Search results for: unknown environments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2895

Search results for: unknown environments

555 Hiveopolis - Honey Harvester System

Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios

Abstract:

Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.

Keywords: honey harvesting, honeybee, hiveopolis, nitinol

Procedia PDF Downloads 108
554 Water Problems, Social Mobilization and Migration: A Case Study of Lake Urmia

Authors: Fatemeh Dehghan Khangahi, Hakan Gunes

Abstract:

Transforming a public necessity into a commercial commodity becomes more and more evident as time goes on, and it is one of the issues of water shortage. Development projects of countries, consume the water and waterbeds in various forms, ignoring the concepts such as sustainability and the negative effects they place on the environment, pollute and change the ways of waterways. Throughout these processes, the water basins and all the vital environments sometimes can suffer damage to the irreparable level. In this context, the issue of Lake Urmia that is located in the North West of Iran left alone by drought, has been researched. The lake, which is on the list of UNESCO's biosphere reserves, is now exposed to the danger of desiccation. If the desiccation is fully realized, more than 5.000.000 people that they are living around the lake, will have to migrate as a result of negative living conditions. As a matter of fact, along with the recent years of increasing drought level, regional migrations have begun. In addition to migration issues, it is also necessary to specify the negative effects on human and all-round’s life that depend on the formation of salt storms, mixing of salt into the air and soil, which threaten human health seriously because the lake is salty. The main aim of this work is to raise national and international awareness of this problem, which is an environment and a human tragedy at the same time. This research has two basic questions: 1) In the case of Lake Urmia, what are environmental problems and how they have emerged and what is the role of governments? 2) What is the social consequence of this problem in relation to the first question? In response, after the literature search, having a comparative view of the situation of the Aral Sea and the Great Salt Lake (Utah, USA), which involved the two major international examples. The first, one is related to the terms of population and migration, the second is about biological properties. Then, data and status information that provided after 3 years area research has been evaluated. Towards the end, with the support of qualitative and quantitative methods, the study of social mobilization in the region has been carried out. An example of it is using the public space of TRAXTOR matches like a protests area.

Keywords: environment problems, water, social mobilization, Lake Urmia, migration

Procedia PDF Downloads 133
553 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
552 Effect of Ion Irradiation on the Microstructure and Properties of Chromium Coatings on Zircaloy-4 Substrate

Authors: Alexia Wu, Joel Ribis, Jean-Christophe Brachet, Emmanuel Clouet, Benoit Arnal, Elodie Rouesne, Stéphane Urvoy, Justine Roubaud, Yves Serruys, Frederic Lepretre

Abstract:

To enhance the safety of Light Water Reactor, accident tolerant fuel (ATF) claddings materials are under development. In the framework of CEA-AREVA-EDF collaborative program on ATF cladding materials, CEA has engaged specific studies on chromium coated zirconium alloys. Especially for Loss-of-Coolant-Accident situations, chromium coated claddings have shown some additional 'coping' time before achieving full embrittlement of the oxidized cladding, when compared to uncoated references – both tested in steam environment up to 1300°C. Nevertheless, the behavior of chromium coatings and the stability of the Zr-Cr interface under neutron irradiation remain unknown. Two main points are addressed: 1. Bulk Cr behavior under irradiation: Due to its BCC crystallographic structure, Cr is prone to Ductile-to-Brittle-Transition at quite high temperature. Irradiation could be responsible for a significant additional DBTT shift towards higher temperatures. 2. Zircaloy/Cr interface behavior under irradiation: Preliminary TEM examinations of un-irradiated samples revealed a singular Zircaloy-4/Cr interface with nanometric intermetallic phase layers. Such particular interfaces highlight questions of how they would behave under irradiation - intermetallic zirconium phases are known to be more or less stable under irradiations. Another concern is a potential enhancement of chromium diffusion into the zirconium-alpha based substrate. The purpose of this study is then to determine the behavior of such coatings after ion irradiations, as a surrogate to neutron irradiation. Ion irradiations were performed at the Jannus-Saclay facility (France). 20 MeV Kr8+ ions at 400°C with a flux of 2.8x1011 ions.cm-2.s-1 were used to irradiate chromium coatings of 1-2 µm thick on Zircaloy-4 sheets substrate. At the interface, the calculated damage is close to 10 dpa (SRIM, Quick Calculation Damage mode). Thin foil samples were prepared with FIB for both as-received and irradiated coated samples. Transmission Electron Microscopy (TEM) and in-situ tensile tests in a Scanning Electron Microscope are being used to characterize the un-irradiated and irradiated materials. High Resolution TEM highlights a great complexity of the interface before irradiation since it is formed of an alternation of intermetallic phases – C14 and C15. The interfaces formed by these intermetallic phases with chromium and zirconium show semi-coherency. Chemical analysis performed before irradiation shows some iron enrichment at the interface. The chromium coating bulk microstructures and properties are also studied before and after irradiation. On-going in-situ tensile tests focus on the capacity of chromium coatings to sustain some plastic deformation when tested up to 350°C. The stability of the Cr/Zr interface is shown after ion irradiation up to 10 dpa. This observation constitutes the first result after irradiation on these new coated claddings materials.

Keywords: accident tolerant fuel, HRTEM, interface, ion-irradiation

Procedia PDF Downloads 363
551 Perceptions and Expectations by Participants of Monitoring and Evaluation Short Course Training Programmes in Africa

Authors: Mokgophana Ramasobana

Abstract:

Background: At the core of the demand to utilize evidence-based approaches in the policy-making cycle, prioritization of limited financial resources and results driven initiatives is the urgency to develop a cohort of competent Monitoring and Evaluation (M&E) practitioners and public servants. The ongoing strides in the evaluation capacity building (ECB) initiatives are a direct response to produce the highly-sought after M&E skills. Notwithstanding the rapid growth of M&E short courses, participants perceived value and expectation of M&E short courses as a panacea for ECB have not been empirically quantified or measured. The objective of this article is to explicitly illustrate the importance of measuring ECB interventions and understanding what works in ECB and why it works. Objectives: This article illustrates the importance of establishing empirical ECB measurement tools to evaluate ECB interventions in order to ascertain its contribution to the broader evaluation practice. Method: The study was primarily a desktop review of existing literature, juxtaposed by a survey of the participants across the African continent based on the 43 M&E short courses hosted by the Centre for Learning on Evaluation and Results Anglophone Africa (CLEAR-AA) in collaboration with the Department of Planning Monitoring and Evaluation (DPME) Results: The article established that participants perceive short course training as a panacea to improve their M&E practical skill critical to executing their organizational duties. In tandem, participants are likely to demand customized training as opposed to general topics in Evaluation. However, the organizational environments constrain the application of the newly acquired skills. Conclusion: This article aims to contribute to the 'how to' measure ECB interventions discourse and contribute towards the improvement to evaluate ECB interventions. The study finds that participants prefer training courses with longer duration to cover more topics. At the same time, whilst organizations call for customization of programmes, the study found that individual participants demand knowledge of generic and popular evaluation topics.

Keywords: evaluation capacity building, effectiveness and training, monitoring and evaluation (M&E) short course training, perceptions and expectations

Procedia PDF Downloads 128
550 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 87
549 Valorization of Surveillance Data and Assessment of the Sensitivity of a Surveillance System for an Infectious Disease Using a Capture-Recapture Model

Authors: Jean-Philippe Amat, Timothée Vergne, Aymeric Hans, Bénédicte Ferry, Pascal Hendrikx, Jackie Tapprest, Barbara Dufour, Agnès Leblond

Abstract:

The surveillance of infectious diseases is necessary to describe their occurrence and help the planning, implementation and evaluation of risk mitigation activities. However, the exact number of detected cases may remain unknown whether surveillance is based on serological tests because identifying seroconversion may be difficult. Moreover, incomplete detection of cases or outbreaks is a recurrent issue in the field of disease surveillance. This study addresses these two issues. Using a viral animal disease as an example (equine viral arteritis), the goals were to establish suitable rules for identifying seroconversion in order to estimate the number of cases and outbreaks detected by a surveillance system in France between 2006 and 2013, and to assess the sensitivity of this system by estimating the total number of outbreaks that occurred during this period (including unreported outbreaks) using a capture-recapture model. Data from horses which exhibited at least one positive result in serology using viral neutralization test between 2006 and 2013 were used for analysis (n=1,645). Data consisted of the annual antibody titers and the location of the subjects (towns). A consensus among multidisciplinary experts (specialists in the disease and its laboratory diagnosis, epidemiologists) was reached to consider seroconversion as a change in antibody titer from negative to at least 32 or as a three-fold or greater increase. The number of seroconversions was counted for each town and modeled using a unilist zero-truncated binomial (ZTB) capture-recapture model with R software. The binomial denominator was the number of horses tested in each infected town. Using the defined rules, 239 cases located in 177 towns (outbreaks) were identified from 2006 to 2013. Subsequently, the sensitivity of the surveillance system was estimated as the ratio of the number of detected outbreaks to the total number of outbreaks that occurred (including unreported outbreaks) estimated using the ZTB model. The total number of outbreaks was estimated at 215 (95% credible interval CrI95%: 195-249) and the surveillance sensitivity at 82% (CrI95%: 71-91). The rules proposed for identifying seroconversion may serve future research. Such rules, adjusted to the local environment, could conceivably be applied in other countries with surveillance programs dedicated to this disease. More generally, defining ad hoc algorithms for interpreting the antibody titer could be useful regarding other human and animal diseases and zoonosis when there is a lack of accurate information in the literature about the serological response in naturally infected subjects. This study shows how capture-recapture methods may help to estimate the sensitivity of an imperfect surveillance system and to valorize surveillance data. The sensitivity of the surveillance system of equine viral arteritis is relatively high and supports its relevance to prevent the disease spreading.

Keywords: Bayesian inference, capture-recapture, epidemiology, equine viral arteritis, infectious disease, seroconversion, surveillance

Procedia PDF Downloads 297
548 Designing the Lesson Instructional Plans for Exploring the STEM Education and Creative Learning Processes to Students' Logical Thinking Abilities with Different Learning Outcomes in Chemistry Classes

Authors: Pajaree Naramitpanich, Natchanok Jansawang, Panwilai Chomchid

Abstract:

The aims of this are compared between the students’ logical thinking abilities of their learning for designing the 5-lesson instructional plans of the 2-instructional methods, namely; the STEM Education and the Creative Learning Process (CLP) for developing students’ logical thinking abilities that a sample consisted of 90 students from two chemistry classes of different learning outcomes in Wapi Phathum School with the cluster random sampling technique was used at the 11th grade level. To administer of their learning environments with the 45-experimenl student group by the STEM Education method and the 45-controlling student group by the Creative Learning Process. These learning different groups were obtained using the 5 instruments; the 5-lesson instructional plans of the STEM Education and the Creative Learning Process to enhance the logical thinking tests on Mineral issue were used. The efficiency of the Creative Learning Processes (CLP) Model and the STEM Education’s innovations of these each five instructional lesson plans based on criteria are higher than of 80/80 standard level with the IOC index from the expert educators. The averages mean scores of students’ learning achievement motives were assessed with the Pre and Post Techniques and Logical Thinking Ability Test (LTAT) and dependent t-test analysis were differentiated between the CLP and the STEM, significantly. Students’ perceptions of their chemistry classroom environment inventories with the MCI with the CLP and the STEM methods also were found, differently. Associations between students’ perceptions of their chemistry classroom learning environment inventories on the CLP Model and the STEM Education learning designs toward their logical thinking abilities toward chemistry, the predictive efficiency of R2 values indicate that 68% and 76% of the variances in students’ logical thinking abilities toward chemistry to their controlling and experimental chemistry classroom learning environmental groups with the MCI were correlated at .05 levels, significantly. Implementations of this result are showed the students’ learning by the CLP of the potential thinking life-changing roles in most their logical thinking abilities that it is revealed that the students perceive their abilities to be highly learning achievement in chemistry group are differentiated with the STEM education of students’ outcomes.

Keywords: design, the lesson instructional plans, the stem education, the creative learning process, logical thinking ability, different, learning outcome, student, chemistry class

Procedia PDF Downloads 321
547 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 135
546 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 51
545 Hands on Tools to Improve Knowlege, Confidence and Skill of Clinical Disaster Providers

Authors: Lancer Scott

Abstract:

Purpose: High quality clinical disaster medicine requires providers working collaboratively to care for multiple patients in chaotic environments; however, many providers lack adequate training. To address this deficit, we created a competency-based, 5-hour Emergency Preparedness Training (EPT) curriculum using didactics, small-group discussion, and kinetic learning. The goal was to evaluate the effect of a short course on improving provider knowledge, confidence and skills in disaster scenarios. Methods: Diverse groups of medical university students, health care professionals, and community members were enrolled between 2011 and 2014. The course consisted of didactic lectures, small group exercises, and two live, multi-patient mass casualty incident (MCI) scenarios. The outcome measures were based on core competencies and performance objectives developed by a curriculum task force and assessed via trained facilitator observation, pre- and post-testing, and a course evaluation. Results: 708 participants completed were trained between November 2011 and August 2014, including 49.9% physicians, 31.9% medical students, 7.2% nurses, and 11% various other healthcare professions. 100% of participants completed the pre-test and 71.9% completed the post-test, with average correct answers increasing from 39% to 60%. Following didactics, trainees met 73% and 96% of performance objectives for the two small group exercises and 68.5% and 61.1% of performance objectives for the two MCI scenarios. Average trainee self-assessment of both overall knowledge and skill with clinical disasters improved from 33/100 to 74/100 (overall knowledge) and 33/100 to 77/100 (overall skill). The course assessment was completed by 34.3% participants, of whom 91.5% highly recommended the course. Conclusion: A relatively short, intensive EPT course can improve the ability of a diverse group of disaster care providers to respond effectively to mass casualty scenarios.

Keywords: clinical disaster medicine, training, hospital preparedness, surge capacity, education, curriculum, research, performance, training, student, physicians, nurses, health care providers, health care

Procedia PDF Downloads 192
544 Health Risk Assessment of Exposing to Benzene in Office Building around a Chemical Industry Based on Numerical Simulation

Authors: Majid Bayatian, Mohammadreza Ashouri

Abstract:

Releasing hazardous chemicals is one of the major problems for office buildings in the chemical industry and, therefore, environmental risks are inherent to these environments. The adverse health effects of the airborne concentration of benzene have been a matter of significant concern, especially in oil refineries. The chronic and acute adverse health effects caused by benzene exposure have attracted wide attention. Acute exposure to benzene through inhalation could cause headaches, dizziness, drowsiness, and irritation of the skin. Chronic exposures have reported causing aplastic anemia and leukemia at the occupational settings. Association between chronic occupational exposure to benzene and the development of aplastic anemia and leukemia were documented by several epidemiological studies. Numerous research works have investigated benzene emissions and determined benzene concentration at different locations of the refinery plant and stated considerable health risks. The high cost of industrial control measures requires justification through lifetime health risk assessment of exposed workers and the public. In the present study, a Computational Fluid Dynamics (CFD) model has been proposed to assess the exposure risk of office building around a refinery due to its release of benzene. For simulation, GAMBIT, FLUENT, and CFD Post software were used as pre-processor, processor, and post-processor, and the model was validated based on comparison with experimental results of benzene concentration and wind speed. Model validation results showed that the model is highly validated, and this model can be used for health risk assessment. The simulation and risk assessment results showed that benzene could be dispersion to an office building nearby, and the exposure risk has been unacceptable. According to the results of this study, a validated CFD model, could be very useful for decision-makers for control measures and possibly support them for emergency planning of probable accidents. Also, this model can be used to assess exposure to various types of accidents as well as other pollutants such as toluene, xylene, and ethylbenzene in different atmospheric conditions.

Keywords: health risk assessment, office building, Benzene, numerical simulation, CFD

Procedia PDF Downloads 130
543 Performance Evaluation of Routing Protocols in Vehicular Adhoc Networks

Authors: Salman Naseer, Usman Zafar, Iqra Zafar

Abstract:

This study explores the implication of Vehicular Adhoc Network (VANET) - in the rural and urban scenarios that is one domain of Mobile Adhoc Network (MANET). VANET provides wireless communication between vehicle to vehicle and also roadside units. The Federal Commission Committee of United States of American has been allocated 75 MHz of the spectrum band in the 5.9 GHz frequency range for dedicated short-range communications (DSRC) that are specifically designed to enhance any road safety applications and entertainment/information applications. There are several vehicular related projects viz; California path, car 2 car communication consortium, the ETSI, and IEEE 1609 working group that have already been conducted to improve the overall road safety or traffic management. After the critical literature review, the selection of routing protocols is determined, and its performance was well thought-out in the urban and rural scenarios. Numerous routing protocols for VANET are applied to carry out current research. Its evaluation was conceded with the help of selected protocols through simulation via performance metric i.e. throughput and packet drop. Excel and Google graph API tools are used for plotting the graphs after the simulation results in order to compare the selected routing protocols which result with each other. In addition, the sum of the output from each scenario was computed to undoubtedly present the divergence in results. The findings of the current study present that DSR gives enhanced performance for low packet drop and high throughput as compared to AODV and DSDV in an urban congested area and in rural environments. On the other hand, in low-density area, VANET AODV gives better results as compared to DSR. The worth of the current study may be judged as the information exchanged between vehicles is useful for comfort, safety, and entertainment. Furthermore, the communication system performance depends on the way routing is done in the network and moreover, the routing of the data based on protocols implement in the network. The above-presented results lead to policy implication and develop our understanding of the broader spectrum of VANET.

Keywords: AODV, DSDV, DSR, Adhoc network

Procedia PDF Downloads 286
542 A Focused, High-Intensity Spread-Spectrum Ultrasound Solution to Prevent Biofouling

Authors: Alan T. Sassler

Abstract:

Biofouling is a significant issue for ships, especially those based in warm water ports. Biofouling damages hull coatings, degrades platform hydrodynamics, blocks cooling water intakes, and returns, reduces platform range and speed, and increases fuel consumption. Although platforms are protected to some degree by antifouling paints, these paints are much less effective on stationary platforms, and problematic biofouling can occur on antifouling paint-protected stationary platforms in some environments in as little as a matter of weeks. Remediation hull cleaning operations are possible, but they are very expensive, sometimes result in damage to the vessel’s paint or hull and are generally not completely effective. Ultrasound with sufficient intensity focused on specific frequency ranges can be used to prevent the growth of biofouling organisms. The use of ultrasound to prevent biofouling isn't new, but systems to date have focused on protecting platforms by shaking the hull using internally mounted transducers similar to those used in ultrasonic cleaning machines. While potentially effective, this methodology doesn't scale well to large platforms, and there are significant costs associated with installing and maintaining these systems, which dwarf the initial purchase price. An alternative approach has been developed, which uses highly directional pier-mounted transducers to project high-intensity spread-spectrum ultrasonic energy into the water column focused near the surface. This focused energy has been shown to prevent biofouling at ranges of up to 50 meters from the source. Spreading the energy out over a multi-kilohertz band makes the system both more effective and more environmentally friendly. This system has been shown to be both effective and inexpensive in small-scale testing and is now being characterized on a larger scale in selected marinas. To date, test results have been collected in Florida marinas suggesting that this approach can be used to keep ensonified areas of thousands of square meters free from biofouling, although care must be taken to minimize shaded areas.

Keywords: biofouling, ultrasonic, environmentally friendly antifoulant, marine protection, antifouling

Procedia PDF Downloads 60
541 Prevention and Treatment of Hay Fever Prevalence by Natural Products: A Phytochemistry Study on India and Iran

Authors: Tina Naser Torabi

Abstract:

Prevalence of allergy is affected by different factors according to its base and seasonal weather changes, and it also needs various treatments.Although reasons of allergy existence are not clear but generally, allergens cause reaction between antigen and antibody because of their antigenic traits. In this state, allergens cause immune system to make mistake and identify safe material as threat, therefore function of immune system impaired because of histamine secretion. There are different reasons for allergy, but herbal reasons are on top of the list, although animal causes cannot be ignored. Important point is that allergenic compounds, cause making dedicated antibody, so in general every kind of allergy is different from the other one. Therefore, most of the plants in herbal allergenic category can cause various allergies for human beings, such as respiratory allergies, nutritional allergies, injection allergies, infection allergies, touch allergies, that each of them show different symptoms based on the reason of allergy and also each of them requires different prevention and treatment. Geographical condition is another effective factor in allergy. Seasonal changes, weather condition, herbal coverage variety play important roles in different allergies. It goes without saying that humid climate and herbal coverage variety in different seasons especially spring cause most allergies in human beings in Iran and India that are discussed in this article. These two countries are good choices for allergy prevalence because of their condition, various herbal coverage, human and animal factors. Hay fever is one of the allergies, although the reasons of its prevalence are unknown yet. It is one of the most popular allergies in Iran and India because of geographical, human, animal and herbal factors. Hay fever is on top of the list in these two countries. Significant point about these two countries is that herbal factor is the most important factor in prevalence of hay fever. Variety of herbal coverage especially in spring during herbal pollination is the main reason of hay fever prevalence in these two countries. Based on the research result of Pharmacognosy and Phytochemistry, pollination of some plants in spring is major reason of hay fever prevalence in these countries. If airborne pollens in pollination season enter the human body through air, they will cause allergic reactions in eyes, nasal mucosa, lungs, and respiratory system, and if these particles enter the body of potential person through food, they will cause allergic reactions in mouth, stomach, and other digestive systems. Occasionally, chemical materials produced by human body such as Histamine cause problems like: developing of nasal polyps, nasal blockage, sleep disturbance, risk of asthma developing, blood vasodilation, sneezing, eye tears, itching and swelling of eyes and nasal mucosa, Urticaria, decrease in blood pressure, and rarely trauma, anesthesia, anaphylaxis and finally death. This article is going to study the reasons of hay fever prevalence in Iran and India and presents prevention and treatment Method from Phytochemistry and Pharmocognocy point of view by using local natural products in these two countries.

Keywords: hay fever, India, Iran, natural treatment, phytochemistry

Procedia PDF Downloads 166
540 Geo-Visualization of Crimes against Children: An India Level Study 2001-2012

Authors: Ritvik Chauhan, Vijay Kumar Baraik

Abstract:

Crime is a rare event on earth surface. It is not simple but a complex event occurring in a spatio- temporal environment. Crime is one of the most serious security threats to human environments as it may result in harm to the individuals through the loss of property, physical and psychological injuries. The conventional studies done on different nature crime was mostly related to laws, psychological, social and political themes. The geographical areas are heterogeneous in their environmental conditions, associations between structural conditions, social organization which contributing specific crimes. The crime pattern analysis is made through theories in which criminal events occurs in persistent, identifiable patterns in a particular space and time. It will be the combined analysis of spatial factors and rational factors to the crime. In this study, we are analyzing the combined factors for the origin of crime against children. Children have always been vulnerable to victimization more because they are silent victims both physically and mentally to crimes and they even not realize what is happening with them. Their trusting nature and innocence always misused by criminals to perform crimes. The nature of crime against children is changed in past years like child rape, kidnapping &abduction, selling & buying of girls, foeticide, infanticide, prostitution, child marriage etc turned to more cruel and inhuman. This study will focus on understanding the space-time pattern of crime against children during the period 2001-2012. It also makes an attempt to explore and ascertain the association of crimes categorised against children, its rates with various geographical and socio-demographic factors through causal analysis using selected indicators (child sex-ratio, education, literacy rate, employment, income, etc.) obtained from the Census of India and other government sources. The outcome of study will help identifying the high crime regions with specified nature of crimes. It will also review the existing efforts and exploring the new plausible measure for tracking, monitoring and minimization of crime rate to meet the end goal of protecting the children from crimes committed against them.

Keywords: crime against children, geographic profiling, spatio-temporal analysis, hotspot

Procedia PDF Downloads 211
539 Using the Synchronous Online Flipped Learning Approach to Facilitate Student Podcasting

Authors: Yasmeen Coaxum

Abstract:

The year 2020 became synonymous with the words “Emergency Remote Teaching,” which was imposed upon educators during the COVID-19 pandemic. Consequently, teachers were compelled to find new and engaging ways to educate their students outside of the face-to-face classroom setting. Now online instruction has become more of the norm rather than a way to manage educational expectations during a crisis. Therefore, implementing a strategic way to create online environments for students to thrive, create, and fully engage in their learning process is essential. The Synchronous Online Flipped Learning Approach or SOFLA® is a distance learning model that most closely replicates actual classroom teaching. SOFLA® includes structured, interactive, multimodal activities in an eight-step learning cycle with both asynchronous and synchronous components that foster autonomous and interactive learning among today’s online learners. The results of a pilot study in an Intensive English Program at a university, using SOFLA® methodology to facilitate podcasting in an online learning environment will be shared. Previous findings on student-produced podcasting projects have shown that students felt they improved their pronunciation, vocabulary, and speaking skills. However, few if any studies have been conducted on using a structured online flipped learning approach to facilitate such projects. Therefore, the purpose of this study is to assess the effect of using the SOFLA® framework to enhance optimum engagement in the online environment while using podcasts as the primary tool of instruction. Through data from interviews, questionnaires, and the results of formative and summative assessments, this study also investigates the affective and academic impact this flipped learning method combined with podcasting has on the students in terms of speaking confidence and vocabulary retention, and production. The steps of SOFLA will be illustrated, a video demonstration of the Anchor podcasting app will be shown, and final student projects and questionnaire responses will be shared. The specific context is a 14-week advanced level conversation and listening class. Participants vary in age but are all adult language learners representing a diverse array of countries.

Keywords: mall online flipped learning, podcasting, productive vocabulary

Procedia PDF Downloads 176
538 A Simulation-Based Study of Dust Ingression into Microphone of Indoor Consumer Electronic Devices

Authors: Zhichao Song, Swanand Vaidya

Abstract:

Nowadays, most portable (e.g., smartphones) and wearable (e.g., smartwatches and earphones) consumer hardware are designed to be dustproof following IP5 or IP6 ratings to ensure the product is able to handle potentially dusty outdoor environments. On the other hand, the design guideline is relatively vague for indoor devices (e.g., smart displays and speakers). While it is generally believed that the indoor environment is much less dusty, in certain circumstances, dust ingression is still able to cause functional failures, such as microphone frequency response shift and camera black spot, or cosmetic dissatisfaction, mainly the dust build up in visible pockets and gaps which is hard to clean. In this paper, we developed a simulation methodology to analyze dust settlement and ingression into known ports of a device. A closed system is initialized with dust particles whose sizes follow Weibull distribution based on data collected in a user study, and dust particle movement was approximated as a settlement in stationary fluid, which is governed by Stokes’ law. Following this method, we simulated dust ingression into MEMS microphone through the acoustic port and protective mesh. Various design and environmental parameters are evaluated including mesh pore size, acoustic port depth-to-diameter ratio, mass density of dust material and inclined angle of microphone port. Although the dependencies of dust resistance on these parameters are all monotonic, smaller mesh pore size, larger acoustic depth-to-opening ratio and more inclined microphone placement (towards horizontal direction) are preferred for dust resistance; these preferences may represent certain trade-offs in audio performance and compromise in industrial design. The simulation results suggest the quantitative ranges of these parameters, with more pronounced effects in the improvement of dust resistance. Based on the simulation results, we proposed several design guidelines that intend to achieve an overall balanced design from audio performance, dust resistance, and flexibility in industrial design.

Keywords: dust settlement, numerical simulation, microphone design, Weibull distribution, Stoke's equation

Procedia PDF Downloads 107
537 Teaching Neuroscience from Neuroscience: an Approach Based on the Allosteric Learning Model, Pathfinder Associative Networks and Teacher Professional Knowledge

Authors: Freddy Rodriguez Saza, Erika Sanabria, Jair Tibana

Abstract:

Currently, the important role of neurosciences in the professional training of the physical educator is known, highlighting in the teaching-learning process aspects such as the nervous structures involved in the adjustment of posture and movement, the neurophysiology of locomotion, the process of nerve impulse transmission, and the relationship between physical activity, learning, and cognition. The teaching-learning process of neurosciences is complex, due to the breadth of the contents, the diversity of teaching contexts required, and the demanding ability to relate concepts from different disciplines, necessary for the correct understanding of the function of the nervous system. This text presents the results of the application of a didactic environment based on the Allosteric Learning Model in morphophysiology students of the Faculty of Military Physical Education, Military School of Cadets of the Colombian Army (Bogotá, Colombia). The research focused then, on analyzing the change in the cognitive structure of the students on neurosciences. Methodology. [1] The predominant learning styles were identified. [2] Students' cognitive structure, core concepts, and threshold concepts were analyzed through the construction of Pathfinder Associative Networks. [3] Didactic Units in Neuroscience were designed to favor metacognition, the development of Executive Functions (working memory, cognitive flexibility, and inhibitory control) that led students to recognize their errors and conceptual distortions and to overcome them. [4] The Teacher's Professional Knowledge and the role of the assessment strategies applied were taken into account, taking into account the perspective of the Dynamizer, Obstacle, and Questioning axes. In conclusion, the study found that physical education students achieved significant learning in neuroscience, favored by the development of executive functions and by didactic environments oriented with the predominant learning styles and focused on increasing cognitive networks and overcoming difficulties, neuromyths and neurophobia.

Keywords: allosteric learning model, military physical education, neurosciences, pathfinder associative networks, teacher professional knowledge

Procedia PDF Downloads 236
536 The Constraints of Modern Islamic Boarding School's Strategy in Addressing Physical Violence: A Case Study in Indonesia

Authors: Syauqi Asfiya R.

Abstract:

This study examines the constraints faced by Islamic boarding school (Pesantren) in Indonesia in effectively addressing physical violence within their educational institutions. The vulnerability to violence in the education sector remains pervasive, including in Pesantren, primarily due to the residential nature of the boarding school system, which necessitates round-the-clock interaction among students from diverse backgrounds. Additionally, environmental factors, parenting styles, individual characteristics, and media influences further complicate the conditions within Pesantren. Numerous cases of physical violence have been reported, underscoring the need to identify the constraints of violence prevention strategies implemented by Pesantren. Adopting a case study approach, this research focuses on a Modern Pesantren in Tangerang and utilizes interviews conducted with 20 victims of violence to explore the aspects of Pesantren's violence prevention strategies that may have been overlooked. The findings indicate that many students face a dilemma when reporting the violence they experience, as the imposed sanctions often prove excessively severe and carry the risk of exacerbating the violence perpetrated by the offenders. Consequently, numerous victims choose to remain silent, thereby enabling the perpetuation of violence. Moreover, senior students (mudabbir) are prohibited from giving punishment, but there are still many who punish other students based on their personal moods. Furthermore, violence is also perpetrated by religious teachers (ustadz), despite their responsibility for addressing such issues. The evaluation process often follows a unidirectional approach wherein the santri have limited freedom compared to the Mudabbir or ustadz when it comes to providing feedback. Additionally, sentiment within specific student generations is reinforced due to the segregation of dormitories based on cohorts. Lastly, the absence of psychologists to address the trauma experienced by victims further exacerbates the situation. This research sheds light on the constraints faced by Pesantren in effectively preventing physical violence and emphasizes the importance of implementing comprehensive measures to create safer and nurturing learning environments within these institutions.

Keywords: physical violence, islam, boarding school, constraint

Procedia PDF Downloads 77
535 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 147
534 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 231
533 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 235
532 Positive Interactions among Plants in Pinegroves over Quarzitic Sands

Authors: Enrique González Pendás, Vidal Pérez Hernández, Jorge Ferro Díaz, Nelson Careaga Pendás

Abstract:

The investigation is carried out on the Protected Area of San Ubaldo, toward the interior of an open pinegrove with palm trees in a dry plainness of quar zitic sands, belonging to the Floristic Managed Reservation San Ubaldo-Sabanalamar, Guane, Pinar del Río, Cuba. This area is characterized by drastic seasonal variations, high temperatures and water evaporation, strong solar radiation, with sandy soils of almost pure quartz, which are very acid and poor in nutrients. The objective of the present work is to determine evidence of facilitation and its relationship with the structure and composition of plant communities in these peculiar ecosystems. For this study six lineal parallel transepts of 100 m are traced, in those, a general recording of the flora is carried out. To establish which plants act as nurses, is taken into account a height over 1 meter, canopy over 1.5 meter and the occurrence of several species under it. Covering was recorded using the line intercept method; the medium values of species richness for the taxa under nurses is compared with those that are located in open spaces among them. Then, it is determined which plants are better recruiter of other species (better nurses). An experiment is made to measure and compare some parameters in pine seedlings under the canopy of the Byrsonima crassifolia (L.) Kunth. and in open spaces, also the number of individuals is counted by species to calculate the frequency and total abundance in the study area. As a result, it is offered an up-to-date floristic list, a phylogenetic tree of the plant community showing a high phylodiversity, it is proven that the medium values of species richness and abundance of species under the nurses, is significantly superior to those occurring in open spaces. Furthermore, by means of phylogenetic trees it is shown that the species which cohabit under the nurses are not phylogenetically related. The former results are cited evidences of facilitation among plants, as well as it is one more time shown the importance of the nurse effect in preserving plant diversity on extreme environments.

Keywords: facilitation, nurse plants, positive interactions, quarzitic sands

Procedia PDF Downloads 341
531 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 116
530 Bridging Binaries: Exploring Students' Conceptions of Good Teaching within Teacher-Centered and Learner-Centered Pedagogies of Their Teachers in Disadvantaged Public Schools in the Philippines

Authors: Julie Lucille H. Del Valle

Abstract:

To improve its public school education, the Philippines took a radical curriculum reform in 2012, by launching the K-to-12 program which not only added two years to its basic education but also mandated for a replacement of traditional teaching with learner-centered pedagogy, an instruction whose western underpinnings suggest improving student achievement, thus, making pedagogies in the country more or less similar with those in Europe and USA. This policy, however, placed learner-centered pedagogy in a binary opposition against teacher-centered instruction, creating a simplistic dichotomy between good and bad teaching. It is in this dichotomy that this study seeks to explore, using Critical Pedagogy of the Place as the lens, in understanding what constitutes good teaching across a range of learner-centered and teacher-centered pedagogies in the context of public schools in disadvantaged communities. Furthermore, this paper examines how pedagogical homogeneity, arguably influenced by dominant global imperatives with economic agenda – often referred as economisation of education – not only thins out local identities as structures of global schooling become increasingly similar but also limits the concept of good teaching to student outcomes and corporate employability. This paper draws from qualitative research on students, thus addressing the gap created by studies on good teaching which looked mainly into the perceptions of teachers and administrators, while overlooking those of students whose voices must be considered in the formulation of inclusive policies that advocate for true education reform. Using ethnographic methods including student focus groups, classroom observations, and teacher interviews, responses from students of disadvantaged schools reveal that good teaching includes both learner-centered and teacher-centered practices that incorporate ‘academic caring’ which sustains their motivation to achieve in school despite the challenging learning environments. The combination of these two pedagogies equips students with life-long skills necessary to gain equal access to sustainable economic opportunities in their local communities.

Keywords: critical pedagogy of the place, good teaching, learner-centered pedagogy, placed-based instruction

Procedia PDF Downloads 261
529 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 151
528 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 96
527 Behavioral Mapping and Post-Occupancy Evaluation of Meeting-Point Design in an International Airport

Authors: Meng-Cong Zheng, Yu-Sheng Chen

Abstract:

The meeting behavior is a pervasive kind of interaction, which often occurs between the passenger and the shuttle. However, the meeting point set up at the Taoyuan International Airport is too far from the entry-exit, often causing passengers to stop searching near the entry-exit. When the number of people waiting for the rush hour increases, it often results in chaos in the waiting area. This study tried to find out what is the key factor to promote the rapid finding of each other between the passengers and the pick-ups. Then we implemented several design proposals to improve the meeting behavior of passengers and pick-ups based on behavior mapping and post-occupancy evaluation to enhance their meeting efficiency in unfamiliar environments. The research base is the reception hall of the second terminal of Taoyuan International Airport. Behavioral observation and mapping are implemented on the entry of inbound passengers into the welcome space, including the crowd distribution of the people who rely on the separation wall in the waiting area, the behavior of meeting and the interaction between the inbound passengers and the pick-ups. Then we redesign the space planning and signage design based on post-occupancy evaluation to verify the effectiveness of space plan and signage design. This study found that passengers ignore existing meeting-point designs which are placed on distant pillars at both ends. The position of the screen affects the area where the receiver is stranded, causing the pick-ups to block the passenger's moving line. The pick-ups prefer to wait where it is easy to watch incoming passengers and where it is closest to the mode of transport they take when leaving. Large visitors tend to gather next to landmarks, and smaller groups have a wide waiting area in the lobby. The location of the meeting point chosen by the pick-ups is related to the view of the incoming passenger. Finally, this study proposes an improved design of the meeting point, setting the traffic information in it, so that most passengers can see the traffic information when they enter the country. At the same time, we also redesigned the pick-ups desk to improve the efficiency of passenger meeting.

Keywords: meeting point design, post-occupancy evaluation, behavioral mapping, international airport

Procedia PDF Downloads 139
526 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 80