Search results for: electron wave packet
1703 Magnetorheological Elastomer Composites Obtained by Extrusion
Authors: M. Masłowski, M. Zaborski
Abstract:
Magnetorheological elastomer composites based on micro- and nano-sized magnetite, gamma iron oxide and carbonyl iron powder in ethylene-octene rubber are reported and studied. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy). The use of extrusion method instead of traditional preparation processes (two-roll mill, mixer) of composites is presented. Micro and nan-sized magnetites as well as gamma iron oxide and carbonyl iron powder were found to be an active fillers improving the mechanical properties of elastomers. They also changed magnetic properties of composites. Application of extrusion process also influenced the mechanical properties of composites and the dispersion of magnetic fillers. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Scanning electron microscopy images (SEM) show that the dispersion improvement had significant effect on the composites properties. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.Keywords: extrusion, magnetic fillers, magnetorheological elastomers, mechanical properties
Procedia PDF Downloads 3181702 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces
Authors: Faezeh Shalchy
Abstract:
Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.Keywords: fiber-reinforced concrete, adhesion, molecular modeling
Procedia PDF Downloads 3281701 Nanocharacterization of PIII Treated 7075 Aluminum Alloy
Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda
Abstract:
Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue
Procedia PDF Downloads 3391700 Health and Mental Health among College Students: Toward a Better Understanding of the Impact of Sexual Assault, Alcohol Use, and COVID-19
Authors: Noel Busch-Armendariz, Caitlin Sulley
Abstract:
Introduction: This study investigated the development of college experiences, COVID-19 pandemic experiences, alcohol use, and sexual violence. The longitudinal study includes 656 college students living in the same dormitory. Students' alcohol use and social network structure were investigated to better understand the relationship with sexual violence risk. Basic Methodologies: Over two years, students repeated five web-based surveys, including a pre-college survey and surveys during four consecutive semesters. Questions were added in the fourth wave to assess students’ experiences of the COVID-19 pandemic, administered from November-January 2021, including mental and behavioral health. Analyses include the impact of COVID on living arrangements, drinking behaviors, and daily life; experiences of COVID symptoms, testing, and diagnosis, responses to COVID such as social distancing, quarantining, not working, increased health care needs; experience of fear, worry, stigma, emotional well-being, loneliness, and mental health; experiences of financial loss, lack of basic supplies, receiving emotional and financial support, and comparison with academic disengagement. Concluding Statement: Findings and discussion will include strategies to strengthen mental and behavioral health programs and policies.Keywords: COVID, mental health, substance abuse, college students, sexual misconducts
Procedia PDF Downloads 791699 The Mechanical Properties of Rammed Earth with Plastic Fibers
Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos
Abstract:
In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material
Procedia PDF Downloads 691698 The Dynamics of a 3D Vibrating and Rotating Disc Gyroscope
Authors: Getachew T. Sedebo, Stephan V. Joubert, Michael Y. Shatalov
Abstract:
Conventional configuration of the vibratory disc gyroscope is based on in-plane non-axisymmetric vibrations of the disc with a prescribed circumferential wave number. Due to the Bryan's effect, the vibrating pattern of the disc becomes sensitive to the axial component of inertial rotation of the disc. Rotation of the vibrating pattern relative to the disc is proportional to the inertial angular rate and is measured by sensors. In the present paper, the authors investigate a possibility of making a 3D sensor on the basis of both in-plane and bending vibrations of the disc resonator. We derive equations of motion for the disc vibratory gyroscope, where both in-plane and bending vibrations are considered. Hamiltonian variational principle is used in setting up equations of motion and the corresponding boundary conditions. The theory of thin shells with the linear elasticity principles is used in formulating the problem and also the disc is assumed to be isotropic and obeys Hooke's Law. The governing equation for a specific mode is converted to an ODE to determine the eigenfunction. The resulting ODE has exact solution as a linear combination of Bessel and Neumann functions. We demonstrate how to obtain an explicit solution and hence the eigenvalues and corresponding eigenfunctions for annular disc with fixed inner boundary and free outer boundary. Finally, the characteristics equations are obtained and the corresponding eigenvalues are calculated. The eigenvalues are used for the calculation of tuning conditions of the 3D disc vibratory gyroscope.Keywords: Bryan’s effect, bending vibrations, disc gyroscope, eigenfunctions, eigenvalues, tuning conditions
Procedia PDF Downloads 3221697 Intelligent Agent-Based Model for the 5G mmWave O2I Technology Adoption
Authors: Robert Joseph M. Licup
Abstract:
The deployment of the fifth-generation (5G) mobile system through mmWave frequencies is the new solution in the requirement to provide higher bandwidth readily available for all users. The usage pattern of the mobile users has moved towards either the work from home or online classes set-up because of the pandemic. Previous mobile technologies can no longer meet the high speed, and bandwidth requirement needed, given the drastic shift of transactions to the home. The millimeter-wave (mmWave) underutilized frequency is utilized by the fifth-generation (5G) cellular networks that support multi-gigabit-per-second (Gbps) transmission. However, due to its short wavelengths, high path loss, directivity, blockage sensitivity, and narrow beamwidth are some of the technical challenges that need to be addressed. Different tools, technologies, and scenarios are explored to support network design, accurate channel modeling, implementation, and deployment effectively. However, there is a big challenge on how the consumer will adopt this solution and maximize the benefits offered by the 5G Technology. This research proposes to study the intricacies of technology diffusion, individual attitude, behaviors, and how technology adoption will be attained. The agent based simulation model shaped by the actual applications, technology solution, and related literature was used to arrive at a computational model. The research examines the different attributes, factors, and intricacies that can affect each identified agent towards technology adoption.Keywords: agent-based model, AnyLogic, 5G O21, 5G mmWave solutions, technology adoption
Procedia PDF Downloads 1081696 Photocatalytic Degradation of Methyl Orange by Ag Doped La₂Ti₂O₇
Authors: Hong Zhang
Abstract:
Photocatalytic degradation is an appealing process to remove organic contaminants from industrial wastewater, but usually impeded by less effective photocatalysts. Here, we successfully synthesized Ag doped La₂Ti₂O₇ via a simple sol-gel route for photocatalytic methyl orange (MO) degradation. Their crystal structures, morphology, surface area and optical absorption activity were systematically characterized by X-ray diffraction, scanning electron microscope, BET N₂ adsorption-desorption study, and UV-vis diffuse reflectance spectra. The photocatalytic activity was evaluated by MO photodegradation under a 300 W xenon lamp. The results indicate that the doping of Ag has effectively narrowed the band gap, increased the specific area of La2Ti2O7, and supressed the recombination of photogenerated carriers. Compared with the pristine La₂Ti₂O₇, La₁.₉Ag₀.₁Ti₂O₇-δ revealed a superior performance for MO degradation with a degradation rate of 97% in only 60 min. Also, the pseudo-first order kinetic constant for La₁.₉Ag₀.₁Ti₂O₇-δ is ~ 11 times higher than that of undoped sample. The outstanding performance of Ag modified La₂Ti₂O₇ is probably attributed to the integrated factors. Active species trapping experiments indicated that h+ plays a critical role in MO degradation, while •O₂− has slight effect on the photocatalytic activity and the function of •OH can almost be neglected.Keywords: Ag doped La₂Ti₂O₇, methyl orange, photodegradation, surface plasmon resonance
Procedia PDF Downloads 1071695 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite
Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo
Abstract:
Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties
Procedia PDF Downloads 991694 Effect of Metarhizium robertsii in Rhipicephalus microplus hemocytes
Authors: Jessica P. Fiorotti, Maria C. Freitas, Caio J. B. Coutinho-Rodrigues, Mariana G. Camargo, Emily S. Mesquita, Amanda R. C. Corval, Ricardo O. B. Bitencourt, Allan F. Marciano, Diva D. Spadacci-Morena, Patricia S. Golo, Isabele C. Angelo, Vania R. E. P. Bittencourt
Abstract:
The bovine tick, Rhipicephalus microplus, is an arthropod of great importance in veterinary medicine leading to anemia, weight loss, animals' leather depreciation and also acting as a vector of many pathogens. In this way, the parasitism causes a loss of 3.24 billion dollars per year in Brazil. Knowingly, entomopathogenic fungi act as natural controller of some arthropods, acting mainly by active penetration through the cuticle. However, it can also act on the hemolymph and through the production of mycotoxins. Hemocytes are responsible for the cellular immune response and participate in the processes of phagocytosis, nodulation and encapsulation and may undergo changes when challenged by pathogens. The aim of the present study was to evaluate changes in R. microplus hemocytes after inoculation of Metarhizium robertsii using transmission electron microscopy. The isolate ARSEF 2575 and 200 engorged R. microplus females were used. The groups were divided into control, in which the females were inoculated with 5 μL of sterile distilled water solution and 0.1% Tween 80, and a group inoculated with 5 μL of fungal suspension at the concentration of 10⁷ conidia mL⁻¹. The experiment was performed in duplicate and each group contained 50 females. Twenty-four hours after fungal inoculation, hemolymph was collected through the cuticle dorsal surface perforation of the tick females. After collection, the hemolymph samples were centrifuged at 500 x g for 3 minutes at 4 °C, the plasma was discarded and the hemocyte pellet was resuspended in 50 μl PBS. The suspension material was fixed in 2% glutaraldehyde in Millonig buffer for three hours. After fixation, the material was centrifuged at 500 x g for 3 minutes, the supernatant was discarded and the cells were resuspended in a wash solution. Subsequently, the cells were post-fixed with 1% osmium tetroxide in phosphate buffer for one hour at room temperature and dehydrated in increasing concentrations of ethanol, and then embedded in Epon resin. The ultrathin sections were examined under the LEO EM 906E transmission electron microscopy at 80kV. The ultrastructural results revealed that.in control group, the cells were considered intact, in which the granulocytes were observed with granules of different electrodensities, intact mitochondria and cytoplasm without vacuolization. In addition, granulocytes showed plasma membrane projections similar to pseudopodia. Plasmatocytes presented as irregularly shaped cells, with the eccentric nucleus, agranular cytoplasm and some cells presented pseudopodia. Nevertheless, in the group exposed to the fungus, most of the cells presented in degeneration. The granulocytes found had fewer granules in the cytoplasm and more vacuoles. Plasmatocytes, after treatment, presented many vacuoles also in the cytoplasm and the lysosomes presented great amount of electrodense material in their interior. Thus, the results suggest that the fungus has a depressant action in the immune system of the tick, not only by the cell degranulation, but also suggesting that this leads to morphological changes in the hemocytes and may even trigger processes such as phagocytosis.Keywords: bovine tick, cellular defense, entomopathogenic fungi, immune response
Procedia PDF Downloads 1891693 Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices
Authors: Riffat Kalsoom, Qurat-Ul-Ain Javed
Abstract:
Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands.Keywords: lithium niobates, renewable energy devices, controlled structure, temperature fluctuations
Procedia PDF Downloads 1311692 The Role of Initiator in the Synthesis of Poly(Methyl Methacrylate)-Layered Silicate Nanocomposites through Bulk Polymerization
Authors: Tsung-Yen Tsai, Naveen Bunekar, Ming Hsuan Chang, Wen-Kuang Wang, Satoshi Onda
Abstract:
The structure-property relationship and initiator effect on bulk polymerized poly(methyl methacrylate) (PMMA)–oragnomodified layered silicate nanocomposites was investigated. In this study, we used 2, 2'-azobis (4-methoxy-2,4-dimethyl valeronitrile and benzoyl peroxide initiators for bulk polymerization. The bulk polymerized nanocomposites’ morphology was investigated by X-ray diffraction and transmission electron microscopy. The type of initiator strongly influences the physiochemical properties of the polymer nanocomposite. The thermal degradation of PMMA in the presence of nanofiller was studied. 5 wt% weight loss temperature (T5d) increased as compared to pure PMMA. The peak degradation temperature increased for the nanocomposites. Differential scanning calorimetry and dynamic mechanical analysis were performed to investigate the glass transition temperature and the nature of the constrained region as the reinforcement mechanism respectively. Furthermore, the optical properties such as UV-Vis and Total Luminous Transmission of nanocomposites are examined.Keywords: initiator, bulk polymerization, layered silicates, methyl methacrylate
Procedia PDF Downloads 2921691 Waste Bone Based Catalyst: Characterization and Esterification Application
Authors: Amit Keshav
Abstract:
Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversionKeywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion
Procedia PDF Downloads 1441690 An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code
Authors: Yu Zhao, Rainer Gruenheid, Gerhard Bauch
Abstract:
In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels.Keywords: bandpass channel, eye-opening, switching frequency, substrate-integrated waveguide, spectrum shaping scheme, spread reshaping code
Procedia PDF Downloads 1601689 Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework
Authors: D. V. S. Praneeth, V. R. Sankar Cheela, Brajesh Dubey
Abstract:
Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks.Keywords: coal combustion residues, LEAF, leaching, SEM
Procedia PDF Downloads 3141688 Spectroscopic Study of Eu³⁺ Ions Doped Potassium Lead Alumino Borate Glasses for Photonic Device Application
Authors: Nisha Deopa, Allam Srinivasa Rao
Abstract:
Quaternary potassium lead alumino borate (KPbAlB) glasses doped with different concentration of Eu³⁺ ions have been synthesized by melt quench technique and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Time-resolved photoluminescence (TRPL) and CIE-chromaticity co-ordinates to study their luminescence behavior. A broad hump was observed in XRD spectrum confirms glassy nature of as-prepared glasses. By using Judd-Ofelt (J-O) theory, various radiative parameters for the prominent fluorescent levels of Eu³⁺ have been investigated. The intense emission peak was observed at 613 nm (⁵D₀→⁷F₂) under 393 nm excitation, matches well with the excitation of n-UV LED chips. The decay profiles observed for ⁵D₀ level were exponential for lower Eu³⁺ ion concentration while non-exponential for higher concentration, which may be due to efficient energy transfer between Eu³⁺-Eu³⁺ through cross relaxation and subsequent quenching observed. From the emission cross-sections, branching ratios, quantum efficiency and CIE coordinates, it was concluded that 7 mol % of Eu³⁺ ion concentration (glass B) is optimum in KPbAlB glasses for photonic device application.Keywords: energy transfer, glasses, J-O parameters, photoluminescence
Procedia PDF Downloads 1631687 Physical Aspects of Shape Memory and Reversibility in Shape Memory Alloys
Authors: Osman Adiguzel
Abstract:
Shape memory alloys take place in a class of smart materials by exhibiting a peculiar property called the shape memory effect. This property is characterized by the recoverability of two certain shapes of material at different temperatures. These materials are often called smart materials due to their functionality and their capacity of responding to changes in the environment. Shape memory materials are used as shape memory devices in many interdisciplinary fields such as medicine, bioengineering, metallurgy, building industry and many engineering fields. The shape memory effect is performed thermally by heating and cooling after first cooling and stressing treatments, and this behavior is called thermoelasticity. This effect is based on martensitic transformations characterized by changes in the crystal structure of the material. The shape memory effect is the result of successive thermally and stress-induced martensitic transformations. Shape memory alloys exhibit thermoelasticity and superelasticity by means of deformation in the low-temperature product phase and high-temperature parent phase region, respectively. Superelasticity is performed by stressing and releasing the material in the parent phase region. Loading and unloading paths are different in the stress-strain diagram, and the cycling loop reveals energy dissipation. The strain energy is stored after releasing, and these alloys are mainly used as deformation absorbent materials in control of civil structures subjected to seismic events, due to the absorbance of strain energy during any disaster or earthquake. Thermal-induced martensitic transformation occurs thermally on cooling, along with lattice twinning with cooperative movements of atoms by means of lattice invariant shears, and ordered parent phase structures turn into twinned martensite structures, and twinned structures turn into the detwinned structures by means of stress-induced martensitic transformation by stressing the material in the martensitic condition. Thermal induced transformation occurs with the cooperative movements of atoms in two opposite directions, <110 > -type directions on the {110} - type planes of austenite matrix which is the basal plane of martensite. Copper-based alloys exhibit this property in the metastable β-phase region, which has bcc-based structures at high-temperature parent phase field. Lattice invariant shear and twinning is not uniform in copper-based ternary alloys and gives rise to the formation of complex layered structures, depending on the stacking sequences on the close-packed planes of the ordered parent phase lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper-based CuAlMn and CuZnAl alloys. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit superlattice reflections inherited from the parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that diffraction angles and intensities of diffraction peaks change with the aging duration at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close to each other. This result refers to the rearrangement of atoms in a diffusive manner.Keywords: shape memory effect, martensitic transformation, reversibility, superelasticity, twinning, detwinning
Procedia PDF Downloads 1811686 Process Optimization of Mechanochemical Synthesis for the Production of 4,4 Bipyridine Based MOFS using Twin Screw Extrusion and Multivariate Analysis
Authors: Ahmed Metawea, Rodrigo Soto, Majeida Kharejesh, Gavin Walker, Ahmad B. Albadarin
Abstract:
In this study, towards a green approach, we have investigated the effect of operating conditions of solvent assessed twin-screw extruder (TSE) for the production of 4, 4-bipyridine (1-dimensional coordinated polymer (1D)) based coordinated polymer using cobalt nitrate as a metal precursor with molar ratio 1:1. Different operating parameters such as solvent percentage, screw speed and feeding rate are considered. The resultant product is characterized using offline characterization methods, namely Powder X-ray diffraction (PXRD), Raman spectroscopy and scanning electron microscope (SEM) in order to investigate the product purity and surface morphology. A lower feeding rate increased the product’s quality as more resident time was provided for the reaction to take place. The most important influencing factor was the amount of liquid added. The addition of water helped in facilitating the reaction inside the TSE by increasing the surface area of the reaction for particlesKeywords: MOFS, multivariate analysis, process optimization, chemometric
Procedia PDF Downloads 1591685 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy
Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri
Abstract:
The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation
Procedia PDF Downloads 1321684 Rise in Public Interest in COVID-19 Symptoms and the Need for Proper Information: Insights from the Google Trends Analysis
Authors: Jaweriya Aftab, Madho Mal, Hamida Memon
Abstract:
The first case of coronavirus disease 2019 (COVID-19) in Pakistan was recorded on February 26th, 2020. While the country went through various phases of lockdowns, the importance of proper sensitization campaigns was highlighted by healthcare workers to combat misinformation. Past studies via Google trends analysis have shown a rise in public interest in multiple COVID-19-related symptoms as well as cardiovascular symptoms. As there is a paucity of data related to the trends in Pakistan, we conducted a retrospective analysis to bridge further information. Methods: As per the recommendations from past studies, a Google trend analysis was conducted for various symptoms, including ‘Fever’, ‘Chest Pain’, ‘Shortness of Breath’, and ‘Cough’ between 1st January 2019 to 31st December 2021. The trends in various search results were analyzed and modeled. Results: Our analysis found various rises in public interest in the various symptoms (fever, chest pain, shortness of breath, and cough) that correspond closely to the wave of the virus's spread in the country. Conclusion: Our study confirms similar trends in Pakistan as previously reported in studies from India, USA, and UK, whereby the public interest in various COVID-19 symptoms rose with the number of cases. This further highlights the need for a strong approach to combat misinformation during such a critical period.Keywords: covid, trend, Pakistan, public
Procedia PDF Downloads 361683 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration
Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen
Abstract:
Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration
Procedia PDF Downloads 361682 Impact of Sericin Treatment on Perfection Dyeing of Polyester Viscose Blend
Authors: Omaima G. Allam, O. A. Hakeim, K. Haggag, N. S. Elshemy
Abstract:
In the midst of the two decades the use of microwave dielectric warming in the field of science has transformed into a powerful methodology to redesign compound procedures. The potential benefit of the application of these modern methods of treatment emphasize so as to reach to optimum treatment conditions and the best results, especially hydrophobicity, moisture content and increase dyeing processing while maintaining the physical and chemical properties of each textile. Moreover, polyester fibres are sometimes spun together with natural fibres to produce a cloth with blended properties. So that at the present task, the polyester/viscose mix fabrics (60 /40) were pretreated with 4 g/l of KOH for 2 min in microwave irradiation with a liquor ratio 1:25. Subsequently fabrics were inundated with different concentrations of sericin (10, 30, 50 g/l). Treated fabrics were coloured with the commercial dyes samples: Reactive Red 84(Dye 1). C. I. Acid Blue 203(Dye 2) and C.I. Reactive violet 5 (Dye 3). Colour value was specified as well as fastness properties. Likewise, the physical properties of untreated and treated fabrics such as moisture content %, tensile strength, elongation % and were evaluated. The untreated and treated fabrics are described by infrared spectroscopy (FTIR) and scanning electron microscopy.Keywords: polyester viscose blends fabric, sericin, dyes, colour value
Procedia PDF Downloads 2381681 Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating
Authors: Seyedeh Narjes Hosseini, Mohammad Hossein Enayati, Fathallah Karimzadeh, Nigel Mark Sammes
Abstract:
The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively.Keywords: SOFC interconnect coatings, Copper ferrite, Spinels, electrical conductivity, Glycine–nitrate process
Procedia PDF Downloads 4791680 Safe School Program in Indonesia: Questioning Whether It Is Too Hard to Succeed
Authors: Ida Ngurah
Abstract:
Indonesia is one of the most prone disaster countries, which has earthquake, tsunami or high wave, flood and landslide as well as volcano eruption and drought. Disaster risk reduction has been developing extensively and comprehensively, particularly after tsunami hit in 2004. Yet, saving people live including children and youth from disaster risk is still far from succeed. Poor management of environment, poor development of policy and high level of corruption has become challenges for Indonesia to save its people from disaster impact. Indonesia is struggling to ensure its future best investment, children and youth to have better protection when disaster strike in school hours and have basic knowledge on disaster risk reduction. The program of safe school is being initiated and developed by Plan Indonesia since 2010, yet this effort still needs to be elaborated. This paper is reviewing sporadic safe school programs that have been implemented or currently being implemented Plan Indonesia in few areas of Indonesia, including both rural and urban setting. Methods used are in-depth interview with dedicated person for the program from Plan Indonesia and its implementing patners and analysis of project documents. The review includes program’s goal and objectives, implementation activity, result and achievement as well as its monitoring and evaluation scheme. Moreover, paper will be showing challenges, lesson learned and best practices of the program. Eventually, paper will come up with recommendation for strategy for better implementation of safe school program in Indonesia.Keywords: disaster impact, safe school, programs, children, youth
Procedia PDF Downloads 3671679 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode
Procedia PDF Downloads 3011678 Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C
Authors: R. S. Rajpurohit, N. C. Santhi Srinivas, Vakil Singh
Abstract:
Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region.Keywords: asymmetric cyclic loading, ratcheting fatigue, mean stress, stress amplitude, stress rate, plastic strain
Procedia PDF Downloads 2751677 Bounds on the Laplacian Vertex PI Energy
Authors: Ezgi Kaya, A. Dilek Maden
Abstract:
A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. Let G be a graph with n vertices and m edges. For a given edge uv, the quantity nu(e) denotes the number of vertices closer to u than v, the quantity nv(e) is defined analogously. The vertex PI index defined as the sum of the nu(e) and nv(e). Here the sum is taken over all edges of G. The energy of a graph is defined as the sum of the eigenvalues of adjacency matrix of G and the Laplacian energy of a graph is defined as the sum of the absolute value of difference of laplacian eigenvalues and average degree of G. In theoretical chemistry, the π-electron energy of a conjugated carbon molecule, computed using the Hückel theory, coincides with the energy. Hence results on graph energy assume special significance. The Laplacian matrix of a graph G weighted by the vertex PI weighting is the Laplacian vertex PI matrix and the Laplacian vertex PI eigenvalues of a connected graph G are the eigenvalues of its Laplacian vertex PI matrix. In this study, Laplacian vertex PI energy of a graph is defined of G. We also give some bounds for the Laplacian vertex PI energy of graphs in terms of vertex PI index, the sum of the squares of entries in the Laplacian vertex PI matrix and the absolute value of the determinant of the Laplacian vertex PI matrix.Keywords: energy, Laplacian energy, laplacian vertex PI eigenvalues, Laplacian vertex PI energy, vertex PI index
Procedia PDF Downloads 2451676 The Study of Wetting Properties of Silica-Poly (Acrylic Acid) Thin Film Coatings
Authors: Sevil Kaynar Turkoglu, Jinde Zhang, Jo Ann Ratto, Hanna Dodiuk, Samuel Kenig, Joey Mead
Abstract:
Superhydrophilic, crack-free thin film coatings based on silica nanoparticles were fabricated by dip-coating method. Both thermodynamic and dynamic effects on the wetting properties of the thin films were investigated by modifying the coating formulation via changing the particle-to-binder ratio and weight % of silica in solution. The formulated coatings were characterized by a number of analyses. Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Scanning electron microscope (SEM) images were taken to examine the morphology of the coating surface. Atomic force microscopy (AFM) analysis was done to study surface topography. The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for the superhydrophilic behavior of the films. In addition, surface chemistry, compared to surface roughness, was found to be a primary factor affecting the wetting properties of the thin film coatings.Keywords: poly (acrylic acid), silica nanoparticles, superhydrophilic coatings, surface wetting
Procedia PDF Downloads 1341675 The Effects of pH on the Electrochromism in Nickel Oxide Films
Authors: T. Taşköprü, M. Zor, E. Turan
Abstract:
The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.Keywords: nickel oxide, XRD, SEM, cyclic voltammetry
Procedia PDF Downloads 3061674 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder
Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy
Abstract:
The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.Keywords: powder injection molding, sintering, particle size, stainless steels
Procedia PDF Downloads 365