Search results for: green cloud computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3365

Search results for: green cloud computing

995 Biosurfactant: A Greener Approach For Enhanced Concrete Rheology And Strength

Authors: Olivia Anak Rayeg, Clotilda Binti Petrus, Arnel Reanturco Ascotia, Ang Chung Huap, Caroline Marajan, Rudy Tawie Joseph Sipi

Abstract:

Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology.

Keywords: concrete rheology, green admixture, fungal biosurfactant, phospholipids, rhizopus oryzae

Procedia PDF Downloads 17
994 The Association between Saharran Dust and Emergency Department Admission and Hospitalization in Gaziantep, Turkey

Authors: Behcet Al, Mustafa Bogan, Mehmet Murat Oktay, Suat Zengin, Hasan Bayram

Abstract:

Objective: In the last two decades there is a strong scientific interest regarding the role of aerosols for the Earth’s climate and associated changes. Aerosol particles are very important to the Earth-atmosphere climate system playing a crucial role in cloud and precipitation processes, air quality and climate. Here, we evaluated the association between saharran dust and emergency department admission, hospitalization, and mortality. Method: The records of admission to emergency department of Gaziantep University and the dust stroms of 31 months were studied. Patients admitted to ED at dust strom with chronic obstructive lung disease (COLD), asthma bronchiale (AB), serebrovascular events (SVE), acute myocardial infarction (AMI), stabile and unstabile angina pectoris (SAAP andUSAP); and the days with and without dust stroms were included. The study was realized from March 2010 to October 2012. The admission of three days before strom (group 1), during strom days (group 2) and three days after strom (group 3) were determined. The mean level of dust PM10 particulate was calculated, and the results were compared. Results: 5864 patients with chronic obstructive lung disease, asthma bronchiale, serebrovascular events, acute myocardial infarction, stabile and unstabile angyina pectoris admitted during the days with and without dust stroms. 28 dust stroms ocurred during 31 months. The totaliy of stroms continiued 78 days. Of admissions, 35.5% (n=2075) were in group1, 29.8% (n=1746) in group 2, and 34.8% (n=2043) were in group 3. The mean of PM10 for groups (group 1, 2 and 3) were 78.53 mg/m3 (range 19–276) particulate, 108.7 mg/m3 (range 34–631) particulate, and 60.9 mg/m3 (range 17–160) particulate respectively. The mean admission per a day for groups were 24.86, 22.55, and 24.50 respectively. The mortality was 12 in group 1, 12 in group 2, and 17 in grou 3. The hospitalization ratio for groups were 0.24, 0.27, and 0.27 respectively. Conclusion: However, the mean level of PM10 particulate for groups 2 (in dust strom days) is significantly higher (p=0.001) than the days before (group 1) and after (group 3) dust stroms, the mean admissions/day, hostilalization and mortality related to deseases (COLD, AB, SVE, AMI, SAAP andUSA) for group 2 is lower than the group 1 and group 3.

Keywords: Saharran dust, PM10 particulate, emergency department admission, mortality

Procedia PDF Downloads 384
993 Recovery of Copper and Gold by Delamination of Printed Circuit Boards Followed by Leaching and Solvent Extraction Process

Authors: Kamalesh Kumar Singh

Abstract:

Due to increasing trends of electronic waste, specially the ICT related gadgets, their green recycling is still a greater challenge. This article presents a two-stage, eco-friendly hydrometallurgical route for the recovery of gold from the delaminated metallic layers of waste mobile phone Printed Circuit Boards (PCBs). Initially, mobile phone PCBs are downsized (1x1 cm²) and treated with an organic solvent dimethylacetamide (DMA) for the separation of metallic fraction from non-metallic glass fiber. In the first stage, liberated metallic sheets are used for the selective dissolution of copper in an aqueous leaching reagent. Influence of various parameters such as type of leaching reagent, the concentration of the solution, temperature, time and pulp density are optimized for the effective leaching (almost 100%) of copper. Results have shown that 3M nitric acid is a suitable reagent for copper leaching at room temperature and considering chemical features, gold remained in solid residue. In the second stage, the separated residue is used for the recovery of gold by using sulphuric acid with a combination of halide salt. In this halide leaching, Cl₂ or Br₂ is generated as an in-situ oxidant to improve the leaching of gold. Results have shown that almost 92 % of gold is recovered at the optimized parameters.

Keywords: printed circuit boards, delamination, leaching, solvent extraction, recovery

Procedia PDF Downloads 34
992 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 305
991 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles

Authors: Despina Vamvuka, Despina Pentari

Abstract:

Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.

Keywords: gasification, biomass, steam, carbon dioxide

Procedia PDF Downloads 79
990 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 222
989 The Beam Expansion Method, A Simplified and Efficient Approach of Field Propagation and Resonators Modes Study

Authors: Zaia Derrar Kaddour

Abstract:

The study of a beam throughout an optical path is generally achieved by means of diffraction integral. Unfortunately, in some problems, this tool turns out to be not very friendly and hard to implement. Instead, the beam expansion method for computing field profiles appears to be an interesting alternative. The beam expansion method consists of expanding the field pattern as a series expansion in a set of orthogonal functions. Propagating each individual component through a circuit and adding up the derived elements leads easily to the result. The problem is then reduced to finding how the expansion coefficients change in a circuit. The beam expansion method requires a systematic study of each type of optical element that can be met in the considered optical path. In this work, we analyze the following fundamental elements: first order optical systems, hard apertures and waveguides. We show that the former element type is completely defined thanks to the Gouy phase shift expression we provide and the latters require a suitable mode conversion. For endorsing the usefulness and relevance of the beam expansion approach, we show here some of its applications such as the treatment of the thermal lens effect and the study of unstable resonators.

Keywords: gouy phase shift, modes, optical resonators, unstable resonators

Procedia PDF Downloads 42
988 Detection of Cytotoxicity of Green Synthesized Silver, Gold, and Silver/Gold Bimetallic on Baby Hamster Kidney-21 Cells Using MTT Assay

Authors: Naila Sher, Mushtaq Ahmed, Nadia Mushtaq, Rahmat Ali Khan

Abstract:

In cancer therapy, nanoparticles (NPs) shall be applied possibly by inoculation in the veins of humans. This action will connect them with white (WBCs) and red blood cells (RBCs) in the bloodstream before they reach their main targeted cancer cells. However, possible effects of silver, gold, and silver/gold bimetallic NPs (Ag, Au, and Ag/Au BNPs) on baby hamster kidney-21 (BHK-21) cells were studied by MTT assay. Here, Ag, Au, and their Ag/Au BNPs (bimetallic nanoparticles) were synthesized by using Hippeastrum hybridum (HH) extract. These NPs were characterized by UV-visible spectroscopy, FT-IR, XRD, and EDX, and SEM analysis. XRD analysis conferring the crystal structure with an average size of 13.3, 10.72, and 8.34nm of Ag, Au, and Ag/Au BNPs, respectively. SEM showed that Ag, Au, and Ag/Au BNPs had irregular morphologies, with nano measures calculated sizes of 40, 30, and 20 nm respectively. EDX spectrometers confirmed the presence of elemental Ag signal of the AgNPs with 22.75%, Au signal of the AuNPs with 48.08%, Ag signal with 12%, and Au signal with 38.26% of the Ag/Au BNPs. The BHK-21cells were incubated in the existence of doxorubicin, plant extract, Ag, Au, and Ag/Au BNPs. The cytotoxic effects could be observed in a dose-dependent mode; doxorubicin and Ag/Au BNPs were more toxic than plant extract, Ag, and Au NPs. It is demonstrated that NPs interact with BHK-21cells and significantly reduce cell viability in a concentration-dependent manner. However, to reduce the potential threats of NPs further studies are recommended.

Keywords: hippeastrum hybridum, nanoparticle, BHK-21cells

Procedia PDF Downloads 111
987 Orientational Pair Correlation Functions Modelling of the LiCl6H2O by the Hybrid Reverse Monte Carlo: Using an Environment Dependence Interaction Potential

Authors: Mohammed Habchi, Sidi Mohammed Mesli, Rafik Benallal, Mohammed Kotbi

Abstract:

On the basis of four partial correlation functions and some geometric constraints obtained from neutron scattering experiments, a Reverse Monte Carlo (RMC) simulation has been performed in the study of the aqueous electrolyte LiCl6H2O at the glassy state. The obtained 3-dimensional model allows computing pair radial and orientational distribution functions in order to explore the structural features of the system. Unrealistic features appeared in some coordination peaks. To remedy to this, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an additional energy constraint in addition to the usual constraints derived from experiments. The energy of the system is calculated using an Environment Dependence Interaction Potential (EDIP). Ions effects is studied by comparing correlations between water molecules in the solution and in pure water at room temperature Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in orientational distribution curves.

Keywords: LiCl6H2O, glassy state, RMC, HRMC

Procedia PDF Downloads 445
986 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 69
985 Characteristics of GaAs/InGaP and AlGaAs/GaAs/InAlGaP Npn Heterostructural Optoelectronic Switches

Authors: Der-Feng Guo

Abstract:

Optoelectronic switches have attracted a considerable attention in the semiconductor research field due to their potential applications in optical computing systems and optoelectronic integrated circuits (OEICs). With high gains and high-speed operations, npn heterostructures can be used to produce promising optoelectronic switches. It is known that the bulk barrier and heterostructure-induced potential spike act important roles in the characteristics of the npn heterostructures. To investigate the effects of bulk barrier and potential spike heights on the optoelectronic switching of the npn heterostructures, GaAs/InGaP and AlGaAs/GaAs/InAlGaP npn heterostructural optoelectronic switches (HSOSs) have been fabricated in this work. It is seen that the illumination decreases the switching voltage Vs and increases the switching current Is, and thus the OFF state is under dark and ON state under illumination in the optical switching of the GaAs/InGaP HSOS characteristics. But in the AlGaAs/GaAs/InAlGaP HSOS characteristics, the Vs and Is present contrary trends, and the OFF state is under illumination and ON state under dark. The studied HSOSs show quite different switching variations with incident light, which are mainly attributed to the bulk barrier and potential spike heights affected by photogenerated carriers.

Keywords: bulk barrier, heterostructure, optoelectronic switch, potential spike

Procedia PDF Downloads 221
984 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties

Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti

Abstract:

High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.

Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia

Procedia PDF Downloads 126
983 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures

Authors: Moumita Sit, Chaitali Ray

Abstract:

The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.

Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress

Procedia PDF Downloads 133
982 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 335
981 Effect of Cap and Trade Policies for Carbon Emission Reduction on Delhi Households

Authors: Vikram Singh

Abstract:

This paper aims to take into account carbon tax or cap-and-trade legislation to manage Delhi carbon emissions after a post-Kyoto treaty. This report estimated the influence of the carbon taxes or rebate/compensation cost at the household level. Here, the three possible scenarios will help to comprehend the difference between a straightforward compensation/rebate, and two clearly denoting progressive formula. The straightforward compensation is basically minimizing the regressive applications that will bears on cost. On the other hand, both the progressive formula will generate extra revenue, which will help for feasibility of more efficient, vehicles, appliances and buildings in the low-income household. For the hypothetical case of carbon price $40/tonne, low-income household for both urban and rural region could experience price burden up to 5% and 9% on their income as compared to 3% and 7% for high-income household respectively. The survey report also shown that carbon emission due low-income household are primarily by the substantive requirement like housing and transportation whereas almost 40% emission due to high-income household are by luxurious and non-essential items. The equal distribution of revenue cum incentives will not completely overcome high-income household’s investment in inessential items. However, it will merely help in investing their income in energy efficient and less carbon intensive items. Therefore, the rebate distribution on per capita basis instead on per households will benefit more especially large families at low-income group.

Keywords: household emission, carbon credit, carbon intensity, green house gas emission, carbon generation based insentives

Procedia PDF Downloads 417
980 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 296
979 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 341
978 Synthesis of Cellulose Nanocrystals from Oil Palm Empty Fruit Bunch by Using Phosphotungstic Acid

Authors: Yogi Wibisono Budhi, Ferry Iskandar, Veinardi Suendo, Muhammad Fakhrudin, Neng Tresna Umi Culsum

Abstract:

Oil palm empty fruit bunch (OPEFB), an abundant agro-waste in Indonesia, is being studied as raw material of Cellulose Nanocrystals (CNC) synthesis. Instead of conventional acid mineral, phosphotungstic acid (H₃PW₁₂O₄₀, HPW) was used to hydrolyze cellulose due to recycling ability and easy handling. Before hydrolysis process, dried EFB was treated by 4% NaOH solution at 90oC for 2 hours and then bleached using 2% NaClO₂ solution at 80oC for 3 hours to remove hemicellulose and lignin. Hydrolysis reaction parameters such as temperature, acid concentration, and reaction time were optimized with fixed solid-liquid ratio of 1:40. Response surface method was used for experimental design to determine the optimum condition of each parameter. HPW was extracted from the mixed solution and recycled with diethyl ether. CNC was separated from the solution by centrifuging and washing with distilled water and ethanol to remove degraded sugars and unreacted celluloses. In this study, pulp from dried EFB produced 44.8% yield of CNC. Dynamic Light Scattering (DLS) analysis showed that most of CNC equivalent diameter was 140 nm. Crystallinity index was observed at 73.3% using X-ray Diffraction (XRD) analysis. Thus, a green established process for the preparation of CNC was achieved.

Keywords: acid hydrolysis, cellulose nanocrystals, oil palm empty fruit bunch, phosphotungstic acid

Procedia PDF Downloads 197
977 Crowdsourced Economic Valuation of the Recreational Benefits of Constructed Wetlands

Authors: Andrea Ghermandi

Abstract:

Constructed wetlands have long been recognized as sources of ancillary benefits such as support for recreational activities. To date, there is a lack of quantitative understanding of the extent and welfare impact of such benefits. Here, it is shown how geotagged, passively crowdsourced data from online social networks (e.g., Flickr and Panoramio) and Geographic Information Systems (GIS) techniques can: (1) be used to infer annual recreational visits to 273 engineered wetlands worldwide; and (2) be integrated with non-market economic valuation techniques (e.g., travel cost method) to infer the monetary value of recreation in these systems. Counts of social media photo-user-days are highly correlated with the number of observed visits in 62 engineered wetlands worldwide (Pearson’s r = 0.811; p-value < 0.001). The estimated, mean willingness to pay for access to 115 wetlands ranges between $5.3 and $374. In 50% of the investigated wetlands providing polishing treatment to advanced municipal wastewater, the present value of such benefits exceeds that of the capital, operation and maintenance costs (lifetime = 45 years; discount rate = 6%), indicating that such systems are sources of net societal benefits even before factoring in benefits derived from water quality improvement and storage. Based on the above results, it is argued that recreational benefits should be taken into account in the design and management of constructed wetlands, as well as when such green infrastructure systems are compared with conventional wastewater treatment solutions.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, social media

Procedia PDF Downloads 111
976 The Competitiveness of Small and Medium Sized Enterprises: Digital Transformation of Business Models

Authors: Chante Van Tonder, Bart Bossink, Chris Schachtebeck, Cecile Nieuwenhuizen

Abstract:

Small and Medium-Sized Enterprises (SMEs) play a key role in national economies around the world, being contributors to economic and social well-being. Due to this, the success, growth and competitiveness of SMEs are critical. However, there are many factors that undermine this, such as resource constraints, poor information communication infrastructure (ICT), skills shortages and poor management. The Fourth Industrial Revolution offers new tools and opportunities such as digital transformation and business model innovation (BMI) to the SME sector to enhance its competitiveness. Adopting and leveraging digital technologies such as cloud, mobile technologies, big data and analytics can significantly improve business efficiencies, value proposition and customer experiences. Digital transformation can contribute to the growth and competitiveness of SMEs. However, SMEs are lagging behind in the participation of digital transformation. Extant research lacks conceptual and empirical research on how digital transformation drives BMI and the impact it has on the growth and competitiveness of SMEs. The purpose of the study is, therefore, to close this gap by developing and empirically validating a conceptual model to determine if SMEs are achieving BMI through digital transformation and how this is impacting the growth, competitiveness and overall business performance. An empirical study is being conducted on 300 SMEs, consisting of 150 South-African and 150 Dutch SMEs, to achieve this purpose. Structural equation modeling is used, since it is a multivariate statistical analysis technique that is used to analyse structural relationships and is a suitable research method to test the hypotheses in the model. Empirical research is needed to gather more insight into how and if SMEs are digitally transformed and how BMI can be driven through digital transformation. The findings of this study can be used by SME business owners, managers and employees at all levels. The findings will indicate if digital transformation can indeed impact the growth, competitiveness and overall performance of an SME, reiterating the importance and potential benefits of adopting digital technologies. In addition, the findings will also exhibit how BMI can be achieved in light of digital transformation. This study contributes to the body of knowledge in a highly relevant and important topic in management studies by analysing the impact of digital transformation on BMI on a large number of SMEs that are distinctly different in economic and cultural factors

Keywords: business models, business model innovation, digital transformation, SMEs

Procedia PDF Downloads 220
975 Integrated Plant Protection Activities against (Tuta absoluta Meyrik) Moth in Tomato Plantings in Azerbaijan

Authors: Nazakat Ismailzada, Carol Jones

Abstract:

Tomato drilling moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the main pest of tomato plants in many countries. The larvae of tomato leaves, the stems inside, in the end buds, they opened the gallery in green and ripe fruit. In this way the harmful products can be fed with all parts of the tomato plant can cause damage to 80-100%. Pest harms all above ground parts of the tomato plant. After the seedlings are planted in areas and during blossoming holder traps with tomato moth’s rubber capsule inside should be placed in the area by using five-tomato moth’s feremon per ha. Then there should be carried out observations in the fields in every three days regularly. During the researches, it was showed that in field condition Carogen 20 SC besides high-level biological efficiency also has low ecological load for environment, and should be used against tomato moth in farms. Therefore it was showed that in field condition Carogen 20 SC besides high-level biological efficiency also has low ecological load for environment, and should be used against tomato moth in farms with insecticide expenditure norm 320 qr\ha. In farms should be used plant rotation, plant fields should be plowed on the 25-30 sm depth, before sowing seeds should be proceeded by insecticides. As element of integrated plant protection activities, should be used pheromones trap. In tomato plant fields as an insecticide should be used AGROSAN 240 SC and Carogen 20 SP.

Keywords: lepidoptera, Tuta absoluta, chemical control, integrated pest management

Procedia PDF Downloads 142
974 Infinite Impulse Response Digital Filters Design

Authors: Phuoc Si Nguyen

Abstract:

Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain.

Keywords: bilinear z-transformation, frequency transformation, inverse bilinear z-transformation, IIR digital filters

Procedia PDF Downloads 400
973 Employing Innovative Pedagogy: Collaborative (Online) Learning and Teaching In An International Setting

Authors: Sonja Gögele, Petra Kletzenbauer

Abstract:

International strategies are ranked as one of the core activities in the development plans of Austrian universities. This has led to numerous promising activities in terms of internationalization (i.e. development of international degree programmes, increased staff, and student mobility, and blended international projects). The latest innovative approach are so called Blended Intensive Programmes (BIP), which combine jointly delivered teaching and learning elements of at least three participating ERASMUS universities in a virtual and short-term mobility setup. Students who participate in BIP can maintain their study plans at their home institution and include BIP as a parallel activity. This paper presents the experiences of this programme on the topic of sustainable computing hosted by the University of Applied Sciences FH JOANNEUM. By means of an online survey and face-to-face interviews with all stakeholders (20 students, 8 professors), the empirical study addresses the challenges of hosting an international blended learning programme (i.e. virtual phase and on-site intensive phase) and discusses the impact of such activities in terms of innovative pedagogy (i.e. virtual collaboration, research-based learning).

Keywords: internationalization, collaborative learning, blended intensive programme, pedagogy

Procedia PDF Downloads 113
972 The Relationship between Spanish Economic Variables: Evidence from the Wavelet Techniques

Authors: Concepcion Gonzalez-Concepcion, Maria Candelaria Gil-Fariña, Celina Pestano-Gabino

Abstract:

We analyze six relevant economic and financial variables for the period 2000M1-2015M3 in the context of the Spanish economy: a financial index (IBEX35), a commodity (Crude Oil Price in euros), a foreign exchange index (EUR/USD), a bond (Spanish 10-Year Bond), the Spanish National Debt and the Consumer Price Index. The goal of this paper is to analyze the main relations between them by computing the Wavelet Power Spectrum and the Cross Wavelet Coherency associated with Morlet wavelets. By using a special toolbox in MATLAB, we focus our interest on the period variable. We decompose the time-frequency effects and improve the interpretation of the results by non-expert users in the theory of wavelets. The empirical evidence shows certain instability periods and reveals various changes and breaks in the causality relationships for sample data. These variables were individually analyzed with Daubechies Wavelets to visualize high-frequency variance, seasonality, and trend. The results are included in Proceeding 20th International Academic Conference, 2015, International Institute of Social and Economic Sciences (IISES), Madrid.

Keywords: economic and financial variables, Spain, time-frequency domain, wavelet coherency

Procedia PDF Downloads 214
971 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework

Authors: Abdulrahman S. Alqahtani

Abstract:

The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.

Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism

Procedia PDF Downloads 378
970 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 365
969 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 121
968 GC and GCxGC-MS Composition of Volatile Compounds from Cuminum cyminum and Carum carvi by Using Techniques Assisted by Microwaves

Authors: F. Benkaci-Ali, R. Mékaoui, G. Scholl, G. Eppe

Abstract:

The new methods as accelerated steam distillation assisted by microwave (ASDAM) is a combination of microwave heating and steam distillation, performed at atmospheric pressure at very short extraction time. Isolation and concentration of volatile compounds are performed by a single stage. (ASDAM) has been compared with (ASDAM) with cryogrinding of seeds (CG) and a conventional technique, hydrodistillation assisted by microwave (HDAM), hydro-distillation (HD) for the extraction of essential oil from aromatic herb as caraway and cumin seeds. The essential oils extracted by (ASDAM) for 1 min were quantitatively (yield) and qualitatively (aromatic profile) no similar to those obtained by ASDAM-CG (1 min) and HD (for 3 h). The accelerated microwave extraction with cryogrinding inhibits numerous enzymatic reactions as hydrolysis of oils. Microwave radiations constitute the adequate mean for the extraction operations from the yields and high content in major component majority point view, and allow to minimise considerably the energy consumption, but especially heating time too, which is one of essential parameters of artifacts formation. The ASDAM and ASDAM-CG are green techniques and yields an essential oil with higher amounts of more valuable oxygenated compounds comparable to the biosynthesis compounds, and allows substantial savings of costs, in terms of time, energy and plant material.

Keywords: microwave, steam distillation, caraway, cumin, cryogrinding, GC-MS, GCxGC-MS

Procedia PDF Downloads 242
967 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 50
966 Influence of Environmental Conditions on a Solar Assisted Mashing Process

Authors: Ana Fonseca, Stefany Villacis

Abstract:

In this paper, the influence of several scenarios on a model of solar assisted mashing process in a brewery, while applying the model to different locations and therefore changing the environmental conditions, was analyzed. Assorted beer producer locations in different countries around the globe with contrasting climatic zones such as Guayaquil (Ecuador), Bangkok (Thailand), Mumbai (India), Veracruz (Mexico) and Brisbane (Australia) were evaluated and compared with a base case study Oldenburg (Germany), and results were drawn. The evaluation was restricted to the results obtained using TRNSYS 16 as simulating tool. On the base case, an annual Solar Fraction (SF) of 0.50 was encountered, results showed highly affection when modifying the pump control of the primary circuit and when increasing the area of collectors. A sensitivity analysis of the system for the selected locations was performed, resulting in Guayaquil the highest annual SF with a ratio of 2.5 times the expected value as compared with the base case. In contrast, Brisbane presented the lowest ratio, resulting in half of the expected one due to its lower irradiance. In conclusion, cities in Sunbelt countries have the technical potential to apply solar heat for their low-temperature industrial processes, in this case implementing a green brewery in Guayaquil.

Keywords: evacuated tubular solar collector, irradiance, mashing process, solar fraction, solar thermal

Procedia PDF Downloads 121