Search results for: Organic Rankine Cycle (ORC)
2204 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy
Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo
Abstract:
Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution
Procedia PDF Downloads 312203 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils
Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang
Abstract:
For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics
Procedia PDF Downloads 2282202 Characterization of Molecular Targets to Mediate Skin Itch and Inflammation
Authors: Anita Jäger, Andrew Salazar, Jörg von Hagen, Harald Kolmar
Abstract:
In the treatment of individuals with sensitive and psoriatic skin, several inflammation and itch-related molecular and cellular targets have been identified, but many of these have yet to be characterized. In this study, we present two potential targets in the skin that can be linked to the inflammation and itch cycle. 11ßHSD1 is the enzyme responsible for converting inactive cortisone to active cortisol used to transmit signals downstream. The activation of the receptor NK1R correlates with promoting inflammation and the perception of itch and pain in the skin. In this study, both targets have been investigated based on their involvement in inflammation. The role of both identified targets was characterized based on the secretion of inflammation cytokine- IL6, IL-8, and CCL2, as well as phosphorylation and signaling pathways. It was found that treating skin cells with molecules able to inhibit inflammatory pathways results in the reduction of inflammatory signaling molecules secreted by skin cells and increases their proliferative capacity. Therefore, these molecular targets and their associated pathways show therapeutic potential and can be mitigated via small molecules. This research can be used for further studies in inflammation and itch pathways and can help to treat pathological symptoms.Keywords: inflammation, itch, signaling pathway, skin
Procedia PDF Downloads 1232201 Synthesis of Green Fuel Additive from Waste Bio-Glycerol
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai
Abstract:
Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-acetone, bio-glycerol, acetylation, solketal
Procedia PDF Downloads 2632200 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis
Authors: Shenghu Feng, Jun Cheng
Abstract:
The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress
Procedia PDF Downloads 1542199 Effect of Inventory Management on Financial Performance: Evidence from Nigerian Conglomerate Companies
Authors: Adamu Danlami Ahmed
Abstract:
Inventory management is the determinant of effective and efficient work for any manager. This study looked at the relationship between inventory management and financial performance. The population of the study comprises all conglomerate quoted companies in the Nigerian Stock Exchange market as at 31st December 2010. The scope of the study covered the period from 2010 to 2014. Descriptive, Pearson correlation and multiple regressions are used to analyze the data. It was found that inventory management is significantly related to the profitability of the company. This entails that an efficient management of the inventory cycle will enhance the profitability of the company. Also, lack of proper management of it will hinder the financial performance of organizations. Based on the results, it was recommended that a conglomerate company should try to see that inventories are kept to a minimum, as well as make sure the proper checks are maintained to make sure only needed inventories are in the store. As well as to keep track of the movement of goods, in order to avoid unnecessary delay of finished and work in progress (WIP) goods in the store and warehouse.Keywords: finished goods, work in progress, financial performance, inventory
Procedia PDF Downloads 2332198 Electrodeposition of NiO Films from Organic Solvent-Based Electrolytic Solutions for Solar Cell Application
Authors: Thierry Pauporté, Sana Koussi, Fabrice Odobel
Abstract:
The preparation of semiconductor oxide layers and structures by soft techniques is an important field of research. Higher performances are expected from the optimizing of the oxide films and then use of new methods of preparation for a better control of their chemical, morphological, electrical and optical properties. We present the preparation of NiO by electrodeposition from pure polar aprotic medium and mixtures with water. The effect of the solvent, of the electrochemical deposition parameters and post-deposition annealing treatment on the structural, morphological and optical properties of the films is investigated. We remarkably show that the solvent is inserted in the deposited layer and act as a blowing agent, giving rise to mesoporous films after elimination by thermal annealing. These layers of p-type oxide have been successfully used, after sensitization by a dye, in p-type dye-sensitized solar cells. The effects of the solvent on the layer properties and the application of these layers in p-type dye-sensitized solar cells are described.Keywords: NiO, layer, p-type sensitized solar cells, electrodeposition
Procedia PDF Downloads 2972197 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream
Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes
Abstract:
Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution
Procedia PDF Downloads 1872196 In-silico Design of Riboswitch Based Potent Inhibitors for Vibrio cholera
Authors: Somdutt Mujwar, Kamal Raj Pardasani
Abstract:
Cholera pandemics are caused by facultative pathogenic Vibrio cholera bacteria persisting in the countries having warmer climatic conditions as well as the presence of large water bodies with huge amount of organic matter, it is responsible for the millions of deaths annually. Presently the available therapy for cholera is Oral Rehydration Therapy (ORT) with an antibiotic drug. Excessive utilization of life saving antibiotics drugs leads to the development of resistance by the infectious micro-organism against the antibiotic drugs resulting in loss of effectiveness of these drugs. Also, many side effects are also associated with the use of these antibiotic drugs. This riboswitch is explored as an alternative drug target for Vibrio cholera bacteria to overcome the problem of drug resistance as well as side effects associated with the antibiotics drugs. The bacterial riboswitch is virtually screened with 24407 legends to get possible drug candidates. The 10 ligands showing best binding with the riboswitch are selected to design a pharmacophore, which can be utilized to design lead molecules by using the phenomenon of bioisosterism.Keywords: cholera, drug design, ligand, riboswitch, pharmacophore
Procedia PDF Downloads 3512195 Synthesis of Oxygenated Fuel Additive from Bio-Glycerol
Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent, and it is odorless organic liquid used as a fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-glycerol, catalyst, green additive, biomass
Procedia PDF Downloads 2422194 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst
Authors: Kuan Lun Pan, Moo Been Chang
Abstract:
Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis
Procedia PDF Downloads 1652193 Characterization of Poly(Hydroxyethyl Methacrylate-Glycidyl Methacrylate)-Imino Diacetic Acid Membrane to Adsorbing Leather Dye
Authors: Ahmet Aslan, Safiye Meric Acikel, Raziye Hilal Senay, Sinan Akgol
Abstract:
Different chemical substances and too much water are used during leather production. Therefore, the waste water load of the leather industry is harmful to the environment. One of the pollution sources is the production of leather coloring process is a further need to focus on the removal of dye waste waters subject. These water-soluble dyes have a small organic molecular size. Besides the environmental hazards, these dyes cannot be underestimated, they also have harmful effects on human health. In this study, poly(hydroxyethyl methacrylate-glycidyl methacrylate) p(HEMA-GMA) hydrogel membranes were synthesized by UV polymerization method. The hydrogel synthesized is modified with imino diacetic acid (IDA) and then chelated with Cr (III) ions. The chelating capacity of the membranes was determined according to the time, pH and concentration parameters. Dynamic swelling test, elemental analysis, ninhydrin analysis and adsorption, desorption and reusability performances of membranes were also determined.Keywords: adsorption, dye, leather, p(HEMA-GMA)-IDA
Procedia PDF Downloads 1812192 Maximizing the Output of Solar Photovoltaic System
Authors: Vipresh Mehta , Aman Abhishek, Jatin Batra, Gautam Iyer
Abstract:
Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system.Keywords: PV panels, efficiency improvement, active cooling, quantum dots, organic-inorganic hybrid 3D panel, ground water tunneling
Procedia PDF Downloads 7722191 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO
Procedia PDF Downloads 4402190 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis
Procedia PDF Downloads 3012189 The Women's Orchestra and Music in Auschwitz-Birkenau: A Qualitative Study on Nazi Manipulation
Authors: K. T. Kohler
Abstract:
Typically in war, force involves physical violence, though those who perpetrated the Holocaust expanded manipulation techniques to include mental violence. This qualitative research study was conducted to understand the effects that the music of the Women’s Orchestra of Auschwitz-Birkenau had on women prisoners during World War II. Over 100 testimonies from the USC Shoah Foundation’s Visual History Archive reveal that the orchestra’s music had a profoundly distressing effect on many of the women in the camp. Led by Gustav Mahler’s granddaughter, Alma Rosé, the orchestra rhythmed the life cycle of the camp, from marching to and from work, Sunday concerts, welcoming transports, to the prisoners’ walk to gas chambers. What surfaced from these testimonies was that the more technical the exposure a woman had to music before camp, the more disturbing its effect. The juxtaposition of beauty with the visible horror of the camp thrust them into an impossible state where suicide became a plausible alternative. By exploiting the Women’s Orchestra, the Nazis made music a critical component of manipulation within Auschwitz-Birkenau.Keywords: Alma Rosé, Auschwitz-Birkenau, camp life, concert, Holocaust, music, Oświęcim, Poland, women’s orchestra
Procedia PDF Downloads 1852188 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge
Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas
Abstract:
Compressed Natural Gas (CNG) mainly consists of Methane CH₄ and has a low carbon to hydrogen ratio relative to other hydrocarbons. As a result, it has the potential to reduce CO₂ emissions by more than 20% relative to conventional fuels like diesel or gasoline Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels whether they are gaseous or liquid, its main component, CH₄, burns at a slower rate than conventional fuels A higher pressure and a leaner cylinder environment will overemphasize slow burn characteristic of CH₄. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJIs, which contain small orifices that connect the prechamber to the main chamber, scavenging is one of the main factors that reduce TJI performance. Specifically, providing the right mixture of fuel and air has been identified as a key challenge. The reason for this is the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem that combustion residual gases such as CO₂, CO and NOx from the previous combustion cycle dilute the pre- chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By applying air to the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of combustion. This paper investigates the 3D-simulated combustion characteristics of a Direct Injected (DI-CNG) fuelled SI en- gine with a pre-chamber equipped with an air channel by using AVL FIRE software. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 Revolutions Per Minute (RPM), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as the baseline. After validating simulation data, baseline engine conditions were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the simulated (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and spark plug. In conclusion, the active pre-chamber with an air channel demon-strated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.Keywords: turbulent jet ignition, active air control turbulent jet ignition, pre-chamber ignition system, active and passive pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions
Procedia PDF Downloads 872187 Reproductive Behavior of Caspian Red Deer (Cervus Elaphus Maral) in Wildlife Refuge of Semeskande, Sari
Authors: Behrang Ekrami, Amin Tamadon
Abstract:
Caspian red deer or maral (Cervus elaphus maral) is a ruminant from the family of Cervidae. Maintenance and protection of maral requires knowing the behavioral, physiological, environmental characteristics and factors harmful to this species. In this article, reproductive and behavioral traits of this species in both sexes are presented based on observations and the available records of protected deer in Wildlife Refuge of Semeskande, Sari (one of the sites that preserve the maral in the Free Zones of Hyrcanian forest) from 2006 to 2011. Hart characteristics including sexual behavior, apparent changes during reproductive season and reproductive physiology; and hind characteristics including of ovulation, reproductive cycle, mating, pregnancy and parturition, have been evaluated. Identification of maral reproductive characteristics in Wildlife Refuge of Semeskande, Sari is one of the most important information requirements to preserve and breed this species and will open up new routes for performing new methods of reproduction of this species in Iran wildlife parks or other refuge areas.Keywords: caspian red deer, reproduction, behavior, Iran
Procedia PDF Downloads 4892186 Assessing Indicators, Challenges and Benefits of Sustainable Procurement in Construction Projects
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Procurement is a key process in construction project management. The present construction procurement practices have been extensively analyzed for disregarding sustainability in the project life cycle. Currently, there is a gap of information on status-quo of sustainable procurement in construction field. Thus, the aim of this study is to review sustainable procurement practices in the construction field. Disregard of three sustainability pillars is one of the major drawbacks of present construction procurement practices. Sustainable procurement is a developing idea that can enhance procurement practices and improve the sustainability performance of the construction projects. At present, sustainable procurement is still not entirely used in the construction projects. A comprehensive literature review indicated that the construction industry is still not entirely informed about the benefits and challenges of using sustainable procurement, and about important indicators that play major impacts on those benefits and challenges. This study assesses the major indicator, benefits and challenges encountered in applying sustainable procurement in the construction industry. In addition, this study investigates understanding of construction professionals on the benefits and challenges of utilizing sustainable procurement for construction projects through selected indicators that are categorized according to society and community needs.Keywords: sustainability, sustainable development, sustainable procurement, procurement, construction industry
Procedia PDF Downloads 1942185 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide
Procedia PDF Downloads 1692184 Biological Treatment of Tannery Wastewater Using Pseudomonas Strains
Authors: A. Benhadji, R. Maachi
Abstract:
Environmental protection has become a major economic development issues. Indeed, the environment has become both market growth factor and element of competition. It is now an integral part of all industrial strategies. Ecosystem protection is based on the reduction of the pollution load in the treatment of liquid waste. The physicochemical techniques are commonly used which a transfer of pollution is generally found. Alternative to physicochemical methods is the use of microorganisms for cleaning up the waste waters. The objective of this research is the evaluation of the effects of exogenous added Pseudomonas strains on pollutants biodegradation. The influence of the critical parameters such as inoculums concentration and duration treatment are studied. The results show that Pseudomonas putida is found to give a maximum reduction in chemical organic demand (COD) in 4 days of incubation. However, toward to protect biological pollution of environment, the treatment is achieved by electro coagulation process using aluminium electrodes. The results indicate that this process allows disinfecting the water and improving the electro coagulated sludge quality.Keywords: tannery, pseudomonas, biological treatment, electrocoagulation process, sludge quality
Procedia PDF Downloads 3682183 Categorization of Biosolids, a Vital Biological Resource for Sustainable Agriculture
Authors: Susmita Sharma, Pankaj Pathak
Abstract:
Biosolids are by-products of municipal and industrial wastewater treatment process. The generation of the biosolids is increasing at an alarming rate due to the implementation of strict environmental legislation to improve the quality of discharges from wastewater treatment plant. As such, proper management and safe disposal of sewage sludge have become a worldwide topic of research. Biosolids, rich in organic matter and essential micro and macronutrients; can be used as a soil conditioner, to cut fertilizer costs and create favorable conditions for vegetation. However, it also contains pathogens and heavy metals which are undesirable as they are harmful to both humans and the environment. Therefore, for safe utilization of biosolids for land application purposes, categorization of the contaminant and pathogen is mandatory. In this context, biosolids collected from a wastewater treatment plant in Maharashtra are utilized to determine its physical, chemical and microbiological attributes. This study would ascertain, if the use of these materials from the specific site, are suitable for agriculture. Further, efforts have also been made to present the internationally acceptable legal standards and guidelines for biosolids management or application.Keywords: biosolids, sewage, heavy metal, sustainable agriculture
Procedia PDF Downloads 3272182 Metrics and Methods for Improving Resilience in Agribusiness Supply Chains
Authors: Golnar Behzadi, Michael O'Sullivan, Tava Olsen, Abraham Zhang
Abstract:
By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions.Keywords: agribusiness supply chain, recovery, resilience metric, risk management
Procedia PDF Downloads 3972181 Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design
Authors: Semra Çoruh, Yusuf Tibet
Abstract:
Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green.Keywords: malachite green, adsorption, red mud, fly ash, full factorial design
Procedia PDF Downloads 4762180 Reflection on the Resilience Construction of Megacities Under the Background of Territorial Space Governance
Authors: Xin Jie Li
Abstract:
Due to population agglomeration, huge scale, and complex activities, megacities have become risk centers. To resist the risks brought by development uncertainty, the construction of resilient cities has become a common strategic choice for megacities. As a key link in promoting the modernization of the national governance system and governance capacity, optimizing the layout of national land space that focuses on ecology, production, and life and improving the rationality of spatial resource allocation are conducive to fundamentally promoting the resilience construction of megacities. Therefore, based on the perspective of territorial space governance, this article explores the potential risks faced by the territorial space of megacities and proposes possible paths for the resilience construction of megacities from four aspects: promoting the construction of a resilience system throughout the entire life cycle, constructing a disaster prevention and control system with ecological resilience, creating an industrial spatial pattern with production resilience, and enhancing community resilience to anchor the front line of risk response in megacities.Keywords: mega cities, potential risks, resilient city construction, territorial and spatial governance
Procedia PDF Downloads 572179 Arsenic Removal by Membrane Technology, Adsorption and Ion Exchange: An Environmental Lifecycle Assessment
Authors: Karan R. Chavan, Paula Saavalainen, Kumudini V. Marathe, Riitta L. Keiski, Ganapati D. Yadav
Abstract:
Co-contamination of groundwaters by arsenic in different forms is often observed around the globe. Arsenic is introduced into the waters by several mechanisms and different technologies are proposed and practiced for effective removal. The assessment of three prominent technologies, namely, adsorption, ion exchange and nanofiltration was carried out in this study based on lifecycle methodology. The life of the technologies was divided into two stages: cradle to gate (C-G) and gate to gate (G-G), in order to find out the impacts in different categories of environmental burdens, human health and resource consumption. Life cycle inventory was estimated by use of models and design equations concerning with the different technologies. Regeneration was considered for each technology and over the course of its full lifetime. The impact values of adsorption technology for the C-G stage are greater by thousand times (103) and million times (106) compared to ion exchange and nanofiltration technologies, respectively. The impact of G-G stage of the lifecycle is the major contributor of the impact for all the 3 technologies due to electricity consumption during the operation. Overall, the ion Exchange technology fares well in this study of removal of As (V) only.Keywords: arsenic, nanofiltration, lifecycle assessment, membrane technology
Procedia PDF Downloads 2452178 Preparation of Ag-Doped and MOFs Coupled-LaFeO₃ Nanosheet for Electrochemical CO₂ Conversion
Authors: Iltaf Khan, Munzir H. Suliman, Muhammad Usman
Abstract:
The rapid growth of modern industries has led to increased energy demand and worsened fossil fuel depletion, resulting in global warming, while organic pollutants pose significant threats to aquatic environments due to their stability, insolubleness, and non-biodegradability. So, scientists are investigating high-performance materials to resolve these issues. In this study, we prepared LaFeO₃ nanosheets (LFONS) employing a solvothermal method via a soft template such as polyvinylpyrrolidone (PVP). The LFONS have good performance regarding surface area and charge separation as compared to LaFeO₃ nanoparticles (LFONP). To improve the efficiency of LFONS, it was further modified with Ag and ZIF-67 and utilized for CO₂ conversion. Herein, the results confirm that Ag-doped and ZIF-67 coupled LFONS (ZIF-67/Ag-LFONS) exhibit superior performance compared to pristine LFONP. In addition, the stability tests confirm that our optimal sample is the most active and stable one among various nanocomposites. Ultimately, our studies will open a new pave for cost-effective, eco-friendly, and electroactive nanomaterials for CO₂ conversion.Keywords: LaFeO₃ nanosheets, Ag incorporation, MOFs coupling, CO₂ conversion
Procedia PDF Downloads 512177 The Triple Interpretation of German Historicism and its Theoretical Contribution to Historical Materialism
Authors: Dandan Zhang
Abstract:
Elucidating the original relationship between historical materialism and German historicism from the internal dimension of intellectual history has important theoretical significance for deep understanding and interpretation of the essential characteristics of historical materialism. German historicism contains the triple deduction of scientific historicism, historical relativism, and vitalism. The historicism of science argues for its historical status as science in the name of objective, systematic, and typical research methods, and procedural principles. Historical relativism places history under the specific historical background to study epistemological and methodological issues about the nature of human beings and the value of history. German historicism walks up to natural and cultural relativism on the basis of romanticism. Vitalism emphasizes intuition, will, and experience of life from individuals and places history on the ontology of organic life and vitality. Historical materialism and German historicism have a theoretical relationship in the genetic field. The former criticizes and surpasses the latter. Meanwhile, in the evolution of German historicism, the differences between historical materialism with it are essential features of historical science.Keywords: German historicism, scientific historicism, historical relativism, vitalism, historical materialism
Procedia PDF Downloads 442176 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor
Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez
Abstract:
Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste
Procedia PDF Downloads 1142175 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.Keywords: genetic algorithm, kinematic hardening, material model, objective function
Procedia PDF Downloads 333