-talk alongside their normal physical skills training for quality delivery of accurate direct free kick during training and competition.

Keywords: accuracy, direct free kick, pepsi football academy, positive self-talk

Procedia PDF Downloads 348
305 Development of Chronic Obstructive Pulmonary Disease (COPD) Proforma (E-ICP) to Improve Guideline Adherence in Emergency Department: Modified Delphi Study

Authors: Hancy Issac, Gerben Keijzers, Ian Yang, Clint Moloney, Jackie Lea, Melissa Taylor

Abstract:

Introduction: Chronic obstructive pulmonary disease guideline non-adherence is associated with a reduction in health-related quality of life in patients (HRQoL). Improving guideline adherence has the potential to mitigate fragmented care thereby sustaining pulmonary function, preventing acute exacerbations, reducing economic health burdens, and enhancing HRQoL. The development of an electronic proforma stemming from expert consensus, including digital guideline resources and direct interdisciplinary referrals is hypothesised to improve guideline adherence and patient outcomes for emergency department (ED) patients with COPD. Aim: The aim of this study was to develop consensus among ED and respiratory staff for the correct composition of a COPD electronic proforma that aids in guideline adherence and management in the ED. Methods: This study adopted a mixed-method design to develop the most important indicators of care in the ED. The study involved three phases: (1) a systematic literature review and qualitative interdisciplinary staff interviews to assess barriers and solutions for guideline adherence and qualitative interdisciplinary staff interviews, (2) a modified Delphi panel to select interventions for the proforma, and (3) a consensus process through three rounds of scoring through a quantitative survey (ED and Respiratory consensus) and qualitative thematic analysis on each indicator. Results: The electronic proforma achieved acceptable and good internal consistency through all iterations from national emergency department and respiratory department interdisciplinary experts. Cronbach’s alpha score for internal consistency (α) in iteration 1 emergency department cohort (EDC) (α = 0.80 [CI = 0.89%]), respiratory department cohort (RDC) (α = 0.95 [CI = 0.98%]). Iteration 2 reported EDC (α = 0.85 [CI = 0.97%]) and RDC (α = 0.86 [CI = 0.97%]). Iteration 3 revealed EDC (α = 0.73 [CI = 0.91%]) and RDC (α = 0.86 [CI = 0.95%]), respectively. Conclusion: Electronic proformas have the potential to facilitate direct referrals from the ED leading to reduced hospital admissions, reduced length of hospital stays, holistic care, improved health care and quality of life and improved interdisciplinary guideline adherence.

Keywords: COPD, electronic proforma, modified delphi study, interdisciplinary, guideline adherence, COPD-X plan

Procedia PDF Downloads 60
304 Assessing the Social Impacts of a Circular Economy in the Global South

Authors: Dolores Sucozhañay, Gustavo Pacheco, Paul Vanegas

Abstract:

In the context of sustainable development and the transition towards a sustainable circular economy (CE), evaluating the social dimension remains a challenge. Therefore, developing a respective methodology is highly important. First, the change of the economic model may cause significant social effects, which today remain unaddressed. Second, following the current level of globalization, CE implementation requires targeting global material cycles and causes social impacts on potentially vulnerable social groups. A promising methodology is the Social Life Cycle Assessment (SLCA), which embraces the philosophy of life cycle thinking and provides complementary information to environmental and economic assessments. In this context, the present work uses the updated Social Life Cycle Assessment (SLCA) Guidelines 2020 to assess the social performance of the recycling system of Cuenca, Ecuador, to exemplify a social assessment method. Like many other developing countries, Ecuador heavily depends on the work of informal waste pickers (recyclers), who, even contributing to a CE, face harsh socio-economic circumstances, including inappropriate working conditions, social exclusion, exploitation, etc. Under a Reference Scale approach (Type 1), 12 impact subcategories were assessed through 73 site-specific inventory indicators, using an ascending reference scale ranging from -2 to +2. Findings reveal a social performance below compliance levels with local and international laws, basic societal expectations, and practices in the recycling sector; only eight and five indicators present a positive score. In addition, a social hotspot analysis depicts collection as the most time-consuming lifecycle stage and the one with the most hotspots, mainly related to working hours and health and safety aspects. This study provides an integrated view of the recyclers’ contributions, challenges, and opportunities within the recycling system while highlighting the relevance of assessing the social dimension of CE practices. It also fosters an understanding of the social impact of CE operations in developing countries, highlights the need for a close north-south relationship in CE, and enables the connection among the environmental, economic, and social dimensions.

Keywords: SLCA, circular economy, recycling, social impact assessment

Procedia PDF Downloads 151
303 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 309
302 Nurses' Knowledge and Practice Regarding Care of Patients Connected to Intra-Aortic Balloon Pump at Cairo University Hospitals

Authors: Tharwat Ibrahim Rushdy, Warda Youssef Mohammed Morsy, Hanaa Ali Ahmed Elfeky

Abstract:

Background: Intra-aortic balloon pump (IABP) is the first and the most commonly used mechanical circulatory support for patients with acute coronary syndromes and cardiogenic shock. Therefore, critical care nurses not only have to know how to monitor and operate the IABP, but also to provide interventions for preventing possible complications. Aim of the study: To assess nurses' knowledge and practices regarding care of patients connected to IABP at the ICUs of Cairo University Hospitals. Research design: A descriptive exploratory design was utilized. Sample: Convenience samples of 40 nurses were included in the current study. Setting: This study was carried out at the Intensive Care Units of Cairo University Hospitals. Tools of data collection: Three tools were developed, tested for clarity, and feasibility: a- Nurses' personal background sheet, b- IABP nurses' knowledge self-administered questionnaire, and c- IABP Nurses' practice observational checklist. Results: The majority of the studied sample had unsatisfactory knowledge and practice level (88% & 95%) respectively with a mean of 9.45+2.94 and 30.5+8.7, respectively. Unsatisfactory knowledge was found regarding description and physiological effects, nursing care, indications, contraindications, complications, weaning, and removal of IABP in percentage of 95%, 90%, 72.5%, and 57.5%, respectively, with a mean total knowledge score of 9.45 +2.94. In addition, unsatisfactory practice was found regarding about preparation and initiation of IABP therapy, nursing practice during therapy, weaning, and removal of IABP in percentages of (97.5%, 97.5%, and 90%), respectively. Finally, knowledge level was found to differ significantly in relation to gender (t = 2.46 at P ≤ 0.018). However, gender didn't play a role in relation to practice (t = 0.086 at P≤ 0.932). Conclusion: In spite of having vital role in assessment and management of critically ill patients, critical care nurses in the current study had in general unsatisfactory knowledge and practice regarding care of patients connected to IABP. Recommendation: updating knowledge and practice of ICU nurses through carrying out continuing educational programs about IABP; strict observation of nurses' practice when caring for patients connected to IABP and provision of guidance to correct of poor practices and replication of this study on larger probability sample selected from different geographical locations.

Keywords: knowledge, practice, intra-aortic balloon pump (IABP), ICU nurses, intensive care unit (ICU), introduction

Procedia PDF Downloads 498
301 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling

Authors: Johnson C. Y. Pang, Bo Peng, Kara K. L. Reeves, Allan C. L. Fud

Abstract:

Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding is potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26 ± 5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms, and quality of life (QOL), were analyzed by repeated measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].

Keywords: ultrasound-guided dry needling, dry needling, knee osteoarthritis, physiotheraphy

Procedia PDF Downloads 120
300 Barriers of the Development and Implementation of Health Information Systems in Iran

Authors: Abbas Sheikhtaheri, Nasim Hashemi

Abstract:

Health information systems have great benefits for clinical and managerial processes of health care organizations. However, identifying and removing constraints and barriers of implementing and using health information systems before any implementation is essential. Physicians are one of the main users of health information systems, therefore, identifying the causes of their resistance and concerns about the barriers of the implementation of these systems is very important. So the purpose of this study was to determine the barriers of the development and implementation of health information systems in terms of the Iranian physicians’ perspectives. In this study conducted in 8 selected hospitals affiliated to Tehran and Iran Universities of Medical Sciences, Tehran, Iran in 2014, physicians (GPs, residents, interns, specialists) in these hospitals were surveyed. In order to collect data, a research made questionnaire was used (Cronbach’s α = 0.95). The instrument included 25 about organizational (9), personal (4), moral and legal (3) and technical barriers (9). Participants were asked to answer the questions using 5 point scale Likert (completely disagree=1 to completely agree=5). By using a simple random sampling method, 200 physicians (from 600) were invited to study that eventually 163 questionnaires were returned. We used mean score and t-test and ANOVA to analyze the data using SPSS software version 17. 52.1% of respondents were female. The mean age was 30.18 ± 7.29. The work experience years for most of them were between 1 to 5 years (80.4 percent). The most important barriers were organizational ones (3.4 ± 0.89), followed by ethical (3.18 ± 0.98), technical (3.06 ± 0.8) and personal (3.04 ± 1.2). Lack of easy access to a fast Internet (3.67±1.91) and the lack of exchanging information (3.61±1.2) were the most important technical barriers. Among organizational barriers, the lack of efficient planning for the development and implementation systems (3.56±1.32) and was the most important ones. Lack of awareness and knowledge of health care providers about the health information systems features (3.33±1.28) and the lack of physician participation in planning phase (3.27±1.2) as well as concerns regarding the security and confidentiality of health information (3.15 ± 1.31) were the most important personal and ethical barriers, respectively. Women (P = 0.02) and those with less experience (P = 0.002) were more concerned about personal barriers. GPs also were more concerned about technical barriers (P = 0.02). According to the study, technical and ethics barriers were considered as the most important barriers however, lack of awareness in target population is also considered as one of the main barriers. Ignoring issues such as personal and ethical barriers, even if the necessary infrastructure and technical requirements were provided, may result in failure. Therefore, along with the creating infrastructure and resolving organizational barriers, special attention to education and awareness of physicians and providing solution for ethics concerns are necessary.

Keywords: barriers, development health information systems, implementation, physicians

Procedia PDF Downloads 345
299 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 64
298 Efficacy of Yoga and Meditation Based Lifestyle Intervention on Inflammatory Markers in Patients with Rheumatoid Arthritis

Authors: Surabhi Gautam, Uma Kumar, Rima Dada

Abstract:

A sustained acute-phase response in Rheumatoid Arthritis (RA) is associated with increased joint damage and inflammation leading to progressive disability. It is induced continuously by consecutive stimuli of proinflammatory cytokines, following a wide range of pathophysiological reactions, leading to increased synthesis of acute phase proteins like C - reactive protein (CRP) and dysregulation in levels of immunomodulatory soluble Human Leukocyte Antigen-G (HLA-G) molecule. This study was designed to explore the effect of yoga and meditation based lifestyle intervention (YMLI) on inflammatory markers in RA patients. Blood samples of 50 patients were collected at baseline (day 0) and after 30 days of YMLI. Patients underwent a pretested YMLI under the supervision of a certified yoga instructor for 30 days including different Asanas (physical postures), Pranayama (breathing exercises), and Dhayna (meditation). Levels of CRP, IL-6, IL-17A, soluble HLA-G and erythrocyte sedimentation rate (ESR) were measured at day 0 and 30 interval. Parameters of disease activity, disability quotient, pain acuity and quality of life were also assessed by disease activity score (DAS28), health assessment questionnaire (HAQ), visual analogue scale (VAS), and World Health Organization Quality of Life (WHOQOL-BREF) respectively. There was reduction in mean levels of CRP (p < 0.05), IL-6 (interleukin-6) (p < 0.05), IL-17A (interleukin-17A) (p < 0.05) and ESR (p < 0.05) and elevation in soluble HLA-G (p < 0.05) at 30 days compared to baseline level (day 0). There was reduction seen in DAS28-ESR (p < 0.05), VAS (p < 0.05) and HAQ (p < 0.05) after 30 days with respect to the base line levels (day 0) and significant increase in WHOQOL-BREF scale (p < 0.05) in all 4 domains of physical health, psychological health, social relationships, and environmental health. The present study has demonstrated that yoga practices are associated with regression of inflammatory processes by reducing inflammatory parameters and regulating the levels of soluble HLA-G significantly in active RA patients. Short term YMLI has significantly improved pain perception, disability quotient, disease activity and quality of life. Thus this simple life style intervention can reduce disease severity and dose of drugs used in the treatment of RA.

Keywords: inflammation, quality of life, rheumatoid arthritis, yoga and meditation

Procedia PDF Downloads 167
297 Hydrotherapy with Dual Sensory Impairment (Dsi)-Deaf and Blind

Authors: M. Warburton

Abstract:

Background: Case study examining hydrotherapy for a person with DSI. A 46 year-old lady completely deaf and blind post congenital rubella syndrome. Touch becomes the primary information gathering sense to optimise function in life. Communication is achieved via tactile finger spelling and signals onto her hand and skin. Hydrotherapy may provide a suitable mobility environment and somato-sensory input to people, and especially DSI persons. Buoyancy, warmth, hydrostatic pressure, viscosity and turbulence are elements of hydrotherapy that may offer a DSI person somato-sensory input to stimulate the mechanoreceptors, thermoreceptors and proprioceptors and offer a unique hydro-therapeutic environment. Purpose: The purpose of this case study was to establish what measurable benefits could be achieved from hydrotherapy with a DSI person. Methods: Hydrotherapy was provided for 8-weeks, 2 x week, 35-minute session duration. Pool temperature 32.5 degrees centigrade. Pool length 25-metres. Each session consisted of mobility encouragement and supervision, and activities to stimulate the somato-sensory system utilising aquatic properties of buoyancy, turbulence, viscosity, warmth and hydrostatic pressure. Somato-sensory activities focused on stimulating touch and tactile exploration including objects of various shape, size, weight, contour, texture, elasticity, pliability, softness and hardness. Outcomes were measured by the Goal Attainment Scale (GAS) and included mobility distance, attendance, and timed tactile responsiveness to varying objects. Results: Mobility distance and attendance exceeded baseline expectations. Timed tactile responsiveness to varying objects also changed positively from baseline. Average scale scores were 1.00 with an overall GAS t-score of 63.69. Conclusions: Hydrotherapy can be a quantifiable physio-therapeutic option for persons with DSI. It provides a relatively safe environment for mobility and allows the somato-sensory system to be fully engaged - important for the DSI population. Implications: Hydrotherapy can be a measurable therapeutic option for a DSI person. Physiotherapists should consider hydrotherapy for DSI people. Hydrotherapy can offer unique physical properties for the DSI population not available on land.

Keywords: chronic, disability, disease, rehabilitation

Procedia PDF Downloads 356
296 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data

Authors: Minjuan Sun

Abstract:

Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.

Keywords: credit score, digital footprint, Fintech, machine learning

Procedia PDF Downloads 161
295 Biflavonoids from Selaginellaceae as Epidermal Growth Factor Receptor Inhibitors and Their Anticancer Properties

Authors: Adebisi Adunola Demehin, Wanlaya Thamnarak, Jaruwan Chatwichien, Chatchakorn Eurtivong, Kiattawee Choowongkomon, Somsak Ruchirawat, Nopporn Thasana

Abstract:

The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein involved in cellular signalling processes and, its aberrant activity is crucial in the development of many cancers such as lung cancer. Selaginellaceae are fern allies that have long been used in Chinese traditional medicine to treat various cancer types, especially lung cancer. Biflavonoids, the major secondary metabolites in Selaginellaceae, have numerous pharmacological activities, including anti-cancer and anti-inflammatory. For instance, amentoflavone induces a cytotoxic effect in the human NSCLC cell line via the inhibition of PARP-1. However, to the best of our knowledge, there are no studies on biflavonoids as EGFR inhibitors. Thus, this study aims to investigate the EGFR inhibitory activities of biflavonoids isolated from Selaginella siamensis and Selaginella bryopteris. Amentoflavone, tetrahydroamentoflavone, sciadopitysin, robustaflavone, robustaflavone-4-methylether, delicaflavone, and chrysocauloflavone were isolated from the ethyl-acetate extract of the whole plants. The structures were determined using NMR spectroscopy and mass spectrometry. In vitro study was conducted to evaluate their cytotoxicity against A549, HEPG2, and T47D human cancer cell lines using the MTT assay. In addition, a target-based assay was performed to investigate their EGFR inhibitory activity using the kinase inhibition assay. Finally, a molecular docking study was conducted to predict the binding modes of the compounds. Robustaflavone-4-methylether and delicaflavone showed the best cytotoxic activity on all the cell lines with IC50 (µM) values of 18.9 ± 2.1 and 22.7 ± 3.3 on A549, respectively. Of these biflavonoids, delicaflavone showed the most potent EGFR inhibitory activity with an 84% relative inhibition at 0.02 nM using erlotinib as a positive control. Robustaflavone-4-methylether showed a 78% inhibition at 0.15 nM. The docking scores obtained from the molecular docking study correlated with the kinase inhibition assay. Robustaflavone-4-methylether and delicaflavone had a docking score of 72.0 and 86.5, respectively. The inhibitory activity of delicaflavone seemed to be linked with the C2”=C3” and 3-O-4”’ linkage pattern. Thus, this study suggests that the structural features of these compounds could serve as a basis for developing new EGFR-TK inhibitors.

Keywords: anticancer, biflavonoids, EGFR, molecular docking, Selaginellaceae

Procedia PDF Downloads 198
294 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
293 Attributable Mortality of Nosocomial Infection: A Nested Case Control Study in Tunisia

Authors: S. Ben Fredj, H. Ghali, M. Ben Rejeb, S. Layouni, S. Khefacha, L. Dhidah, H. Said

Abstract:

Background: The Intensive Care Unit (ICU) provides continuous care and uses a high level of treatment technologies. Although developed country hospitals allocate only 5–10% of beds in critical care areas, approximately 20% of nosocomial infections (NI) occur among patients treated in ICUs. Whereas in the developing countries the situation is still less accurate. The aim of our study is to assess mortality rates in ICUs and to determine its predictive factors. Methods: We carried out a nested case-control study in a 630-beds public tertiary care hospital in Eastern Tunisia. We included in the study all patients hospitalized for more than two days in the surgical or medical ICU during the entire period of the surveillance. Cases were patients who died before ICU discharge, whereas controls were patients who survived to discharge. NIs were diagnosed according to the definitions of ‘Comité Technique des Infections Nosocomiales et les Infections Liées aux Soins’ (CTINLIS, France). Data collection was based on the protocol of Rea-RAISIN 2009 of the National Institute for Health Watch (InVS, France). Results: Overall, 301 patients were enrolled from medical and surgical ICUs. The mean age was 44.8 ± 21.3 years. The crude ICU mortality rate was 20.6% (62/301). It was 35.8% for patients who acquired at least one NI during their stay in ICU and 16.2% for those without any NI, yielding an overall crude excess mortality rate of 19.6% (OR= 2.9, 95% CI, 1.6 to 5.3). The population-attributable fraction due to ICU-NI in patients who died before ICU discharge was 23.46% (95% CI, 13.43%–29.04%). Overall, 62 case-patients were compared to 239 control patients for the final analysis. Case patients and control patients differed by age (p=0,003), simplified acute physiology score II (p < 10-3), NI (p < 10-3), nosocomial pneumonia (p=0.008), infection upon admission (p=0.002), immunosuppression (p=0.006), days of intubation (p < 10-3), tracheostomy (p=0.004), days with urinary catheterization (p < 10-3), days with CVC ( p=0.03), and length of stay in ICU (p=0.003). Multivariate analysis demonstrated 3 factors: age older than 65 years (OR, 5.78 [95% CI, 2.03-16.05] p=0.001), duration of intubation 1-10 days (OR, 6.82 [95% CI, [1.90-24.45] p=0.003), duration of intubation > 10 days (OR, 11.11 [95% CI, [2.85-43.28] p=0.001), duration of CVC 1-7 days (OR, 6.85[95% CI, [1.71-27.45] p=0.007) and duration of CVC > 7 days (OR, 5.55[95% CI, [1.70-18.04] p=0.004). Conclusion: While surveillance provides important baseline data, successful trials with more active intervention protocols, adopting multimodal approach for the prevention of nosocomial infection incited us to think about the feasibility of similar trial in our context. Therefore, the implementation of an efficient infection control strategy is a crucial step to improve the quality of care.

Keywords: intensive care unit, mortality, nosocomial infection, risk factors

Procedia PDF Downloads 406
292 The Knowledge, Attitude, and Practice About Health Information Technology Among First-Generation Muslim Immigrant Women in Atlanta City During the Pandemic

Authors: Awatef Ahmed Ben Ramadan, Aqsa Arshad

Abstract:

Background: There is a huge Muslim migration movement to North America and Europe for several reasons, primarily refuge from war areas and partly to search for better work and educational chances. There are always concerns regarding first-Generation Immigrant women's health and computer literacy, an adequate understanding of the health systems, and the use of the existing healthcare technology and services effectively and efficiently. Language proficiency level, preference for cultural and traditional remedies, socioeconomic factors, fear of stereotyping, limited accessibility to health services, and general unfamiliarity with the existing health services and resources are familiar variables among these women. Aims: The current study aims to assess the health and digital literacy of first-generation Muslim women in Atlanta city. Also, the study aims to examine how the COVID-19 pandemic has encouraged the use of health information technology and increased technology awareness among the targeted women. Methods: The study design is cross-sectional correlational research. The study will be conducted to produce preliminary results that the investigators want to have to supplement an NIH grant application about leveraging information technology to reduce the health inequalities amongst the first-generation immigrant Muslim women in Atlanta City. The investigators will collect the study data in two phases using different tools. Phase one was conducted in June 2022; the investigators used tools to measure health and digital literacy amongst 42 first-generation immigrant Muslim women. Phase two was conducted in November 2022; the investigators measured the Knowledge, Attitude, and Practice (KAP) of using health information technology such as telehealth from a sample of 45 first-generation Muslim immigrant women in Atlanta; in addition, the investigators measured how the current pandemic has affected their KAP to use telemedicine and telehealth services. Both phases' study participants were recruited using convenience sampling methodology. The investigators collected around 40 of 18 years old or older first-generation Muslim immigrant women for both study phases. The study excluded Immigrants who hold work visas and second-generation immigrants. Results: At the point of submitting this abstract, the investigators are still analyzing the study data to produce preliminary results to apply for an NIH grant entitled "Leveraging Health Information Technology (Health IT) to Address and Reduce Health Care Disparities (R01 Clinical Trial Optional)". This research will be the first step of a comprehensive research project to assess and measure health and digital literacy amongst a vulnerable community group. The targeted group might have different points of view from the U.S.-born inhabitants on how to: promote their health, gain healthy lifestyles and habits, screen for diseases, adhere to health treatment and follow-up plans, perceive the importance of using available and affordable technology to communicate with their providers and improve their health, and help in making serious decisions for their health. The investigators aim to develop an educational and instructional health mobile application considering the language and cultural factors that affect immigrants' ability to access different health and social support sources, know their health rights and obligations in their communities, and improve their health behavior and behavior lifestyles.

Keywords: first-generation immigrant Muslim women, telehealth, COVID-19 pandemic, health information technology, health and digital literacy

Procedia PDF Downloads 86