Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7611

Search results for: tribological properties

7611 Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy

Authors: Rudolf L. Kanyane, Nicolaus Malatji, Patritia A. Popoola

Abstract:

Tribological failure of materials during application can lead to catastrophic events which also carry economic penalties. High entropy alloys (HEAs) have shown outstanding tribological properties in applications such as mechanical parts were moving parts under high friction are required. This work aims to investigate the effect of sintering temperature on microhardness properties and tribological properties of novel equiatomic TiAlMoSiW HEAs fabricated via spark plasma sintering. The effect of Spark plasma sintering temperature on morphological evolution and phase formation was also investigated. The microstructure and the phases formed for the developed HEAs were examined using scanning electron microscopy (SEM) and X-ray diffractometry (XRD) respectively. The microhardness and tribological properties were studied using a diamond base microhardness tester Rtec tribometer. The developed HEAs showed improved mechanical properties as the sintering temperature increases.

Keywords: sintering, high entropy alloy, microhardness, tribology

Procedia PDF Downloads 67
7610 The Tribological Behaviors of Vacuum Gas Nitriding Titanium and Steel Substrates at Different Process Temperatures

Authors: Hikmet Cicek

Abstract:

Metal nitrides show excellence tribological properties and they used for especially on machine parts. In this work, the vacuum gas nitriding proses were applied to the titanium, D2 and 52100 steel substrates at three different proses temperatures (500 °C, 600°C and 700 °C). Structural, mechanical and tribological properties of the samples were characterized. X-Ray diffractometer, scanning electron microscope and energy dispersive spectroscopy analyses were conducted to determine structural properties. Microhardness test and pin-on-disc wear test were made to observe tribological properties. Coefficient of friction, wear rate and wear traces were examined comparatively. According to the test results, the process temperature very effective parameter for the vacuum gas nitriding method.

Keywords: gas nitriding, tribology, wear, coating

Procedia PDF Downloads 138
7609 Tribological Behaviour Improvement of Lubricant Using Copper (II) Oxide Nanoparticles as Additive

Authors: M. A. Hassan, M. H. Sakinah, K. Kadirgama, D. Ramasamy, M. M. Noor, M. M. Rahman

Abstract:

Tribological properties that include nanoparticles are an alternative to improve the tribological behaviour of lubricating oil, which has been investigated by many researchers for the past few decades. Various nanostructures can be used as additives for tribological improvement. However, this also depends on the characteristics of the nanoparticles. In this study, tribological investigation was performed to examine the effect of CuO nanoparticles on the tribological behaviour of Syntium 800 SL 10W−30. Three parameters used in the analysis using the wear tester (piston ring) were load, revolutions per minute (rpm), and concentration. The specifications of the nanoparticles, such as size, concentration, hardness, and shape, can affect the tribological behaviour of the lubricant. The friction and wear experiment was conducted using a tribo-tester and the Response Surface Methodology method was used to analyse any improvement of the performance. Therefore, two concentrations of 40 nm nanoparticles were used to conduct the experiments, namely, 0.005 wt % and 0.01 wt % and compared with base oil 0 wt % (control). A water bath sonicator was used to disperse the nanoparticles in base oil, while a tribo-tester was used to measure the coefficient of friction and wear rate. In addition, the thermal properties of the nanolubricant were also measured. The results have shown that the thermal conductivity of the nanolubricant was increased when compared with the base oil. Therefore, the results indicated that CuO nanoparticles had improved the tribological behaviour as well as the thermal properties of the nanolubricant oil.

Keywords: concentration, improvement, tribological, copper (II) oxide, nano lubricant

Procedia PDF Downloads 360
7608 Effects of Ingredients Proportions on the Friction Performance of a Brake Pad Material

Authors: Rukiye Ertan

Abstract:

In this study, a brake friction material composition was investigated experimentally related to the effects of the friction modifiers and abrasive proportions on the tribological properties. The investigation was based on a simple experimental formulation, consisting of seven friction materials with different proportions of abrasives (ZrSiO4 and Fe2O3) and friction modifiers (cashew dust). The friction materials were evaluated using a Chase friction tester. The tribological properties, such as the wear resistance and friction stability, depending on the test temperature and the number of braking were obtained related to the friction material ingredient proportions. The results showed that the tribological properties of the brake pad were greatly affected by the abrasive and then cashew dust proportion.

Keywords: brake pad, friction, wear, abrasives

Procedia PDF Downloads 362
7607 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.

Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology

Procedia PDF Downloads 297
7606 Role of Amount of Glass Fibers in PAEK Composites to Control Mechanical and Tribological Properties

Authors: Jitendra Narayan Panda, Jayashree Bijwe, Raj K. Pandey

Abstract:

PAEK (Polyaryl ether ketone) being a high-performance polymer, is currently being explored for its tribo-potential by incorporating various fibers, solid lubricants. In this work, influence of amount (30 and 40 %) of short glass fibers (GF) in two composites containing PAEK (60 and 50 %) and synthetic graphite (10 %) on mechanical and tribological behaviour was studied. The composites were developed by injection molding and evaluated in adhesive wear mode (pin on disc configuration) against mild steel disc. The load and speed were selected as variable input parameters while coefficient of friction (µ), specific wear rate (K0) and PVlimit (pressure × velocity) values were selected as output parameters for performance evaluation. Although higher amount of GF lead to better mechanical properties, tribological properties were not in tune to this. Overall, µ and K0 for both composites were in the range 0.04-0.08 and 3-8x 10-16 m3/Nm respectively and decreased with increase in applied PV values till failure was observed. PVlimit was indicated by 112 and 100 MPa m/s. Such high PVlimit values are not reported for any polymer composites running in dry conditions in the literature. The mechanical properties of the C40 composite (40 % GF) proved superior to C30 composite (30 % GF). However, all tribological properties of C40 were inferior to C30. It exhibited higher µ, higher K0 and slightly lower PVlimit value. The higher % fibers proved detrimental for tribo-performance and worn surface analysis by SEM & EDAX was done on the discs & pins to understand wear mechanisms.

Keywords: PAEK composites, pin-on-disk, PV limit, friction

Procedia PDF Downloads 126
7605 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material

Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike

Abstract:

Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.

Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance

Procedia PDF Downloads 203
7604 Tribological Properties of Different Mass Ratio High Velocity Oxygen Fuel-Sprayed Al₂O₃-TiO₂ Coatings on Ti-6Al-4V Alloy

Authors: Mehmet Fahri Sarac, Gokcen Akgun

Abstract:

Ti–6Al–4V alloys are widely used in biomedical industries because of its attractive mechanical and physicochemical properties. However, they have poor wear resistance. High velocity oxygen fuel (HVOF) coatings were investigated as a way to improve the wear resistance of this alloy. In this paper, different mass ratio of Al₂O₃-TiO₂ powders (60/40, 87/13 and 97/3) was employed to enhance the tribological properties of Ti–6Al–4V. The tribological behavior was investigated by wear tests using ball-on-disc and pin-on-disc tribometer. The microstructures of the contact surfaces were determined by a scanning electron microscopy before and after the test to study the wear mechanism. Uncoated and coated surfaces after wear test are also subjected to micro-hardness tests. The tribological test results showed that the microhardness, friction and wear resistance of coated Ti-6Al-4V alloys increases by increasing TiO₂ content in the powder composite when other experimental conditions were constant. Finally, Al₂O₃-TiO₂ powder composites for the investigated conditions, both coating samples had satisfactory values of friction and wear resistance, and they could be suitable candidates for Ti–6Al–4V material.

Keywords: HVOF (High Velocity Oxygen Fuel), Al₂O₃-TiO₂, Ti-6Al-4V, tribology

Procedia PDF Downloads 103
7603 Magnetic Field Induced Tribological Properties of Magnetic Fluid

Authors: Kinjal Trivedi, Ramesh V. Upadhyay

Abstract:

Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction.

Keywords: four ball tester, magnetic fluid, nanolubricant, tribology

Procedia PDF Downloads 164
7602 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys

Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng

Abstract:

Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.

Keywords: oxide coating, PEO, tribological properties, ZA27

Procedia PDF Downloads 414
7601 Tribological Characterization of ZrN Coatings on Titanium Modified Austenitic Stainless Steel

Authors: Mohammad Farooq Wani

Abstract:

Tribological characterization of ZrN coatings deposited on titanium modified austenitic stainless steel (alloy D-9) substrates has been investigated. The coatings were deposited in the deposition temperature range 300–873 K, using the pulsed magnetron sputtering technique. Scratch adhesion tests were carried out using Rc indenter under various conditions of load. Detailed tribological studies were conducted to understand the friction and wear behaviour of these coatings. For all tribological studies steel and ceramic balls were used as counter face material. 3D-Surface profiles of all wear tracks was carried out using 3D universal profiler.

Keywords: ZrN, Surafce coating, thin film, tribology, friction and wear

Procedia PDF Downloads 366
7600 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel

Authors: Soroush Momeni

Abstract:

Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.

Keywords: PVD coatings, sliding wear, hardness, tool steel

Procedia PDF Downloads 211
7599 Characterization of a Pure Diamond-Like Carbon Film Deposited by Nanosecond Pulsed Laser Deposition

Authors: Camilla G. Goncalves, Benedito Christ, Walter Miyakawa, Antonio J. Abdalla

Abstract:

This work aims to investigate the properties and microstructure of diamond-like carbon film deposited by pulsed laser deposition by ablation of a graphite target in a vacuum chamber on a steel substrate. The equipment was mounted to provide one laser beam. The target of high purity graphite and the steel substrate were polished. The mechanical and tribological properties of the film were characterized using Raman spectroscopy, nanoindentation test, scratch test, roughness profile, tribometer, optical microscopy and SEM images. It was concluded that the pulsed laser deposition (PLD) technique associated with the low-pressure chamber and a graphite target provides a good fraction of sp3 bonding, that the process variable as surface polishing and laser parameter have great influence in tribological properties and in adherence tests performance. The optical microscopy images are efficient to identify the metallurgical bond.

Keywords: characterization, DLC, mechanical properties, pulsed laser deposition

Procedia PDF Downloads 74
7598 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 142
7597 Performance Evaluation of Solid Lubricant Characteristics at Different Sliding Conditions

Authors: Suresh Kumar Reddy Narala, Rakesh Kumar Gunda

Abstract:

In modern industry, mechanical parts are subjected to friction and wear, leading to heat generation, which affects the reliability, life and power consumption of machinery. To overcome the tribological losses due to friction and wear, a significant portion of lubricant with high viscous properties allows very smooth relative motion between two sliding surfaces. Advancement in modern tribology has facilitated the use of applying solid lubricants in various industrial applications. Solid lubricant additives with high viscous thin film formation between the sliding surfaces can adequately wet and adhere to a work surface. In the present investigation, an attempt has been made to investigate and evaluate the tribological studies of various solid lubricants like MoS¬2, graphite, and boric acid at different sliding conditions. The base oil used in this study was SAE 40 oil with a viscosity of 220 cSt at 400C. The tribological properties were measured on pin-on-disc tribometer. An experimental set-up has been developed for effective supply of solid lubricants to the pin-disc interface zone. The results obtained from the experiments show that the friction coefficient increases with increase in applied load for all the considered environments. The tribological properties with MoS2 solid lubricant exhibit larger load carrying capacity than that of graphite and boric acid. The present research work also contributes to the understanding of the behavior of film thickness distribution of solid lubricant using potential contact technique under different sliding conditions. The results presented in this research work are expected to form a scientific basis for selecting the best solid lubricant in various industrial applications for possible minimization of friction and wear.

Keywords: friction, wear, temperature, solid lubricant

Procedia PDF Downloads 278
7596 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 297
7595 A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding

Authors: Sukhdeep Singh Gill, Gurbhinder Singh Brar

Abstract:

In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint.

Keywords: aluminum, friction stir welding, magnesium, structural applications, tool design

Procedia PDF Downloads 96
7594 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties

Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid

Abstract:

High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.

Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology

Procedia PDF Downloads 240
7593 Mechanical Analysis and Characterization of Friction Stir Processed Aluminium Alloy

Authors: Jaswinder Kumar, Kulbir Singh Sandhu

Abstract:

Friction stir processing (FSP) is a solid-state surface processing technique. A single-pass FSP was performed on Aluminum alloy at combinations of different tool rotational speeds with cylindrical threaded pin profiled tool. The effect of these parameters on tribological properties was studied. The wear resistance is found to be increased from base metal to a single pass FSP sample. The results revealed that with an increase in tool rotational speed, the wear rate increases. The high heat generation causes matrix softening, which results in an increased wear rate; on the other hand, high heat generation leads to coarse grains, which also affected tribological properties. Furthermore, Microstructure results showed that FSPed alloy has a more refined grain structure as compare to the base material, which may be resulted in enhancement of hardness and resistance to wear in FSP.

Keywords: friction stir processing, aluminium alloy, microhardness, microstructure

Procedia PDF Downloads 41
7592 Elaboration and Investigation of the New Ecologically Clean Friction Composite Materials on the Basis of Nanoporous Raw Materials

Authors: Lia Gventsadze, Elguja Kutelia, David Gventsadze

Abstract:

The purpose of the article is to show the possibility for the development of a new generation, eco-friendly (asbestos free) nano-porous friction materials on the basis of Georgian raw materials, along with the determination of technological parameters for their production, as well as the optimization of tribological properties and the investigation of structural aspects of wear peculiarities of elaborated materials using the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) methods. The study investigated the tribological properties of the polymer friction materials on the basis of the phenol-formaldehyde resin using the porous diatomite filler modified by silane with the aim to improve the thermal stability, while the composition was modified by iron phosphate, technical carbon and basalt fibre. As a result of testing the stable values of friction factor (0.3-0,45) were reached, both in dry and wet friction conditions, the friction working parameters (friction factor and wear stability) remained stable up to 500 OC temperatures, the wear stability of gray cast-iron disk increased 3-4 times, the soundless operation of materials without squeaking were achieved. Herewith it was proved that small amount of ingredients (5-6) are enough to compose the nano-porous friction materials. The study explains the mechanism of the action of nano-porous composition base brake lining materials and its tribological efficiency on the basis of the triple phase model of the tribo-pair.

Keywords: brake lining, friction coefficient, wear, nanoporous composite, phenolic resin

Procedia PDF Downloads 329
7591 Wear Resistance and Mechanical Performance of Ultra-High Molecular Weight Polyethylene Influenced by Temperature Change

Authors: Juan Carlos Baena, Zhongxiao Peng

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in industrial and biomedical fields. The slippery nature of UHMWPE makes this material suitable for surface bearing applications, however, the operational conditions limit the lubrication efficiency, inducing boundary and mixed lubrication in the tribological system. The lack of lubrication in a tribological system intensifies friction, contact stress and consequently, operating temperature. With temperature increase, the material’s mechanical properties are affected, and the lifespan of the component is reduced. The understanding of how mechanical properties and wear performance of UHMWPE change when the temperature is increased has not been clearly identified. The understanding of the wear and mechanical performance of UHMWPE at different temperature is important to predict and further improve the lifespan of these components. This study evaluates the effects of temperature variation in a range of 20 °C to 60 °C on the hardness and the wear resistance of UHMWPE. A reduction of the hardness and wear resistance was observed with the increase in temperature. The variation of the wear rate increased 94.8% when the temperature changed from 20 °C to 50 °C. Although hardness is regarded to be an indicator of the material wear resistance, this study found that wear resistance decreased more rapidly than hardness with the temperature increase, evidencing a low material stability of this component in a short temperature interval. The reduction of the hardness was reflected by the plastic deformation and abrasion intensity, resulting in a significant wear rate increase.

Keywords: hardness, surface bearing, tribological system, UHMWPE, wear

Procedia PDF Downloads 203
7590 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 189
7589 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process

Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac

Abstract:

Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.

Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction

Procedia PDF Downloads 198
7588 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles

Authors: Dhuha Albusalih, David Weston, Simon Gill

Abstract:

Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.

Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites

Procedia PDF Downloads 222
7587 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 295
7586 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate

Procedia PDF Downloads 282
7585 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 67
7584 High-Temperature Tribological Characterization of Nano-Sized Silicon Nitride + 5% Boron Nitride Ceramic Composite

Authors: Mohammad Farooq Wani

Abstract:

Tribological studies on nano-sized ß-silicon nitride+5% BN were carried out in dry air at high temperatures to clarify the lack of consensus in the bibliographic data concerning the Tribological behavior of Si3N4 ceramics and effect of doped hexagonal boron nitride on coefficient of friction and wear coefficient at different loads and elevated temperatures. The composites were prepared via high energy mechanical milling and subsequent spark plasma sintering using Y2O3 and Al2O3 as sintering additives. After sintering, the average crystalline size of Si3N4 was observed to be 50 nm. Tribological tests were performed with temperature and Friction coefficients 0.16 to 1.183 and 0.54 to 0.71 were observed for Nano-sized ß-silicon nitride+5% BN composite under normal load of 10N-70 N and over high temperature range of 350 ºC-550 ºC respectively. Specific wear coefficients from 1.33x 10-4 mm3N-1m-1 to 4.42x 10-4 mm3N-1m-1 were observed for Nano-sized Si3N4 + 5% BN composite against Si3N4 ball as tribo-pair counterpart over high temperature range of 350 ºC-550 ºC while as under normal load of 10N to70N Specific wear coefficients of 6.91x 10-4 mm3N-1m-1 to 1.70x 10-4 were observed. The addition of BN to the Si3N4 composite resulted in a slight reduction of the friction coefficient and lower values of wear coefficient.

Keywords: ceramics, tribology, friction and wear, solid lubrication

Procedia PDF Downloads 313
7583 Study of the Tribological Behavior of a Sliding Contact Brass-Steel Couple with Electrical Current

Authors: C. Boubechou, A. Bouchoucha, H. Zaidi

Abstract:

The aim of this paper is to study the tribological behavior of a dynamic contact steel-brass couple with electric current. This study looks at a dry contact brass-steel couple where friction and wear are studied in terms of mechanical and electrical parameters. For this reason, a tribometer, pin-rotary disc is used in an atmospheric atmosphere. The test parameters are as follows: the normal load (5-30N), the sliding speed (0.1 to 0.5 m / s) and the electric current (3-10A). The duration of each test is 30 minutes. The experimental results show that these parameters have a significant effect on the tribological behavior of the couple studied. The discussion of results is based on observations, using an optical microscope, MEB and a profilometer, worn surfaces and interface phenomena resulting from the process of sliding contact.

Keywords: brass-steel couple, dry friction, electrical current, morphology, normal load, sliding speeds, wear

Procedia PDF Downloads 200
7582 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite

Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza

Abstract:

The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.

Keywords: composites, mineral filler, tailings of scheelite, tribology

Procedia PDF Downloads 93