Search results for: energy conservation strategy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12752

Search results for: energy conservation strategy

10382 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 592
10381 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.

Keywords: electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection

Procedia PDF Downloads 215
10380 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, hinge, floating multibody, wave energy

Procedia PDF Downloads 465
10379 IOT Based Automated Production and Control System for Clean Water Filtration Through Solar Energy Operated by Submersible Water Pump

Authors: Musse Mohamud Ahmed, Tina Linda Achilles, Mohammad Kamrul Hasan

Abstract:

Deterioration of the mother nature is evident these day with clear danger of human catastrophe emanating from greenhouses (GHG) with increasing CO2 emissions to the environment. PV technology can help to reduce the dependency on fossil fuel, decreasing air pollution and slowing down the rate of global warming. The objective of this paper is to propose, develop and design the production of clean water supply to rural communities using an appropriate technology such as Internet of Things (IOT) that does not create any CO2 emissions. Additionally, maximization of solar energy power output and reciprocally minimizing the natural characteristics of solar sources intermittences during less presence of the sun itself is another goal to achieve in this work. The paper presents the development of critical automated control system for solar energy power output optimization using several new techniques. water pumping system is developed to supply clean water with the application of IOT-renewable energy. This system is effective to provide clean water supply to remote and off-grid areas using Photovoltaics (PV) technology that collects energy generated from the sunlight. The focus of this work is to design and develop a submersible solar water pumping system that applies an IOT implementation. Thus, this system has been executed and programmed using Arduino Software (IDE), proteus, Maltab and C++ programming language. The mechanism of this system is that it pumps water from water reservoir that is powered up by solar energy and clean water production was also incorporated using filtration system through the submersible solar water pumping system. The filtering system is an additional application platform which is intended to provide a clean water supply to any households in Sarawak State, Malaysia.

Keywords: IOT, automated production and control system, water filtration, automated submersible water pump, solar energy

Procedia PDF Downloads 90
10378 Refurbishment Methods to Enhance Energy Efficiency of Brick Veneer Residential Buildings in Victoria

Authors: Hamid Reza Tabatabaiefar, Bita Mansoury, Mohammad Javad Khadivi Zand

Abstract:

The current energy and climate change impacts of the residential building sector in Australia are significant. Thus, the Australian Government has introduced more stringent regulations to improve building energy efficiency. In 2006, the Australian residential building sector consumed about 11% (around 440 Petajoule) of the total primary energy, resulting in total greenhouse gas emissions of 9.65 million tonnes CO2-eq. The gas and electricity consumption of residential dwellings contributed to 30% and 52% respectively, of the total primary energy utilised by this sector. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Employing sustainable design principles and effective use of construction materials can play a crucial role in improving thermal performance of new and existing buildings. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. One of the issues concerning the refurbishment of residential buildings is mostly the consumer market, where most work consists of moderate refurbishment jobs, often without assistance of an architect and partly without a building permit. There is an individual and often fragmental approach that results in lack of efficiency. Most importantly, the decisions taken in the early stages of the design determine the final result; however, the assessment of the environmental performance only happens at the end of the design process, as a reflection of the design outcome. Finally, studies have identified the lack of knowledge, experience and best-practice examples as barriers in refurbishment projects. In the context of sustainable development and the need to reduce energy demand, refurbishing the ageing residential building constitutes a necessary action. Not only it does provide huge potential for energy savings, but it is also economically and socially relevant. Although the advantages have been identified, the guidelines come in the form of general suggestions that fail to address the diversity of each project. As a result, it has been recognised that there is a strong need to develop guidelines for optimised retrofitting of existing residential buildings in order to improve their energy performance. The current study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of residential brick veneer buildings in Victoria (Australia). Proposing different remedial solutions for improving the energy performance of residential brick veneer buildings, in the simulation stage, annual energy usage analyses have been carried out to determine heating and cooling energy consumptions of the buildings for different proposed retrofitting techniques. Then, the results of employing different retrofitting methods have been examined and compared in order to identify the most efficient and cost-effective remedial solution for improving the energy performance of those buildings with respect to the climate condition in Victoria and construction materials of the studied benchmark building.

Keywords: brick veneer residential buildings, building energy efficiency, climate change impacts, cost effective remedial solution, energy performance, sustainable design principles

Procedia PDF Downloads 292
10377 Preserving Egypt's Cultural Heritage Amidst Urban Development: A Case Study of the Historic Cairo Cemetery

Authors: Ali Mahfouz

Abstract:

Egypt's cultural heritage and artistic riches find themselves at a complex intersection of preservation and urban development, where they face intricate challenges exacerbated by climate change, pollution, urbanization, and construction activities. In this research, it delves into the multifaceted dynamics involved in conserving Egypt's heritage within urban contexts, spotlighting the historic Cairo cemetery as a poignant and timely case study. The historic Cairo cemetery serves as a repository of priceless cultural assets, housing the final resting places of public figures, artists, historians, politicians, and other luminaries. These graves are adorned with magnificent artworks and rare tombstones, collectively representing an irreplaceable slice of Egypt's history and culture. Yet, the looming threat of demolition to make way for new infrastructure projects underscores the delicate equilibrium that preservation efforts must maintain in the face of urban development pressures. This paper illuminates the collaborative efforts of historians, intellectuals, and civil society organizations who are determined to forestall the destruction of this invaluable cultural heritage. Their initiatives, driven by a shared commitment to documenting and safeguarding the cemetery's treasures, underscore the urgent imperative of protecting Egypt's cultural legacy. Through this case study, It gain insights into how Egypt navigates the challenges of preserving its rich heritage amidst urban expansion and a changing climate, emphasizing the broader importance of heritage conservation in an evolving world.

Keywords: Egypt’s cultural heritage, urban development, historic Cairo cemetery, tombstone artworks, demolition threat, heritage conservation, civil society initiatives

Procedia PDF Downloads 80
10376 Evaluation of Potential of Crop Residues for Energy Generation in Nepal

Authors: Narayan Prasad Adhikari

Abstract:

In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation.

Keywords: crop residues, hill, lowland, mountain

Procedia PDF Downloads 472
10375 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa

Authors: Thabiso Michael Mokotjomela, Jasper Knight

Abstract:

Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.

Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses

Procedia PDF Downloads 369
10374 Energy Strategies for Long-Term Development in Kenya

Authors: Joseph Ndegwa

Abstract:

Changes are required if energy systems are to foster long-term growth. The main problems are increasing access to inexpensive, dependable, and sufficient energy supply while addressing environmental implications at all levels. Policies can help to promote sustainable development by providing adequate and inexpensive energy sources to underserved regions, such as liquid and gaseous fuels for cooking and electricity for household and commercial usage. Promoting energy efficiency. Increased utilization of new renewables. Spreading and implementing additional innovative energy technologies. Markets can achieve many of these goals with the correct policies, pricing, and regulations. However, if markets do not work or fail to preserve key public benefits, tailored government policies, programs, and regulations can achieve policy goals. The main strategies for promoting sustainable energy systems are simple. However, they need a broader recognition of the difficulties we confront, as well as a firmer commitment to specific measures. Making markets operate better by minimizing pricing distortions, boosting competition, and removing obstacles to energy efficiency are among the measures. Complementing the reform of the energy industry with policies that promote sustainable energy. Increasing investments in renewable energy. Increasing the rate of technical innovation at each level of the energy innovation chain. Fostering technical leadership in underdeveloped nations by transferring technology and enhancing institutional and human capabilities. promoting more international collaboration. Governments, international organizations, multilateral financial institutions, and civil society—including local communities, business and industry, non-governmental organizations (NGOs), and consumers—all have critical enabling roles to play in the problem of sustainable energy. Partnerships based on integrated and cooperative approaches and drawing on real-world experience will be necessary. Setting the required framework conditions and ensuring that public institutions collaborate effectively and efficiently with the rest of society are common themes across all industries and geographical areas in order to achieve sustainable development. Powerful tools for sustainable development include energy. However, significant policy adjustments within the larger enabling framework will be necessary to refocus its influence in order to achieve that aim. Many of the options currently accessible will be lost or the price of their ultimate realization (where viable) will grow significantly if such changes don't take place during the next several decades and aren't started right enough. In any case, it would seriously impair the capacity of future generations to satisfy their demands.

Keywords: sustainable development, reliable, price, policy

Procedia PDF Downloads 65
10373 Nuclear Energy: The Reorientations of the French Public Perception

Authors: Aurélia Jandot

Abstract:

With the oil and economic crises which began in the 1970’s, it has progressively appeared necessary to convince the French “general public“ that a use of new energy sources was essential. In this field, nuclear energy represented the future and concentrated lots of hopes. However, the discourse about nuclear energy has progressively seen negative arguments growing in the French media. The gradual changes in the perception of nuclear energy will be studied here through the arguments given in the main French weekly newsmagazines, which had a great impact on the readers, thus on the “general public“, from the 1970’s to the end of the 1980’s. Indeed, to understand better these changes will be taken into account the major international events, the reorientations of the French domestic policy, and the evolutions of the nuclear technology. As this represents a considerable amount of copies and thus of information, will be selected here the main articles which emphasize the “mental images“ aiming to direct the thought of the readers, and which have led the public awareness and acceptance to evolve. From the 1970’s to the end of the 1980’s, two dichotomous trends are in confrontation : one is promoting the perception of the nuclear energy, the other is discrediting it. Moreover, these two trends are organized in two axes. The first axis is about the engineerings evolutions, such as the main French media represent them, with its approximations, its exaggerations, its fictions sometimes. Is added the will to make accessible to the “general public“ some concepts which are quite difficult to understand for the largest number. The second axis rests on the way the major accidents of the period are approached, including those of Three Mile Island and Chernobyl. Thanks to these accidents and because of the international relations evolutions, the ecologist movements and their impacts have progressively grown, with evident consequences on the public perception of nuclear energy and on the way the successive governments can implement new power plants in France. Then, in both cases, over the period considered, the language has changed, as the perceptible objectives of the communication, allowing to discern the deepest intentions of the newsmagazines editing. This is all these changes that will be emphasized, over a period where the nuclear energy technology, to there a field for specialists, bearing mystery and secret, has become a social issue seemingly open to all.

Keywords: social issues, public acceptance, mediatization, discourse changes

Procedia PDF Downloads 291
10372 Sliding Mode Control and Its Application in Custom Power Device: A Comprehensive Overview

Authors: Pankaj Negi

Abstract:

Nowadays the demand for receiving the high quality electrical energy is being increasing as consumer wants not only reliable but also quality power. Custom power instruments are of the most well-known compensators of power quality in distributed network. This paper present a comprehensive review of compensating custom power devices mainly DSTATCOM (distribution static compensator),DVR (dynamic voltage restorer), and UPQC (unified power quality compensator) and also deals with sliding mode control and its applications to custom power devices. The sliding mode control strategy provides robustness to custom power device and enhances the dynamic response for compensating voltage sag, swell, voltage flicker, and voltage harmonics. The aim of this paper is to provide a broad perspective on the status of compensating devices in electric power distribution system and sliding mode control strategies to researchers and application engineers who are dealing with power quality and stability issues.

Keywords: active power filters(APF), custom power device(CPD), DSTATCOM, DVR, UPQC, sliding mode control (SMC), power quality

Procedia PDF Downloads 439
10371 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application

Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr

Abstract:

Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.

Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion

Procedia PDF Downloads 400
10370 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 201
10369 Helicopter Exhaust Gases Cooler in Terms of Computational Fluid Dynamics (CFD) Analysis

Authors: Mateusz Paszko, Ksenia Siadkowska

Abstract:

Due to the low-altitude and relatively low-speed flight, helicopters are easy targets for actual combat assets e.g. infrared-guided missiles. Current techniques aim to increase the combat effectiveness of the military helicopters. Protection of the helicopter in flight from early detection, tracking and finally destruction can be realized in many ways. One of them is cooling hot exhaust gasses, emitting from the engines to the atmosphere in special heat exchangers. Nowadays, this process is realized in ejective coolers, where strong heat and momentum exchange between hot exhaust gases and cold air ejected from atmosphere takes place. Flow effects of air, exhaust gases; mixture of those two and the heat transfer between cold air and hot exhaust gases are given by differential equations of: Mass transportation–flow continuity, ejection of cold air through expanding exhaust gasses, conservation of momentum, energy and physical relationship equations. Calculation of those processes in ejective cooler by means of classic mathematical analysis is extremely hard or even impossible. Because of this, it is necessary to apply the numeric approach with modern, numeric computer programs. The paper discussed the general usability of the Computational Fluid Dynamics (CFD) in a process of projecting the ejective exhaust gases cooler cooperating with helicopter turbine engine. In this work, the CFD calculations have been performed for ejective-based cooler cooperating with the PA W3 helicopter’s engines.

Keywords: aviation, CFD analysis, ejective-cooler, helicopter techniques

Procedia PDF Downloads 332
10368 System Analysis on Compact Heat Storage in the Built Environment

Authors: Wilko Planje, Remco Pollé, Frank van Buuren

Abstract:

An increased share of renewable energy sources in the built environment implies the usage of energy buffers to match supply and demand and to prevent overloads of existing grids. Compact heat storage systems based on thermochemical materials (TCM) are promising to be incorporated in future installations as an alternative for regular thermal buffers. This is due to the high energy density (1 – 2 GJ/m3). In order to determine the feasibility of TCM-based systems on building level several installation configurations are simulated and analyzed for different mixes of renewable energy sources (solar thermal, PV, wind, underground, air) for apartments/multistore-buildings for the Dutch situation. Thereby capacity, volume and financial costs are calculated. The simulation consists of options to include the current and future wind power (sea and land) and local roof-attached PV or solar-thermal systems. Thereby, the compact thermal buffer and optionally an electric battery (typically 10 kWhe) form the local storage elements for energy matching and shaving purposes. Besides, electric-driven heat pumps (air / ground) can be included for efficient heat generation in case of power-to-heat. The total local installation provides both space heating, domestic hot water as well as electricity for a specific case with low-energy apartments (annually 9 GJth + 8 GJe) in the year 2025. The energy balance is completed with grid-supplied non-renewable electricity. Taking into account the grid capacities (permanent 1 kWe/household), spatial requirements for the thermal buffer (< 2.5 m3/household) and a desired minimum of 90% share of renewable energy per household on the total consumption the wind-powered scenario results in acceptable sizes of compact thermal buffers with an energy-capacity of 4 - 5 GJth per household. This buffer is combined with a 10 kWhe battery and air source heat pump system. Compact thermal buffers of less than 1 GJ (typically volumes 0.5 - 1 m3) are possible when the installed wind-power is increased with a factor 5. In case of 15-fold of installed wind power compact heat storage devices compete with 1000 L water buffers. The conclusion is that compact heat storage systems can be of interest in the coming decades in combination with well-retrofitted low energy residences based on the current trends of installed renewable energy power.

Keywords: compact thermal storage, thermochemical material, built environment, renewable energy

Procedia PDF Downloads 244
10367 Relationships between Emotion Regulation Strategies and Well-Being Outcomes among the Elderly and Their Caregivers: A Dyadic Modeling Approach

Authors: Sakkaphat T. Ngamake, Arunya Tuicomepee, Panrapee Suttiwan, Rewadee Watakakosol, Sompoch Iamsupasit

Abstract:

Generally, 'positive' emotion regulation strategies such as cognitive reappraisal have linked to desirable outcomes while 'negative' strategies such as behavioral suppression have linked to undesirable outcomes. These trends have been found in both the elderly and professional practitioners. Hence, this study sought to investigate these trends further by examining the relationship between two dominant emotion regulation strategies in the literature (i.e., cognitive reappraisal and behavioral suppression) and well-being outcomes among the elderly (i.e., successful aging) and their caregivers (i.e., satisfaction with life), using the actor-partner interdependence model. A total of 150 elderly-caregiver dyads participated in the study. The elderly responded to two measures assessing the two emotion regulation strategies and successful aging while their caregivers responded to the same emotion regulation measure and a measure of satisfaction with life. Two criterion variables (i.e., successful aging and satisfaction with life) were specified as latent variables whereas four predictors (i.e., two strategies for the elderly and two strategies for their caregivers) were specified as observed variables in the model. Results have shown that, for the actor effect, the cognitive reappraisal strategy yielded positive relationships with the well-being outcomes for both the elderly and their caregivers. For the partner effect, a positive relationship between caregivers’ cognitive reappraisal strategy and the elderly’s successful aging was observed. The behavioral suppression strategy has not related to any well-being outcomes, within and across individual agents. This study has contributed to the literature by empirically showing that the mental activity of the elderly’s immediate environment such as their family members or close friends could affect their quality of life.

Keywords: emotion regulation, caregiver, older adult, well-being

Procedia PDF Downloads 425
10366 Heritage Landmark of Penang: Segara Ninda, a Mix of Culture

Authors: Normah Sulaiman, Yong Zhi Kang, Nor Hayati Hussain, Abdul Rehman Khalid

Abstract:

Segara Ninda owned by Din Ku Meh, the governor of the province Satul, a Malay man with a big role liaising with Thailand. This mansion is part of the legacy he left behind among other properties in George Town, Penang, besides his family. The island’s geographical location is strategic which has benefitted it through important trade routes for Europe, Middle, East, India, and China in the past. Due to this reasoning, various architectural styles were introduced in Penang; Late Straits Eclectic style is one of the forms of the Colonial Architectural style widely spread as vernacular shophouses in George Town. Segara Ninda is located among the mixture of nouveau-riche, historical and heritage sites at the most important street; Penang Road, which dated back to the late 18th century. This paper examines the strait eclectic style that Segara Ninda encompasses. Acknowledging the mixture of colonial architecture in Georgetown, we argue that the mansion faces challenging issues in conservation processes to be vindicated. This is reflected by analysing the spatial layout, visual elements quality, and its activity through interviews with the occupants of the mansion. The focus will be on the understanding of building form, features, and functions; respecting the architectural spaces and their activity. The methodology applied is to promote our understanding of the mix of culture that the mansion holds through documentation, observation and measuring exercises. This offers a positional interpretation of the mix of culture that the mansion holds. This conservation effort will further contribute exposure to the public and recognize it in the society as its essence is a deficiency character to the existing built environment.

Keywords: eclectic, heritage, spatial organization, culture

Procedia PDF Downloads 180
10365 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature

Authors: R. Nasrin, M. Ferdows

Abstract:

Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.

Keywords: PV module, solar radiation, efficiency, cell temperature

Procedia PDF Downloads 361
10364 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 601
10363 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow

Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof

Abstract:

A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core.

Keywords: energy separation mechanism, theoretical analysis, vortex tube, vortical flow

Procedia PDF Downloads 399
10362 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces

Authors: Lina Wu, Ye Li

Abstract:

An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.

Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms

Procedia PDF Downloads 451
10361 Mending Broken Fences Policing: Developing the Intelligence-Led/Community-Based Policing Model(IP-CP) and Quality/Quantity/Crime(QQC) Model

Authors: Anil Anand

Abstract:

Despite enormous strides made during the past decade, particularly with the adoption and expansion of community policing, there remains much that police leaders can do to improve police-public relations. The urgency is particularly evident in cities across the United States and Europe where an increasing number of police interactions over the past few years have ignited large, sometimes even national, protests against police policy and strategy, highlighting a gap between what police leaders feel they have archived in terms of public satisfaction, support, and legitimacy and the perception of bias among many marginalized communities. The decision on which one policing strategy is chosen over another, how many resources are allocated, and how strenuously the policy is applied resides primarily with the police and the units and subunits tasked with its enforcement. The scope and opportunity for police officers in impacting social attitudes and social policy are important elements that cannot be overstated. How do police leaders, for instance, decide when to apply one strategy—say community-based policing—over another, like intelligence-led policing? How do police leaders measure performance and success? Should these measures be based on quantitative preferences over qualitative, or should the preference be based on some other criteria? And how do police leaders define, allow, and control discretionary decision-making? Mending Broken Fences Policing provides police and security services leaders with a model based on social cohesion, that incorporates intelligence-led and community policing (IP-CP), supplemented by a quality/quantity/crime (QQC) framework to provide a four-step process for the articulable application of police intervention, performance measurement, and application of discretion.

Keywords: social cohesion, quantitative performance measurement, qualitative performance measurement, sustainable leadership

Procedia PDF Downloads 295
10360 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India

Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability

Abstract:

In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.

Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability

Procedia PDF Downloads 107
10359 Marketing Planning Strategy to Promote Family Agro-Tourism: A Case Study of Bang Nam Phueng Community Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont, Benjaporn Yamjameung

Abstract:

The objectives of this study are to increase tourism products and to develop family agro-tourism. The research methodology was to analyze internal and external situations according to MP-MF and the MC-STEPS principles. The results of this study highlight following necessary improvements; extend the cycling routes, increase the number of bicycle rental shops, offer a recreation place for the elders, organize a space for the floating market products and increase tourism activities throughout the year. In ‘places or distribution channel’ we discuss the improvement of facilities, specifically the routes to facilitate elder visitors and visitors on wheelchairs and furthermore the arrangement of educational trips to relevant centers in the community. In ‘promotions’, we discuss the implementation of an 'all inclusive package' were the agro-tourism program, health-conscious program and the elderly fun program converge.

Keywords: marketing planning strategy, agro-tourism, promotions, Bang Nam Phueng

Procedia PDF Downloads 307
10358 Heating Demand Reduction in Single Family Houses Community through Home Energy Management: Putting Users in Charge

Authors: Omar Shafqat, Jaime Arias, Cristian Bogdan, Björn Palm

Abstract:

Heating constitutes a major part of the overall energy consumption in Sweden. In 2013 heating and hot water accounted for about 55% of the total energy use in the housing sector. Historically, the end users have not been able to make a significant impact on their consumption on account of traditional control systems that do not facilitate interaction and control of the heating systems. However, in recent years internet connected home energy management systems have become increasingly available which allow users to visualize the indoor temperatures as well as control the heating system. However, the adoption of these systems is still in its nascent stages. This paper presents the outcome of a study carried out in a community of single-family houses in Stockholm. Heating in the area is provided through district heating, and the neighbourhood is connected through a local micro thermal grid, which is owned and operated by the local community. Heating in the houses is accomplished through a hydronic system equipped with radiators. The system installed offers the households to control the indoor temperature through a mobile application as well as through a physical thermostat. It was also possible to program the system to, for instance, lower the temperatures during night time and when the users were away. The users could also monitor the indoor temperatures through the application. It was additionally possible to create different zones in the house with their own individual programming. The historical heating data (in the form of billing data) was available for several previous years and has been used to perform quantitative analysis for the study after necessary normalization for weather variations. The experiment involved 30 households out of a community of 178 houses. The area was selected due to uniform construction profile in the area. It was observed that despite similar design and construction period there was a large variation in the heating energy consumption in the area which can for a large part be attributed to user behaviour. The paper also presents qualitative analysis done through survey questions as well as a focus group carried out with the participants. Overall, considerable energy savings were accomplished during the trial, however, there was a considerable variation between the participating households. The paper additionally presents recommendations to improve the impact of home energy management systems for heating in terms of improving user engagement and hence the energy impact.

Keywords: energy efficiency in buildings, energy behavior, heating control system, home energy management system

Procedia PDF Downloads 173
10357 Evaluation of Possible Application of Cold Energy in Liquefied Natural Gas Complexes

Authors: А. I. Dovgyalo, S. O. Nekrasova, D. V. Sarmin, A. A. Shimanov, D. A. Uglanov

Abstract:

Usually liquefied natural gas (LNG) gasification is performed due to atmospheric heat. In order to produce a liquefied gas a sufficient amount of energy is to be consumed (about 1 kW∙h for 1 kg of LNG). This study offers a number of solutions, allowing using a cold energy of LNG. In this paper it is evaluated the application turbines installed behind the evaporator in LNG complex due to its work additional energy can be obtained and then converted into electricity. At the LNG consumption of G=1000kg/h the expansion work capacity of about 10 kW can be reached. Herewith-open Rankine cycle is realized, where a low capacity cryo-pump (about 500W) performs its normal function, providing the cycle pressure. Additionally discussed an application of Stirling engine within the LNG complex also gives a possibility to realize cold energy. Considering the fact, that efficiency coefficient of Stirling engine reaches 50 %, LNG consumption of G=1000 kg/h may result in getting a capacity of about 142 kW of such a thermal machine. The capacity of the pump, required to compensate pressure losses when LNG passes through the hydraulic channel, will make 500 W. Apart from the above-mentioned converters, it can be proposed to use thermoelectric generating packages (TGP), which are widely used now. At present, the modern thermoelectric generator line provides availability of electric capacity with coefficient of efficiency up to 15%. In the proposed complex, it is suggested to install the thermoelectric generator on the evaporator surface is such a way, that the cold end is contacted with the evaporator’s surface, and the hot one – with the atmosphere. At the LNG consumption of G=1000 kgг/h and specified coefficient of efficiency the capacity of the heat flow Qh will make about 32 kW. The derivable net electric power will be P=4,2 kW, and the number of packages will amount to about 104 pieces. The carried out calculations demonstrate the research perceptiveness in this field of propulsion plant development, as well as allow realizing the energy saving potential with the use of liquefied natural gas and other cryogenics technologies.

Keywords: cold energy, gasification, liquefied natural gas, electricity

Procedia PDF Downloads 273
10356 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan

Authors: Sumra Siddique Abbasi, Cheng Shikun

Abstract:

Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.

Keywords: biogas plant, animal dunk, renewable energy, pakistan

Procedia PDF Downloads 72
10355 Relationship between Relational Energy, Emotional Labour and Cognitive Flexibility of Cabin Crew

Authors: Rithi Baruah

Abstract:

The aviation industry is one such sectors whose primary aim is to work for the safety and comfort of their clients and customers. The crew members in the aviation industry include pilots, flight attendants, air traffic controllers, baggage personnel and maintenance personnel. This study will concentrate on the frontline employees of the aviation industry, the flight attendants. Flight attendants belong to the niche group of population who are paid to smile. Although the profession seems to be very glamorous, it is physically and psychologically very taxing. Energy at workplace is a fairly new concept and is an organizational resource which helps employee attain their goals. Therefore, the researcher will aim to establish the relationship between relational energy and the major issue of emotional labor and cognitive flexibility among flight attendants. The researcher will hypothesize that there will be a negative relationship between relational energy and emotional labour, and a positive relationship between relational energy and cognitive flexibility. Also, a positive relationship will be expected between cognitive flexibility and emotional labour of cabin crew. A quantitative research design will be used to study the relationship among 50 flight attendants in India. The findings of the research will not only help the aviation sector but will be a major contribution to the existing literature of aviation psychology in India which is scanty. The relationships can also provide scope to develop a model using the same. From crew resource management and aviation psychology perspectives, relationships among the study variables will not only provide scope for helping the aviation employees in particular but also develop the performance and safety of aviation sector at large.

Keywords: cabin crew, cognitive flexibility, emotional labour, relational energy

Procedia PDF Downloads 303
10354 A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis

Authors: A. Robbin

Abstract:

In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model.  Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability.  Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.

Keywords: banking, bilingualism, code-switching, markedness, service encounter

Procedia PDF Downloads 206
10353 Developing Medium Term Maintenance Plan For Road Networks

Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy

Abstract:

Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.

Keywords: infrastructure, asset management, optimization, maintenance plan

Procedia PDF Downloads 218