Search results for: nitrogen emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2312

Search results for: nitrogen emissions

122 Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana

Authors: Robert Kwame Kpaliba, Dennis Kpakpor Adotey, Yaw Serfor-Armah

Abstract:

Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000).

Keywords: carbonate chemistry, seawater, central atlantic coastline, Ghana, ocean acidification

Procedia PDF Downloads 532
121 Waste Analysis and Classification Study (WACS) in Ecotourism Sites of Samal Island, Philippines Towards a Circular Economy Perspective

Authors: Reeden Bicomong

Abstract:

Ecotourism activities, though geared towards conservation efforts, still put pressures against the natural state of the environment. Influx of visitors that goes beyond carrying capacity of the ecotourism site, the wastes generated, greenhouse gas emissions, are just few of the potential negative impacts of a not well-managed ecotourism activities. According to Girard and Nocca (2017) tourism produces many negative impacts because it is configured according to the model of linear economy, operating on a linear model of take, make and dispose (Ellen MacArthur Foundation 2015). With the influx of tourists in an ecotourism area, more wastes are generated, and if unregulated, natural state of the environment will be at risk. It is in this light that a study on waste analysis and classification study in five different ecotourism sites of Samal Island, Philippines was conducted. The major objective of the study was to analyze the amount and content of wastes generated from ecotourism sites in Samal Island, Philippines and make recommendations based on the circular economy perspective. Five ecotourism sites in Samal Island, Philippines was identified such as Hagimit Falls, Sanipaan Vanishing Shoal, Taklobo Giant Clams, Monfort Bat Cave, and Tagbaobo Community Based Ecotourism. Ocular inspection of each ecotourism site was conducted. Likewise, key informant interview of ecotourism operators and staff was done. Wastes generated from these ecotourism sites were analyzed and characterized to come up with recommendations that are based on the concept of circular economy. Wastes generated were classified into biodegradables, recyclables, residuals and special wastes. Regression analysis was conducted to determine if increase in number of visitors would equate to increase in the amount of wastes generated. Ocular inspection indicated that all of the five ecotourism sites have their own system of waste collection. All of the sites inspected were found to be conducting waste separation at source since there are different types of garbage bins for all of the four classification of wastes such as biodegradables, recyclables, residuals and special wastes. Furthermore, all five ecotourism sites practice composting of biodegradable wastes and recycling of recyclables. Therefore, only residuals are being collected by the municipal waste collectors. Key informant interview revealed that all five ecotourism sites offer mostly nature based activities such as swimming, diving, site seeing, bat watching, rice farming experiences and community living. Among the five ecotourism sites, Sanipaan Vanishing Shoal has the highest average number of visitors in a weekly basis. At the same time, in the wastes assessment study conducted, Sanipaan has the highest amount of wastes generated. Further results of wastes analysis revealed that biodegradables constitute majority of the wastes generated in all of the five selected ecotourism sites. Meanwhile, special wastes proved to be the least generated as there was no amount of this type was observed during the three consecutive weeks WACS was conducted.

Keywords: Circular economy, ecotourism, sustainable development, WACS

Procedia PDF Downloads 192
120 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers

Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava

Abstract:

Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.

Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable

Procedia PDF Downloads 380
119 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 103
118 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 52
117 Spatial Variability of Soil Metal Contamination to Detect Cancer Risk Zones in Coimbatore Region of India

Authors: Aarthi Mariappan, Janani Selvaraj, P. B. Harathi, M. Prashanthi Devi

Abstract:

Anthropogenic modification of the urban environment has largely increased in the recent years in order to sustain the growing human population. Intense industrial activity, permanent and high traffic on the roads, a developed subterranean infrastructure network, land use patterns are just some specific characteristics. Every day, the urban environment is polluted by more or less toxic emissions, organic or metals wastes discharged from specific activities such as industrial, commercial, municipal. When these eventually deposit into the soil, the physical and chemical properties of the surrounding soil is changed, transforming it into a human exposure indicator. Metals are non-degradable and occur cumulative in soil due to regular deposits are a result of permanent human activity. Due to this, metals are a contaminant factor for soil when persistent over a long period of time and a possible danger for inhabitant’s health on prolonged exposure. Metals accumulated in contaminated soil may be transferred to humans directly, by inhaling the dust raised from top soil, or by ingesting, or by dermal contact and indirectly, through plants and animals grown on contaminated soil and used for food. Some metals, like Cu, Mn, Zn, are beneficial for human’s health and represent a danger only if their concentration is above permissible levels, but other metals, like Pb, As, Cd, Hg, are toxic even at trace level causing gastrointestinal and lung cancers. In urban areas, metals can be emitted from a wide variety of sources like industrial, residential, commercial activities. Our study interrogates the spatial distribution of heavy metals in soil in relation to their permissible levels and their association with the health risk to the urban population in Coimbatore, India. Coimbatore region is a high cancer risk zone and case records of gastro intestinal and respiratory cancer patients were collected from hospitals and geocoded in ArcGIS10.1. The data of patients pertaining to the urban limits were retained and checked for their diseases history based on their diagnosis and treatment. A disease map of cancer was prepared to show the disease distribution. It has been observed that in our study area Cr, Pb, As, Fe and Mg exceeded their permissible levels in the soil. Using spatial overlay analysis a relationship between environmental exposure to these potentially toxic elements in soil and cancer distribution in Coimbatore district was established to show areas of cancer risk. Through this, our study throws light on the impact of prolonged exposure to soil contamination in soil in the urban zones, thereby exploring the possibility to detect cancer risk zones and to create awareness among the exposed groups on cancer risk.

Keywords: soil contamination, cancer risk, spatial analysis, India

Procedia PDF Downloads 383
116 Challenges of Carbon Trading Schemes in Africa

Authors: Bengan Simbarashe Manwere

Abstract:

The entire African continent, comprising 55 countries, holds a 2% share of the global carbon market. The World Bank attributes the continent’s insignificant share and participation in the carbon market to the limited access to electricity. Approximately 800 million people spread across 47 African countries generate as much power as Spain, with a population of 45million. Only South Africa and North Africa have carbon-reduction investment opportunities on the continent and dominate the 2% market share of the global carbon market. On the back of the 2015 Paris Agreement, South Africa signed into law the Carbon Tax Act 15 of 2019 and the Customs and Excise Amendment Act 13 of 2019 (Gazette No. 4280) on 1 June 2019. By these laws, South Africa was ushered into the league of active global carbon market players. By increasing the cost of production by the rate of R120/tCO2e, the tax intentionally compels the internalization of pollution as a cost of production and, relatedly, stimulate investment in clean technologies. The first phase covered the 1 June 2019 – 31 December 2022 period during which the tax was meant to escalate at CPI + 2% for Scope 1 emitters. However, in the second phase, which stretches from 2023 to 2030, the tax will escalate at the inflation rate only as measured by the consumer price index (CPI). The Carbon Tax Act provides for carbon allowances as mitigation strategies to limit agents’ carbon tax liability by up to 95% for fugitive and process emissions. Although the June 2019 Carbon Tax Act explicitly makes provision for a carbon trading scheme (CTS), the carbon trading regulations thereof were only finalised in December 2020. This points to a delay in the establishment of a carbon trading scheme (CTS). Relatedly, emitters in South Africa are not able to benefit from the 95% reduction in effective carbon tax rate from R120/tCO2e to R6/tCO2e as the Johannesburg Stock Exchange (JSE) has not yet finalized the establishment of the market for trading carbon credits. Whereas most carbon trading schemes have been designed and constructed from the beginning as new tailor-made systems in countries the likes of France, Australia, Romania which treat carbon as a financial product, South Africa intends, on the contrary, to leverage existing trading infrastructure of the Johannesburg Stock Exchange (JSE) and the Clearing and Settlement platforms of Strate, among others, in the interest of the Paris Agreement timelines. Therefore the carbon trading scheme will not be constructed from scratch. At the same time, carbon will be treated as a commodity in order to align with the existing institutional and infrastructural capacity. This explains why the Carbon Tax Act is silent about the involvement of the Financial Sector Conduct Authority (FSCA).For South Africa, there is need to establish they equilibrium stability of the CTS. This is important as South Africa is an innovator in carbon trading and the successful trading of carbon credits on the JSE will lead to imitation by early adopters first, followed by the middle majority thereafter.

Keywords: carbon trading scheme (CTS), Johannesburg stock exchange (JSE), carbon tax act 15 of 2019, South Africa

Procedia PDF Downloads 42
115 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation

Authors: A. K. Tekile, I. L. Kim, J. Y. Lee

Abstract:

Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.

Keywords: stagnant, ultrasonic irradiation, water flow, water quality

Procedia PDF Downloads 176
114 The Environmental Concerns in Coal Mining, and Utilization in Pakistan

Authors: S. R. H. Baqri, T. Shahina, M. T. Hasan

Abstract:

Pakistan is facing acute shortage of energy and looking for indigenous resources of the energy mix to meet the short fall. After the discovery of huge coal resources in Thar Desert of Sindh province, focus has shifted to coal power generation. The government of Pakistan has planned power generation of 20000 MW on coal by the year 2025. This target will be achieved by mining and power generation in Thar coal Field and on imported coal in different parts of Pakistan. Total indigenous coal production of around 3.0 million tons is being utilized in brick kilns, cement and sugar industry. Coal-based power generation is only limited to three units of 50 MW near Hyderabad from nearby Lakhra Coal field. The purpose of this presentation is to identify and redressal of issues of coal mining and utilization with reference to environmental hazards. Thar coal resource is estimated at 175 billion tons out of a total resource estimate of 184 billion tons in Pakistan. Coal of Pakistan is of Tertiary age (Palaeocene/Eocene) and classified from lignite to sub-bituminous category. Coal characterization has established three main pollutants such as Sulphur, Carbon dioxide and Methane besides some others associated with coal and rock types. The element Sulphur occurs in organic as well as inorganic forms associated with coals as free sulphur and as pyrite, gypsum, respectively. Carbon dioxide, methane and minerals are mostly associated with fractures, joints local faults, seatearth and roof rocks. The abandoned and working coal mines give kerosene odour due to escape of methane in the atmosphere. While the frozen methane/methane ices in organic matter rich sediments have also been reported from the Makran coastal and offshore areas. The Sulphur escapes into the atmosphere during mining and utilization of coal in industry. The natural erosional processes due to rivers, streams, lakes and coastal waves erode over lying sediments allowing pollutants to escape into air and water. Power plants emissions should be controlled through application of appropriate clean coal technology and need to be regularly monitored. Therefore, the systematic and scientific studies will be required to estimate the quantity of methane, carbon dioxide and sulphur at various sites such as abandoned and working coal mines, exploratory wells for coal, oil and gas. Pressure gauges on gas pipes connecting the coal-bearing horizons will be installed on surface to know the quantity of gas. The quality and quantity of gases will be examined according to the defined intervals of times. This will help to design and recommend the methods and procedures to stop the escape of gases into atmosphere. The element of Sulphur can be removed partially by gravity and chemical methods after grinding and before industrial utilization of coal.

Keywords: atmosphere, coal production, energy, pollutants

Procedia PDF Downloads 410
113 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients

Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska

Abstract:

Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).

Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers

Procedia PDF Downloads 155
112 Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process

Authors: Bharti Garg, Ashleigh Cousins, Pauline Pearson, Vincent Verheyen, Paul Feron

Abstract:

The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation.

Keywords: combined capture, cost analysis, crystallisation, CS-Cap, flue gas desulfurisation, regeneration, sulfur, thermal reclamation

Procedia PDF Downloads 102
111 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 31
110 Teaching Timber: The Role of the Architectural Student and Studio Course within an Interdisciplinary Research Project

Authors: Catherine Sunter, Marius Nygaard, Lars Hamran, Børre Skodvin, Ute Groba

Abstract:

Globally, the construction and operation of buildings contribute up to 30% of annual green house gas emissions. In addition, the building sector is responsible for approximately a third of global waste. In this context, the utilization of renewable resources in buildings, especially materials that store carbon, will play a significant role in the growing city. These are two reasons for introducing wood as a building material with a growing relevance. A third is the potential economic value in countries with a forest industry that is not currently used to capacity. In 2013, a four-year interdisciplinary research project titled “Wood Be Better” was created, with the principle goal to produce and publicise knowledge that would facilitate increased use of wood in buildings in urban areas. The research team consisted of architects, engineers, wood technologists and mycologists, both from research institutions and industrial organisations. Five structured work packages were included in the initial research proposal. Work package 2 was titled “Design-based research” and proposed using architecture master courses as laboratories for systematic architectural exploration. The aim was twofold: to provide students with an interdisciplinary team of experts from consultancies and producers, as well as teachers and researchers, that could offer the latest information on wood technologies; whilst at the same time having the studio course test the effects of the use of wood on the functional, technical and tectonic quality within different architectural projects on an urban scale, providing results that could be fed back into the research material. The aim of this article is to examine the successes and failures of this pedagogical approach in an architecture school, as well as the opportunities for greater integration between academic research projects, industry experts and studio courses in the future. This will be done through a set of qualitative interviews with researchers, teaching staff and students of the studio courses held each semester since spring 2013. These will investigate the value of the various experts of the course; the different themes of each course; the response to the urban scale, architectural form and construction detail; the effect of working with the goals of a research project; and the value of the studio projects to the research. In addition, six sample projects will be presented as case studies. These will show how the projects related to the research and could be collected and further analysed, innovative solutions that were developed during the course, different architectural expressions that were enabled by timber, and how projects were used as an interdisciplinary testing ground for integrated architectural and engineering solutions between the participating institutions. The conclusion will reflect on the original intentions of the studio courses, the opportunities and challenges faced by students, researchers and teachers, the educational implications, and on the transparent and inclusive discourse between the architectural researcher, the architecture student and the interdisciplinary experts.

Keywords: architecture, interdisciplinary, research, studio, students, wood

Procedia PDF Downloads 291
109 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties

Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser

Abstract:

Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.

Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing

Procedia PDF Downloads 12
108 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 121
107 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 98
106 Malaysia as a Case Study for Climate Policy Integration into Energy Policy

Authors: Marcus Lee

Abstract:

The energy sector is the largest contributor of greenhouse gas emissions in Malaysia, which induces climate change. The climate change problem is therefore an energy sector problem. Tackling climate change issues successfully is contingent on actions taken in the energy sector. The researcher propounds that ‘Climate Policy Integration’ (CPI) into energy policy is a viable and insufficiently developed strategy in Malaysia that promotes the synergies between climate change and energy objectives, in order to achieve the targets found in both climate change and energy policies. In exploring this hypothesis, this paper presentation will focus on two particular aspects. Firstly, the meaning of CPI as an approach and as a concept will be explored. As an approach, CPI into energy policy means the integration of climate change objectives into the energy policy area. Its subject matter focuses on establishing the functional interrelations between climate change and energy objectives, by promoting their synergies and minimising their contradictions. However, its conceptual underpinnings are less than straightforward. Drawing from the ‘principle of integration’ found in international treaties and declarations such as the Stockholm Declaration 1972, the Rio Declaration 1992 and the United Nations Framework on Climate Change 1992 (‘UNFCCC’), this paper presentation will explore the contradictions in international standards on how the sustainable development tenets of environmental sustainability, social development and economic development are to be balanced and its relevance to CPI. Further, the researcher will consider whether authority may be derived from international treaties and declarations in order to argue for the prioritisation of environmental sustainability over the other sustainable development tenets through CPI. Secondly, this paper presentation will also explore the degree to which CPI into energy policy has been achieved and pursued in Malaysia. In particular, the strength of the conceptual framework with regard to CPI in Malaysian governance will be considered by assessing Malaysia’s National Policy on Climate Change (2009) (‘NPCC 2009’). The development (or the lack of) of CPI as an approach since the publication of the NPCC 2009 will also be assessed based on official government documents and policies that may have a climate change and/or energy agenda. Malaysia’s National Renewable Energy Policy and Action Plan (2010), draft National Energy Efficiency Action Plan (2014), Intended Nationally Determined Contributions (2015) in relation to the Paris Agreement, 11th Malaysia Plan (2015) and Biennial Update Report to the UNFCCC (2015) will be discussed. These documents will be assessed for the presence of CPI based on the language/drafting of the documents as well as the degree of subject matter regarding CPI expressed in the documents. Based on the analysis, the researcher will propose solutions on how to improve Malaysia’s climate change and energy governance. The theory of reflexive governance will be applied to CPI. The concluding remarks will be about whether CPI reflects reflexive governance by demonstrating how the governance process can be the object of shaping outcomes.

Keywords: climate policy integration, mainstreaming, policy coherence, Malaysian energy governance

Procedia PDF Downloads 171
105 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 101
104 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications

Authors: Gema M. Rodado, Jose M. Olavarrieta

Abstract:

Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.

Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests

Procedia PDF Downloads 96
103 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 79
102 A Study on the Chemical Composition of Kolkheti's Sphagnum Peat Peloids to Evaluate the Perspective of Use in Medical Practice

Authors: Al. Tsertsvadze. L. Ebralidze, I. Matchutadze. D. Berashvili, A. Bakuridze

Abstract:

Peatlands are landscape elements, they are formed over a very long period by physical, chemical, biologic, and geologic processes. In the moderate zone of Caucasus, the Kolkheti lowlands are distinguished by the diversity of relictual plants, a high degree of endemism, orographic, climate, landscape, and other characteristics of high levels of biodiversity. The unique properties of the Kolkheti region lead to the formation of special, so-called, endemic peat peloids. The composition and properties of peloids strongly depend on peat-forming plants. Peat is considered a unique complex of raw materials, which can be used in different fields of the industry: agriculture, metallurgy, energy, biotechnology, chemical industry, health care. They are formed in permanent wetland areas. As a result of decay, higher plants remain in the anaerobic area, with the participation of microorganisms. Peat mass absorbs soil and groundwater. Peloids are predominantly rich with humic substances, which are characterized by high biological activity. Humic acids stimulate enzymatic activity, regenerative processes, and have anti-inflammatory activity. Objects of the research were Kolkheti peat peloids (Ispani, Anaklia, Churia, Chirukhi, Peranga) possessing different formation phases. Due to specific physical and chemical properties of research objects, the aim of the research was to develop analytical methods in order to study the chemical composition of the objects. The research was held using modern instrumental methods of analysis: Ultraviolet-visible spectroscopy and Infrared spectroscopy, Scanning Electron Microscopy, Centrifuge, dry oven, Ultraturax, pH meter, fluorescence spectrometer, Gas chromatography-mass spectrometry (GC-MS/MS), Gas chromatography. Based on the research ration between organic and inorganic substances, the spectrum of micro and macro elements, also the content of minerals was determined. The content of organic nitrogen was determined using the Kjeldahl method. The total composition of amino acids was studied by a spectrophotometric method using standard solutions of glutamic and aspartic acids. Fatty acid was determined using GC (Gas chromatography). Based on the obtained results, we can conclude that the method is valid to identify fatty acids in the research objects. The content of organic substances in the research objects was held using GC-MS. Using modern instrumental methods of analysis, the chemical composition of research objects was studied. Each research object is predominantly reached with a broad spectrum of organic (fatty acids, amino acids, carbocyclic and heterocyclic compounds, organic acids and their esters, steroids) and inorganic (micro and macro elements, minerals) substances. Modified methods used in the presented research may be utilized for the evaluation of cosmetological balneological and pharmaceutical means prepared on the base of Kolkheti's Sphagnum Peat Peloids.

Keywords: modern analytical methods, natural resources, peat, chemistry

Procedia PDF Downloads 109
101 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: Karolina Wieczorek, Zofia Przypaśniak

Abstract:

Climate change is a rapidly growing threat to global health, and part of the responsibility to combat it lies within the healthcare sector itself, including adequate education of future medical professionals. To mitigate the consequences, the General Medical Council (GMC) has equipped medical schools with a list of outcomes regarding sustainability teaching. Students are expected to analyze the impact of the healthcare sector’s emissions on climate change. The delivery of the related teaching content is, however, often inadequate and insufficient time is devoted for exploration of the topics. Teaching curricula lack in-depth exploration of the learning objectives. This study aims to assess the extent and characteristics of climate change and sustainability subjects teaching in the curriculum of a chosen UK medical school (Barts and The London School of Medicine and Dentistry). It compares the data to the national average scores from the Climate Change and Sustainability Teaching (C.A.S.T.) in Medical Education Audit to draw conclusions about teaching on a regional level. This is a single-center audit of the timetabled sessions of teaching in the medical course. The study looked at the academic year 2020/2021 which included a review of all non-elective, core curriculum teaching materials including tutorials, lectures, written resources, and assignments in all five years of the undergraduate and graduate degrees, focusing only on mandatory teaching attended by all students (excluding elective modules). The topics covered were crosschecked with GMC Outcomes for graduates: “Educating for Sustainable Healthcare – Priority Learning Outcomes” as gold standard to look for coverage of the outcomes and gaps in teaching. Quantitative data was collected in form of time allocated for teaching as proxy of time spent per individual outcomes. The data was collected independently by two students (KW and ZP) who have received prior training and assessed two separate data sets to increase interrater reliability. In terms of coverage of learning outcomes, 12 out of 13 were taught (with the national average being 9.7). The school ranked sixth in the UK for time spent per topic and second in terms of overall coverage, meaning the school has a broad range of topics taught with some being explored in more detail than others. For the first outcome 4 out of 4 objectives covered (average 3.5) with 47 minutes spent per outcome (average 84 min), for the second objective 5 out of 5 covered (average 3.5) with 46 minutes spent (average 20), for the third 3 out of 4 (average 2.5) with 10 mins pent (average 19 min). A disproportionately large amount of time is spent delivering teaching regarding air pollution (respiratory illnesses), which resulted in the topic of sustainability in other specialties being excluded from teaching (musculoskeletal, ophthalmology, pediatrics, renal). Conclusions: Currently, there is no coherent strategy on national teaching of climate change topics and as a result an unstandardized amount of time spent on teaching and coverage of objectives can be observed.

Keywords: audit, climate change, sustainability, education

Procedia PDF Downloads 68
100 Estimation of Particle Number and Mass Doses Inhaled in a Busy Street in Lublin, Poland

Authors: Bernard Polednik, Adam Piotrowicz, Lukasz Guz, Marzenna Dudzinska

Abstract:

Transportation is considered to be responsible for increased exposure of road users – i.e., drivers, car passengers, and pedestrians as well as inhabitants of houses located near roads - to pollutants emitted from vehicles. Accurate estimates are, however, difficult as exposure depends on many factors such as traffic intensity or type of fuel as well as the topography and the built-up area around the individual routes. The season and weather conditions are also of importance. In the case of inhabitants of houses located near roads, their exposure depends on the distance from the road, window tightness and other factors that decrease pollutant infiltration. This work reports the variations of particle concentrations along a selected road in Lublin, Poland. Their impact on the exposure for road users as well as for inhabitants of houses located near the road is also presented. Mobile and fixed-site measurements were carried out in peak (around 8 a.m. and 4 p.m.) and off-peak (12 a.m., 4 a.m., and 12 p.m.) traffic times in all 4 seasons. Fixed-site measurements were performed in 12 measurement points along the route. The number and mass concentration of particles was determined with the use of P-Trak model 8525, OPS 3330, DustTrak DRX model 8533 (TSI Inc. USA) and Grimm Aerosol Spectrometer 1.109 with Nano Sizer 1.321 (Grimm Aerosol Germany). The obtained results indicated that the highest concentrations of traffic-related pollution were measured near 4-way traffic intersections during peak hours in the autumn and winter. The highest average number concentration of ultrafine particles (PN0.1), and mass concentration of fine particles (PM2.5) in fixed-site measurements were obtained in the autumn and amounted to 23.6 ± 9.2×10³ pt/cm³ and 135.1 ± 11.3 µg/m³, respectively. The highest average number concentration of submicrometer particles (PN1) was measured in the winter and amounted to 68 ± 26.8×10³ pt/cm³. The estimated doses of particles deposited in the commuters’ and pedestrians’ lungs within an hour near 4-way TIs in peak hours in the summer amounted to 4.3 ± 3.3×10⁹ pt/h (PN0.1) and 2.9 ± 1.4 µg/h (PM2.5) and 3.9 ± 1.1×10⁹ pt/h (PN0.1) or 2.5 ± 0.4 µg/h (PM2.5), respectively. While estimating the doses inhaled by the inhabitants of premises located near the road one should take into account different fractional penetration of particles from outdoors to indoors. Such doses assessed for the autumn and winter are up to twice as high as the doses inhaled by commuters and pedestrians in the summer. In the winter traffic-related ultrafine particles account for over 70% of all ultrafine particles deposited in the pedestrians’ lungs. The share of traffic-related PM10 particles was estimated at approximately 33.5%. Concluding, the results of the particle concentration measurements along a road in Lublin indicated that the concentration is mainly affected by the traffic intensity and weather conditions. Further detailed research should focus on how the season and the metrological conditions affect concentration levels of traffic-related pollutants and the exposure of commuters and pedestrians as well as the inhabitants of houses located near traffic routes.

Keywords: air quality, deposition dose, health effects, vehicle emissions

Procedia PDF Downloads 80
99 Pharmacognostical, Phytochemical and Biological Studies of Leaves and Stems of Hippophae Salicifolia

Authors: Bhupendra Kumar Poudel, Sadhana Amatya, Tirtha Maiya Shrestha, Bharatmani Pokhrel, Mohan Prasad Amatya

Abstract:

Background: H. salicifolia is a dense, branched, multipurpose, deciduous, nitrogen fixing, thorny willow-like small to moderate tree, restricted to the Himalaya. Among the two species of Nepal (Hippophae salicifolia and H. tibetana), it has been traditionally used as food additive, anticancer (bark), and treating toothache, tooth inflammation (anti-inflammatory) and radiation injury; while people of Western Nepal have largely undermined its veiled treasure by using it for fuel, wood and soil stabilization only. Therefore, the main objective of this study was to explore biological properties (analgesic, antidiabetic, cytotoxic and anti-inflammatory properties of this plant. Methodology: The transverse section of leaves and stems were viewed under microscope. Extracts obtained from soxhlation subjected to tests for phytochemical and biological studies. Rats (used to study antidiabetic and anti-inflammatory properties) and mice (used to study analgesic, CNS depressant, muscle relaxant and locomotor properties) were assumed to be normally distributed; then ANOVA and post hoc tukey test was used to find significance. The data obtained were analyzed by SPSS 17 and Excel 2007. Results and Conclusion: Pharmacognostical analysis revealed the presence of long stellate trichomes, double layered vascular bundle 5-6 in number and double layered compact sclerenchyma. The preliminary phytochemical screening of the extracts was found to exhibit the positive reaction tests for glycoside, steroid, tannin, flavonoid, saponin, coumarin and reducing sugar. The brine shrimp lethality bioassay tested in 1000, 100 and 10 ppm revealed cytotoxic activity inherent in methanol, water, chloroform and ethyl acetate extracts with LC50 (μg/ml) values of 61.42, 99.77, 292.72 and 277.84 respectively. The cytotoxic activity may be due to presence of tannins in the constituents. Antimicrobial screening of the extracts by cup diffusion method using Staphylococcus aereus, Escherichia coli and Pseudomonas aeruginosa against standard antibiotics (oxacillin, gentamycin and amikacin respectively) portrayed no activity against the microorganisms tested. The methanol extract of the stems and leaves showed various pharmacological properties: and antidiabetic, anti-inflammatory, analgesic [chemical writhing method], CNS depressant, muscle relaxant and locomotor activities in a dose-dependent fashion, indicating the possibility of the presence of different constituents in the stems and leaves responsible for these biological activities. All the effects when analyzed by post hoc tukey test were found to be significant at 95% confidence level. The antidiabetic activity was presumed to be due to flavonoids present in extract. Therefore, it can be concluded that this plant’s secondary metabolites possessed strong antidiabetic, anti-inflammatory and cytotoxic activity which could be isolated for further investigation.

Keywords: Hippophae salicifolia, constituents, antidiabetic, inflammatory, brine shrimp

Procedia PDF Downloads 318
98 Removal of VOCs from Gas Streams with Double Perovskite-Type Catalyst

Authors: Kuan Lun Pan, Moo Been Chang

Abstract:

Volatile organic compounds (VOCs) are one of major air contaminants, and they can react with nitrogen oxides (NOx) in atmosphere to form ozone (O3) and peroxyacetyl nitrate (PAN) with solar irradiation, leading to environmental hazards. In addition, some VOCs are toxic at low concentration levels and cause adverse effects on human health. How to effectively reduce VOCs emission has become an important issue. Thermal catalysis is regarded as an effective way for VOCs removal because it provides oxidation route to successfully convert VOCs into carbon dioxide (CO2) and water (H2O(g)). Single perovskite-type catalysts are promising for VOC removal, and they are of good potential to replace noble metals due to good activity and high thermal stability. Single perovskites can be generally described as ABO3 or A2BO4, where A-site is often a rare earth element or an alkaline. Typically, the B-site is transition metal cation (Fe, Cu, Ni, Co, or Mn). Catalytic properties of perovskites mainly rely on nature, oxidation states and arrangement of B-site cation. Interestingly, single perovskites could be further synthesized to form double perovskite-type catalysts which can simply be represented by A2B’B”O6. Likewise, A-site stands for an alkaline metal or rare earth element, and the B′ and B′′ are transition metals. Double perovskites possess unique surface properties. In structure, three-dimensional of B-site with ordered arrangement of B’O6 and B”O6 is presented alternately, and they corner-share octahedral along three directions of the crystal lattice, while cations of A-site position between the void of octahedral. It has attracted considerable attention due to specific arrangement of alternating B-site structure. Therefore, double perovskites may have more variations than single perovskites, and this greater variation may promote catalytic performance. It is expected that activity of double perovskites is higher than that of single perovskites toward VOC removal. In this study, double perovskite-type catalyst (La2CoMnO6) is prepared and evaluated for VOC removal. Also, single perovskites including LaCoO3 and LaMnO3 are tested for the comparison purpose. Toluene (C7H8) is one of the important VOCs which are commonly applied in chemical processes. In addition to its wide application, C7H8 has high toxicity at a low concentration. Therefore, C7H8 is selected as the target compound in this study. Experimental results indicate that double perovskite (La2CoMnO6) has better activity if compared with single perovskites. Especially, C7H8 can be completely oxidized to CO2 at 300oC as La2CoMnO6 is applied. Characterization of catalysts indicates that double perovskite has unique surface properties and is of higher amounts of lattice oxygen, leading to higher activity. For durability test, La2CoMnO6 maintains high C7H8 removal efficiency of 100% at 300oC and 30,000 h-1, and it also shows good resistance to CO2 (5%) and H2O(g) (5%) of gas streams tested. For various VOCs including isopropyl alcohol (C3H8O), ethanal (C2H4O), and ethylene (C2H4) tested, as high as 100% efficiency could be achieved with double perovskite-type catalyst operated at 300℃, indicating that double perovskites are promising catalysts for VOCs removal, and possible mechanisms will be elucidated in this paper.

Keywords: volatile organic compounds, Toluene (C7H8), double perovskite-type catalyst, catalysis

Procedia PDF Downloads 144
97 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.

Keywords: energy, system, building, cooling, electrical

Procedia PDF Downloads 556
96 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 78
95 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 63
94 Plasma Collagen XVIII in Response to Intensive Aerobic Running and Aqueous Extraction of Black Crataegus Elbursensis in Male Rats

Authors: A. Abdi, A. Abbasi Daloee, A. Barari

Abstract:

Aim: The adaptations that occur in human body after doing exercises training are a factor to help healthy people stay away from certain diseases. One of the main adaptations is a change in blood circulation, especially in vessels. The increase of capillary density is dependent on the balance between angiogenic and angiostatic factors. Most studies show that the changes made to angiogenic developmental factors resulted from physical exercises indicate the low level of stimulators compared with inhibitors. It is believed that the plasma level of VEGF-A, the important angiogenic factor, is reduced after physical exercise. Findings indicate that the extract of crataegus plant reduces the platelet-derived growth factor receptor (PDGFR) autophosphorylation in human's fibroblast. More importantly, crataegus (1 to 100 mg in liter) clearly leads to the inhibition of PDGFR autophosphorylation in vascular smooth muscle cells (VSMCs). Angiogenesis is a process that can be classified into physiological and pathophysiological forms. collagen XVIII is a part of extracellular protein and heparan sulfate proteoglycans in vascular epithelial and endothelial basement membrane cause the release of endostatin from noncollagenous collagen XVIII. Endostatin inhibits the growth of endothelial cells, inhibits angiogenesis, weakens different types of cancer, and the growth of tumors. The purpose of the current study was to investigate the effect of intensive aerobic running with or without aqueous extraction of black Crataegus elbursensis on Collagen XVIII in male rats. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were acquired from the Pasteur's Institute (Amol, Mazandaran), and randomly assigned into control (n = 16) and training (n = 16) groups. Rats were further divided into saline-control (SC) (n=8), saline-training (ST) (n=8), crataegus pentaegyna extraction -control (CPEC) (n=8), and crataegus pentaegyna extraction - training (CPET) (n=8). The control (SC and CPEC) groups remained sedentary; whereas the training groups underwent a high running exercise program. plasma were excised and immediately frozen in liquid nitrogen. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: The results show that aerobic exercise group had the highest concentration collagen XVIII compared to other groups and then respectively black crataegus, training-crataegus and control groups. Conclusion: In general, researchers in this study concluded that the increase of collagen XVIII (albeit insignificant) as a result of physical activity and consumption of black crataegus extract could possibly serve as a regional inhibitor of angiogenesis and another evidence for the anti-cancer effects of physical activities. Since the research has not managed in this study to measure the amount of plasma endostatin, it is suggested that both indices are measured with important angiogenic factors so that we can have a more accurate interpretation of changes to angiogenic and angiostatic factors resulted from physical exercises.

Keywords: aerobic running, Crataegus elbursensis, Collagen XVIII

Procedia PDF Downloads 306
93 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 238