Search results for: clinical decision support sytem
13005 Need of Trained Clinical Research Professionals Globally to Conduct Clinical Trials
Authors: Tambe Daniel Atem
Abstract:
Background: Clinical Research is an organized research on human beings intended to provide adequate information on the drug use as a therapeutic agent on its safety and efficacy. The significance of the study is to educate the global health and life science graduates in Clinical Research in depth to perform better as it involves testing drugs on human beings. Objectives: to provide an overall understanding of the scientific approach to the evaluation of new and existing medical interventions and to apply ethical and regulatory principles appropriate to any individual research. Methodology: It is based on – Primary data analysis and Secondary data analysis. Primary data analysis: means the collection of data from journals, the internet, and other online sources. Secondary data analysis: a survey was conducted with a questionnaire to interview the Clinical Research Professionals to understand the need of training to perform clinical trials globally. The questionnaire consisted details of the professionals working with the expertise. It also included the areas of clinical research which needed intense training before entering into hardcore clinical research domain. Results: The Clinical Trials market worldwide worth over USD 26 billion and the industry has employed an estimated 2,10,000 people in the US and over 70,000 in the U.K, and they form one-third of the total research and development staff. There are more than 2,50,000 vacant positions globally with salary variations in the regions for a Clinical Research Coordinator. R&D cost on new drug development is estimated at US$ 70-85 billion. The cost of doing clinical trials for a new drug is US$ 200-250 million. Due to an increase trained Clinical Research Professionals India has emerged as a global hub for clinical research. The Global Clinical Trial outsourcing opportunity in India in the pharmaceutical industry increased to more than $2 billion in 2014 due to increased outsourcing from U.S and Europe to India. Conclusion: Assessment of training need is recommended for newer Clinical Research Professionals and trial sites, especially prior the conduct of larger confirmatory clinical trials.Keywords: clinical research, clinical trials, clinical research professionals
Procedia PDF Downloads 45213004 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 25213003 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 13413002 Inclusive Cities Decision Matrix Based on a Multidimensional Approach for Sustainable Smart Cities
Authors: Madhurima S. Waghmare, Shaleen Singhal
Abstract:
The concept of smartness, inclusion, sustainability is multidisciplinary and fuzzy, rooted in economic and social development theories and policies which get reflected in the spatial development of the cities. It is a challenge to convert these concepts from aspirations to transforming actions. There is a dearth of assessment and planning tools to support the city planners and administrators in developing smart, inclusive, and sustainable cities. To address this gap, this study develops an inclusive cities decision matrix based on an exploratory approach and using mixed methods. The matrix is soundly based on a review of multidisciplinary urban sector literature and refined and finalized based on inputs from experts and insights from case studies. The application of the decision matric on the case study cities in India suggests that the contemporary planning tools for cities need to be multidisciplinary and flexible to respond to the unique needs of the diverse contexts. The paper suggests that a multidimensional and inclusive approach to city planning can play an important role in building sustainable smart cities.Keywords: inclusive-cities decision matrix, smart cities in India, city planning tools, sustainable cities
Procedia PDF Downloads 15613001 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems
Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka
Abstract:
Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling
Procedia PDF Downloads 32313000 Characteristics of Patients Undergoing Subclavian Artery Revascularization in Latvia: A Retrospective Analysis
Authors: Majid Shahbazi
Abstract:
Subclavian artery stenosis (SAS) is a common vascular disease that can cause a range of symptoms, from arm fatigue and weakness to ischemic stroke. Revascularization procedures, such as percutaneous transluminal angioplasty and stenting, are widely used to treat SAS and improve blood flow to the affected arm. However, the optimal management of patients with SAS is still unclear, and further research is needed to evaluate the safety and efficacy of different treatment options. This study aims to investigate the characteristics of patients with SAS who underwent revascularization procedures in Latvia (Specifically RAKUS). The research part of this paper aims to describe and analyze the demographics, comorbidities, diagnostic methods, types of revascularization procedures, and antiaggregant therapy used. The goal of this study is to provide insights into the current clinical practice in Latvia and help future treatment decision-makers. To achieve this aim, a retrospective study of 76 patients with SAS who underwent revascularization procedures was performed. After statistical analysis of the data, the study provided insights into the characteristics and management of patients with SAS in Latvia, highlighting the most observed comorbidities in these patients, the preferred diagnostic methods, and the most performed procedures. These findings can inform clinical decision-making and may have implications for the management of patients with subclavian artery stenosis in Latvia.Keywords: subclavian artery stenosis, revascularization, characteristics of patients, comorbidities, retrospective analysis
Procedia PDF Downloads 9512999 (Re)Assessing Clinical Spaces: How Do We Critically Provide Mental Health and Disability Support and Effective Care for Young People Who Are Impacted by Structural Violence and Structural Racism?
Authors: Sireen Irsheid, Stephanie Keeney Parks, Michael A. Lindsey
Abstract:
The medical and mental health field have been organized as reactive systems to respond to symptoms of mental health problems and disability. This becomes problematic particularly for those harmed by structural violence and racism, typically pushing us in the direction of alleviating symptoms and personalizing structural problems. The current paper examines how we assess, diagnose, and treat mental health and disability challenges in clinical spaces. We provide the readers with some context to think about the problem of racism and mental health/disability, ways to deconstruct the problem through the lens of structural violence, and recommendations to critically engage in clinical assessments, diagnosis, and treatment for young people impacted by structural violence and racism.Keywords: mental health, disability, race and ethnicity, structural violence, structural racism, young people
Procedia PDF Downloads 5512998 Navigating the Case-Based Learning Multimodal Learning Environment: A Qualitative Study Across the First-Year Medical Students
Authors: Bhavani Veasuvalingam
Abstract:
Case-based learning (CBL) is a popular instructional method aimed to bridge theory to clinical practice. This study aims to explore CBL mixed modality curriculum in influencing students’ learning styles and strategies that support learning. An explanatory sequential mixed method study was employed with initial phase, 44-itemed Felderman’s Index of Learning Style (ILS) questionnaire employed across year one medical students (n=142) using convenience sampling to describe the preferred learning styles. The qualitative phase utilised three focus group discussions (FGD) to explore in depth on the multimodal learning style exhibited by the students. Most students preferred combination of learning stylesthat is reflective, sensing, visual and sequential i.e.: RSVISeq style (24.64%) from the ILS analysis. The frequency of learning preference from processing to understanding were well balanced, with sequential-global domain (66.2%); sensing-intuitive (59.86%), active- reflective (57%), and visual-verbal (51.41%). The qualitative data reported three major themes, namely Theme 1: CBL mixed modalities navigates learners’ learning style; Theme 2: Multimodal learners active learning strategies supports learning. Theme 3: CBL modalities facilitating theory into clinical knowledge. Both quantitative and qualitative study strongly reports the multimodal learning style of the year one medical students. Medical students utilise multimodal learning styles to attain the clinical knowledge when learning with CBL mixed modalities. Educators’ awareness of the multimodal learning style is crucial in delivering the CBL mixed modalities effectively, considering strategic pedagogical support students to engage and learn CBL in bridging the theoretical knowledge into clinical practice.Keywords: case-based learning, learnign style, medical students, learning
Procedia PDF Downloads 9512997 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations
Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman
Abstract:
CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain
Procedia PDF Downloads 45812996 Point-of-Decision Design (PODD) to Support Healthy Behaviors in the College Campuses
Authors: Michelle Eichinger, Upali Nanda
Abstract:
Behavior choices during college years can establish the pattern of lifelong healthy living. Nearly 1/3rd of American college students are either overweight (25 < BMI < 30) or obese (BMI > 30). In addition, overweight/obesity contributes to depression, which is a rising epidemic among college students, affecting academic performance and college drop-out rates. Overweight and obesity result in an imbalance of energy consumption (diet) and energy expenditure (physical activity). Overweight/obesity is a significant contributor to heart disease, diabetes, stroke, physical disabilities and some cancers, which are the leading causes of death and disease in the US. There has been a significant increase in obesity and obesity-related disorders such as type 2 diabetes, hypertension, and dyslipidemia among people in their teens and 20s. Historically, the evidence-based interventions for obesity prevention focused on changing the health behavior at the individual level and aimed at increasing awareness and educating people about nutrition and physical activity. However, it became evident that the environmental context of where people live, work and learn was interdependent to healthy behavior change. As a result, a comprehensive approach was required to include altering the social and built environment to support healthy living. College campus provides opportunities to support lifestyle behavior and form a health-promoting culture based on some key point of decisions such as stairs/ elevator, walk/ bike/ car, high-caloric and fast foods/balanced and nutrient-rich foods etc. At each point of decision, design, can help/hinder the healthier choice. For example, stair well design and motivational signage support physical activity; grocery store/market proximity influence healthy eating etc. There is a need to collate the vast information that is in planning and public health domains on a range of successful point of decision prompts, and translate it into architectural guidelines that help define the edge condition for critical point of decision prompts. This research study aims to address healthy behaviors through the built environment with the questions, how can we make the healthy choice an easy choice through the design of critical point of decision prompts? Our hypothesis is that well-designed point of decision prompts in the built environment of college campuses can promote healthier choices by students, which can directly impact mental and physical health related to obesity. This presentation will introduce a combined health and architectural framework aimed to influence healthy behaviors through design applied for college campuses. The premise behind developing our concept, point-of-decision design (PODD), is healthy decision-making can be built into, or afforded by our physical environments. Using effective design intervention strategies at these 'points-of-decision' on college campuses to make the healthy decision the default decision can be instrumental in positively impacting health at the population level. With our model, we aim to advance health research by utilizing point-of-decision design to impact student health via core sectors of influences within college settings, such as campus facilities and transportation. We will demonstrate how these domains influence patterns/trends in healthy eating and active living behaviors among students. how these domains influence patterns/trends in healthy eating and active living behaviors among students.Keywords: architecture and health promotion, college campus, design strategies, health in built environment
Procedia PDF Downloads 22212995 Nurses' Knowledge and Attitudes about Clinical Governance
Authors: Sedigheh Salemi, Mahnaz Sanjari, Maryam Aalaa, Mohammad Mirzabeigi
Abstract:
Clinical governance is the framework within which the health service provider is required to ongoing accountability and improvement of the quality of their services. This cross-sectional study was conducted in 661 nurses who work in government hospitals from 35 hospitals of 9 provinces in Iran. The study was approved by the Nursing Council and was carried out with the authorization of the Research Ethics Committee. The questionnaire included 24 questions in which 4 questions focused on clinical governance defining from the nurses' perspective. The reliability was evaluated by Cronbach's alpha (α=0/83). Statistical analyzes were performed, using SPSS version 16. Approximately 40% of nurses correctly answered that clinical governance is not "system of punishment and rewards for the staff". The most nurses believed that "clinical efficacy" is one of the main components of clinical governance. A few of nurses correctly responded that "Evidence Based Practice" and "management" is not part of clinical governance. The small number of nurses correctly answered that the "maintenance of patient records" and "to recognize the adverse effects" is not the role of nurse in clinical governance. Most "do not know" answer was to the "maintenance of patient records". The most nurses unanimously believed that the implementation of clinical governance led to "promoting the quality of care". About a third of nurses correctly stated that the implementation of clinical governance will not lead to "an increase in salaries and benefits of the medical team". As a member of the health team, nurses are responsible in terms of participation in quality improvement and it is necessary to create an environment in which clinical care will flourish and serve to preserve the high standards.Keywords: clinical governance, nurses, salary, health team
Procedia PDF Downloads 43012994 Web Service Architectural Style Selection in Multi-Criteria Requirements
Authors: Ahmad Mohsin, Syda Fatima, Falak Nawaz, Aman Ullah Khan
Abstract:
Selection of an appropriate architectural style is vital to the success of target web service under development. The nature of architecture design and selection for service-oriented computing applications is quite different as compared to traditional software. Web Services have complex and rigorous architectural styles to choose. Due to this, selection for accurate architectural style for web services development has become a more complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of experience in service oriented computing. Decision support systems are good solutions to simplify the selection process of a particular architectural style. Our research suggests a new approach using DSS for selection of architectural styles while developing a web service to cater FRs and NFRs. Our proposed DSS helps architects to select right web service architectural pattern according to the domain and non-functional requirements. In this paper, a rule base DSS has been developed using CLIPS (C Language Integrated Production System) to support decisions using multi-criteria requirements. This DSS takes architectural characteristics, domain requirements and software architect preferences for NFRs as input for different architectural styles in use today in service-oriented computing. Weighted sum model has been applied to prioritize quality attributes and domain requirements. Scores are calculated using multiple criterions to choose the final architecture style.Keywords: software architecture, web-service, rule-based, DSS, multi-criteria requirements, quality attributes
Procedia PDF Downloads 36412993 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance
Procedia PDF Downloads 33812992 Social Justice-Focused Mental Health Practice: An Integrative Model for Clinical Social Work
Authors: Hye-Kyung Kang
Abstract:
Social justice is a central principle of the social work profession and education. However, scholars have long questioned the profession’s commitment to putting social justice values into practice. Clinical social work has been particularly criticized for its lack of attention to social justice and for failing to address the concerns of the oppressed. One prominent criticism of clinical social work is that it often relies on individual intervention and fails to take on system-level changes or advocacy. This concern evokes the historical macro-micro tension of the social work profession where micro (e.g., mental health counseling) and macro (e.g., policy advocacy) practices are conceptualized as separate domains, creating a false binary for social workers. One contributor to this false binary seems to be that most clinical practice models do not prepare social work students and practitioners to make a clear link between clinical practice and social justice. This paper presents a model of clinical social work practice that clearly recognizes the essential and necessary connection between social justice, advocacy, and clinical practice throughout the clinical process: engagement, assessment, intervention, and evaluation. Contemporary relational theories, critical social work frameworks, and anti-oppressive practice approaches are integrated to build a clinical social work practice model that addresses the urgent need for mental health practice that not only helps and heals the person but also challenges societal oppressions and aims to change them. The application of the model is presented through case vignettes.Keywords: social justice, clinical social work, clinical social work model, integrative model
Procedia PDF Downloads 8512991 Innovation in Information Technology Services: Framework to Improve the Effectiveness and Efficiency of Information Technology Service Management Processes, Projects and Decision Support Management
Authors: Pablo Cardozo Herrera
Abstract:
In a dynamic market of Information Technology (IT) Service and with high quality demands and high performance requirements in decreasing costs, it is imperative that IT companies invest organizational effort in order to increase the effectiveness of their Information Technology Service Management (ITSM) processes through the improvement of ITSM project management and through solid support to the strategic decision-making process of IT directors. In this article, the author presents an analysis of common issues of IT companies around the world, with strategic needs of information unmet that provoke their ITSM processes and projects management that do not achieve the effectiveness and efficiency expected of their results. In response to the issues raised, the author proposes a framework consisting of an innovative theoretical framework model of ITSM management and a technological solution aligned to the Information Technology Infrastructure Library (ITIL) good practices guidance and ISO/IEC 20000-1 requirements. The article describes a research that proves the proposed framework is able to integrate, manage and coordinate in a holistic way, measurable and auditable, all ITSM processes and projects of IT organization and utilize the effectiveness assessment achieved for their strategic decision-making process increasing the process maturity level and improving the capacity of an efficient management.Keywords: innovation in IT services, ITSM processes, ITIL and ISO/IEC 20000-1, IT service management, IT service excellence
Procedia PDF Downloads 39712990 Acute Respiratory Distress Syndrome (ARDS) Developed Clinical Pathway: Suggested Protocol
Authors: Maha Salah, Hanaa Hashem, Mahmoud M. Alsagheir, Mohammed Salah
Abstract:
Acute respiratory distress syndrome (ARDS) represents a complex clinical syndrome and carries a high risk for mortality. The severity of the clinical course, the uncertainty of the outcome, and the reliance on the full spectrum of critical care resources for treatment mean that the entire health care team is challenged. Researchers and clinicians have investigated the nature of the pathological process and explored treatment options with the goal of improving outcome. Through this application of research to practice, we know that some previous strategies have been ineffective, and innovations in mechanical ventilation, sedation, nutrition, and pharmacological intervention remain important research initiatives. Developed Clinical pathway is multidisciplinary plans of best clinical practice for this specified groups of patients that aid in the coordination and delivery of high quality care. They are a documented sequence of clinical interventions that help a patient to move, progressively through a clinical experience to a desired outcome. Although there is a lot of heterogeneity in patients with ARDS, this suggested developed clinical pathway with alternatives was built depended on a lot of researches and evidence based medicine and nursing practices which may be helping these patients to improve outcomes, quality of life and decrease mortality.Keywords: acute respiratory distress syndrome (ARDS), clinical pathway, clinical syndrome
Procedia PDF Downloads 53412989 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 4312988 Artificial Intelligence in Global Healthcare: Need for Robust Governance Frameworks
Authors: Sandeep Reddy, Sonia Allan, Simon Coghlan, Paul Cooper
Abstract:
Artificial Intelligence (AI) and its application in medicine has generated ample interest amongst policymakers and clinicians. Successes with AI in medical imaging interpretation and clinical decision support are paving the way for its incorporation into routine healthcare delivery. While there has been a focus on the development of ethical principles to guide its application in healthcare, challenges of this application go beyond what ethics principles can address thus requiring robust governance frameworks. Also, while ethical challenges of medical artificial intelligence are being discussed, the ethics of deploying AI in lower-income countries receive less attention than in other developed economies. This creates an imperative not only for sound ethical guidelines but also for robust governance frameworks to regulate AI in medicine around the world. In this article, we discuss what components need to be considered in developing these governance frameworks and who should lead this worldwide effort.Keywords: artificial intelligence, global health, governance, ethics
Procedia PDF Downloads 15212987 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 20712986 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach
Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta
Abstract:
Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.Keywords: support vector machines, decision tree, random forest
Procedia PDF Downloads 4012985 Improving Effectiveness of Students' Learning during Clinical Rotations at a Teaching Hospital in Rwanda
Authors: Nanyombi Lubimbi, Josette Niyokindi
Abstract:
Background: As in many other developing countries in Africa, Rwanda suffers from a chronic shortage of skilled Health Care professionals including Clinical Instructors. This shortage negatively affects the clinical instruction quality therefore impacting student-learning outcomes. Due to poor clinical supervision, it is often noted that students have no structure or consistent guidance in their learning process. The Clinical Educators and the Rwandan counterparts identified the need to create a favorable environment for learning. Description: During orientation the expectations of the student learning process, collaboration of the clinical instructors with the nurses and Clinical Educators is outlined. The ward managers facilitate structured learning by helping the students identify a maximum of two patients using the school’s objectives to guide the appropriate selection of patients. Throughout the day, Clinical Educators with collaboration of Clinical Instructors when present conduct an ongoing assessment of learning and provide feedback to the students. Post-conference is provided once or twice a week to practice critical thinking skills of patient cases that they have been taking care of during the day. Lessons Learned: The students are found to be more confident with knowledge and skills gained during rotations. Clinical facility evaluations completed by students at the end of their rotations highlight the student’s satisfaction and recommendation for continuation of structured learning. Conclusion: Based on the satisfaction of both students and Clinical Instructors, we have identified need for structured learning during clinical rotations. We acknowledge that more evidence-based practice is necessary to effectively address the needs of nursing and midwifery students throughout the country.Keywords: Rwanda, clinical rotation, structured learning, critical thinking skills, post-conference
Procedia PDF Downloads 23812984 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 65112983 Clinical Pharmacology Throughout the World: A View from Global Health
Authors: Ragy Raafat Gaber Attaalla
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health.Keywords: low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 7212982 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit
Authors: Suraj Kumar Mukti
Abstract:
Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.Keywords: ERP system, decision support system, tangible, intangible
Procedia PDF Downloads 33212981 Clinical Training Simulation Experience of Medical Sector Students
Authors: Tahsien Mohamed Okasha
Abstract:
Simulation is one of the emerging educational strategies that depend on the creation of scenarios to imitate what could happen in real life. At the time of COVID, we faced big obstacles in medical education, specially the clinical part and how we could apply it, the simulation was the golden key. Simulation is a very important tool of education for medical sector students, through creating a safe, changeable, quiet environment with less anxiety level for students to practice and to have repeated trials on their competencies. That impacts the level of practice, achievement, and the way of acting in real situations and experiences. A blind Random sample of students from different specialties and colleges who came and finished their training in an integrated environment was collected and tested, and the responses were graded from (1-5). The results revealed that 77% of the studied subjects agreed that dealing and interacting with different medical sector candidates in the same place was beneficial. 77% of the studied subjects agreed that simulations were challenging in thinking and decision-making skills .75% agreed that using high-fidelity manikins was helpful. 75% agree .76% agreed that working in a safe, prepared environment is helpful for realistic situations.Keywords: simulation, clinical training, education, medical sector students
Procedia PDF Downloads 2912980 Factors Affecting Employee Decision Making in an AI Environment
Authors: Yogesh C. Sharma, A. Seetharaman
Abstract:
The decision-making process in humans is a complicated system influenced by a variety of intrinsic and extrinsic factors. Human decisions have a ripple effect on subsequent decisions. In this study, the scope of human decision making is limited to employees. In an organisation, a person makes a variety of decisions from the time they are hired to the time they retire. The goal of this research is to identify various elements that influence decision-making. In addition, the environment in which a decision is made is a significant aspect of the decision-making process. Employees in today's workplace use artificial intelligence (AI) systems for automation and decision augmentation. The impact of AI systems on the decision-making process is examined in this study. This research is designed based on a systematic literature review. Based on gaps in the literature, limitations and the scope of future research have been identified. Based on these findings, a research framework has been designed to identify various factors affecting employee decision making. Employee decision making is influenced by technological advancement, data-driven culture, human trust, decision automation-augmentation, and workplace motivation. Hybrid human-AI systems require the development of new skill sets and organisational design. Employee psychological safety and supportive leadership influences overall job satisfaction.Keywords: employee decision making, artificial intelligence (AI) environment, human trust, technology innovation, psychological safety
Procedia PDF Downloads 10812979 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval
Procedia PDF Downloads 20112978 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 12112977 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran
Authors: Safieh Javadinejad
Abstract:
In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling
Procedia PDF Downloads 29212976 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process
Authors: Johannes Gantner, Michael Held, Matthias Fischer
Abstract:
The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation
Procedia PDF Downloads 286