Search results for: high corrosion resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21975

Search results for: high corrosion resistance

19815 Development of Cathode for Hybrid Zinc Ion Supercapacitor Using Secondary Marigold Floral Waste for Green Energy Application

Authors: Syali Pradhan, Neetu Jha

Abstract:

The Marigold flower is used in religious places for offering and decoration purpose every day. The flowers are discarded near trees or in aquatic bodies. This floral waste can be used for extracting dyes or oils. Still the secondary waste remains after processing which need to be addressed. This research aims to provide green and clean power using secondary floral waste available after processing. The carbonization of floral waste produce carbon material with high surface area and enhance active site for more reaction. The Hybrid supercapacitors are more stable, offer improved operating temperature and use less toxic material compared to battery. They provide enhanced energy density compared to supercapacitors. Hence, hybrid supercapacitor designed using waste material would be more practicable for future energy application. Here, we present the utilization of carbonized floral waste as supercapacitor electrode material. This material after carbonization gets graphitized and shows high surface area, optimum porosity along with high conductivity. Hence, this material has been tested as cathode electrode material for high performance zinc storage hybrid supercapacitor. High energy storage along with high stability has been obtained using this cathodic waste material as electrode.

Keywords: marigold, flower waste, energy storage, cathode, supercapacitor

Procedia PDF Downloads 66
19814 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries

Authors: Behzad Babaei, B. Gangadhara Prusty

Abstract:

The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.

Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress

Procedia PDF Downloads 95
19813 Potential Contribution of Combined High-Resolution and Fluorescence Remote Sensing to Coastal Ecosystem Service Assessments

Authors: Yaner Yan, Ning Li, Yajun Qiao, Shuqing An

Abstract:

Although most studies have focused on assessing and mapping terrestrial ecosystem services, there is still a knowledge gap on coastal ecosystem services and an urgent need to assess them. Lau (2013) clearly defined five types of costal ecosystem services: carbon sequestration, shoreline protection, fish nursery, biodiversity, and water quality. While high-resolution remote sensing can provide the more direct, spatially estimates of biophysical parameters, such as species distribution relating to biodiversity service, and Fluorescence information derived from remote sensing direct relate to photosynthesis, availing in estimation of carbon sequestration and the response to environmental changes in coastal wetland. Here, we review the capabilities of high-resolution and fluorescence remote sesing for describing biodiversity, vegetation condition, ecological processes and highlight how these prodicts may contribute to costal ecosystem service assessment. In so doing, we anticipate rapid progress to combine the high-resolution and fluorescence remote sesing to estimate the spatial pattern of costal ecosystem services.

Keywords: ecosystem services, high resolution, remote sensing, chlorophyll fluorescence

Procedia PDF Downloads 494
19812 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition

Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher

Abstract:

Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.

Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication

Procedia PDF Downloads 291
19811 High School Youth and College Freshmen Comparison Towards the Psychological Health Status under the Influence of Sleep Hygiene and Quality from a Chinese Second-Tier City Sample during the COVID-19 Pandemic

Authors: Ziyu Zhang, Xuanyu Ren, Fei Wu, Qinfei Lu, Yongmei Li, Xinyue Zhi

Abstract:

Introduction: Adolescents experience a critical period of physical and psychological growth. Few studies focus on the influence of sleep hygiene on psychological health from the high school period to freshmen year. Also, the influence of the COVID-19 pandemic has public health significance. Methods: Totally 698 students from high school and college were included in the manuscript, and a cross-sectional procedure was conducted; the objective was to make the epidemiological comparison of the social phobia/depression prevalence and discuss the effects of potential determinants. Results: Psychological problems, including social phobia and depression, are prevalent, especially among high school students, with gender differences. The current results indicated that the association between sleep status and social phobia is most obvious among high school students, while the higher MMR risk was found both for high school social phobia students and college depressive freshmen. Moreover, the interaction between social phobia and depression was also obvious for both populations. Conclusions: Psychological problems, including social phobia and depression, are more prevalent among high school girls when compared with their male and freshmen peers. Important influenced factors for the risk of psychological problems among the two populations were different, but media multitasking status should be paid attention to for both.

Keywords: adolescence, psychological health, epidemiology, social culture

Procedia PDF Downloads 66
19810 Successful Treatment of Multifocal XDR Tuberculosis Osteomyelitis

Authors: Abeer N. Alshukairi, Abdulrahman A. Alrajhi, Abdulfattah W. Alamri, Adel F. Alothman

Abstract:

We described the nosocomial transmission of a pre-XDR or an MDR case of pulmonary tuberculosis in a HIV negative health care worker in an area endemic for MDR & XDR tuberculosis. With inadequate therapy and non-compliance, his strain developed acquired resistance and he presented with extra-pulmonary XDR tuberculosis in the form of multi-focal osteomyelitis and encysted pleural effusion. He was cured after 2 years of therapy with various anti-tuberculous drugs in addition to interferon gamma.

Keywords: osteomyelitis, treatment, XDR tuberculosis, successful treatment

Procedia PDF Downloads 475
19809 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: motion estimation, test zone search, high efficiency video coding, processing element, optimization

Procedia PDF Downloads 356
19808 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow

Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden

Abstract:

The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.

Keywords: acoustic doppler Velocimeter, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines

Procedia PDF Downloads 80
19807 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance

Authors: Jin-Uk Park

Abstract:

Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.

Keywords: etcher, thermal pad, wet cleaning, thermal conductivity

Procedia PDF Downloads 186
19806 Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm

Authors: Cheng-Lin Liu, Fei Liu

Abstract:

For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results.

Keywords: high-order dynamic agents, communication delay, consensus, predictor-based algorithm

Procedia PDF Downloads 563
19805 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 585
19804 A Second Order Genetic Algorithm for Traveling Salesman Problem

Authors: T. Toathom, M. Munlin, P. Sugunnasil

Abstract:

The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB.

Keywords: genetic algorithm, traveling salesman problem, initial population, chromosomes encoding

Procedia PDF Downloads 268
19803 Linking Theory to Practice: An Analysis of Papers Submitted by Participants in a Teacher Mentoring Course

Authors: Varda Gil, Ella Shoval, Tussia Mira

Abstract:

Teacher mentoring is a complex practical profession whose unique characteristic is the teacher-mentors' commitment to helping teachers link theory with teaching practice in the process of decision-making and in their reflections on teaching. The aim of this research is to examine the way practicing teacher-mentors participating in a teacher mentoring course made the connection between theory and practice. The researchers analyzed 20 final papers submitted by participants in a course to train teacher mentors. The participants were all veteran high-school teachers. The course comprised 112 in-class hours in addition to mentoring novices in the field. The course covered the following topics: The teacher-mentors' perception of their role; formative and summative evaluation of the novices; tutoring strategies and tools; types of learners; and ways of communicating and dealing with novice teachers' resistance to counseling. The course participants were required to write a 4-5 page reflective summary of their field mentoring practice. In addition, they were required to link theories explicitly learned in the course to their practice in the field. A qualitative analysis of the papers led to the creation of the taxonomy of the link between theory and practice relating to four topics: The kinds of links made between theory and practice, the quality of these links, the links made between private teaching theories and official teaching theory, and the qualities of these links. This taxonomy may prove to be a useful tool in the teacher-mentor training processes.

Keywords: taxonomy, teacher-mentors, theory, practice, teacher-mentor training

Procedia PDF Downloads 350
19802 Reliability and Validity for Measurement of Body Composition: A Field Method

Authors: Ahmad Hashim, Zarizi Ab Rahman

Abstract:

Measurement of body composition via a field method has the most popular instruments which are used to estimate the percentage of body fat. Among the instruments used are the Body Mass Index, Bio Impedance Analysis and Skinfold Test. All three of these instruments do not involve high costs, do not require high technical skills, are mobile, save time, and are suitable for use in large populations. Because all three instruments can estimate the percentage of body fat, but it is important to identify the most appropriate instruments and have high reliability. Hence, this study was conducted to determine the reliability and convergent validity of the instruments. A total of 40 students, males and females aged between 13 and 14 years participated in this study. The study found that the test retest and Pearson correlation coefficient of reliability for the three instruments is very high, r = .99. While the inter class reliability also are at high level with r = .99 for Body Mass Index and Bio Impedance Analysis, r = .96 for Skin fold test. Intra class reliability coefficient for these three instruments is too high for Body Mass Index r = .99, Bio Impedance Analysis r = .97, and Skin fold Test r = .90. However, Standard Error of Measurement value for all three instruments indicates the Body Mass Index is the most appropriate instrument with a mean value of .000672 compared with other instruments. The findings show that the Body Mass Index is an instrument which is the most accurate and reliable in estimating body fat percentage for the population studied.

Keywords: reliability, validity, body mass index, bio impedance analysis and skinfold test

Procedia PDF Downloads 326
19801 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 72
19800 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 96
19799 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.

Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses

Procedia PDF Downloads 60
19798 Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic

Authors: M. Beyzaiea, S. Mohammadia

Abstract:

High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process.

Keywords: metallic, nanowire, nanoporous alumina, ac electrodeposition

Procedia PDF Downloads 268
19797 Academic Success, Problem-Based Learning and the Middleman: The Community Voice

Authors: Isabel Medina, Mario Duran

Abstract:

Although Problem-based learning provides students with multiple opportunities for rigorous instructional experiences in which students are challenged to address problems in the community; there are still gaps in connecting community leaders to the PBL process. At a south Texas high school, community participation serves as an integral component of the PBL process. Problem-based learning (PBL) has recently gained momentum due to the increase in global communities that value collaboration and critical thinking. As an instructional approach, PBL engages high school students in meaningful learning experiences. Furthermore, PBL focuses on providing students with a connection to real-world situations that require effective peer collaboration. For PBL leaders, providing students with a meaningful process is as important as the final PBL outcome. To achieve this goal, STEM high school strategically created a space for community involvement to be woven within the PBL fabric. This study examines the impact community members had on PBL students attending a STEM high school in South Texas. At STEM High School, community members represent a support system that works through the PBL process to ensure students receive real-life mentoring from business and industry leaders situated in the community. A phenomenological study using a semi-structured approach was used to collect data about students’ perception of community involvement within the PBL process for one South Texas high school. In our proposed presentation, we will discuss how community involvement in the PBL process academically impacted the educational experience of high school students at STEM high school. We address the instructional concerns PBL critics have with the lack of direct instruction, by providing a representation of how STEM high school utilizes community members to assist in impacting the academic experience of students.

Keywords: phenomenological, STEM education, student engagement, community involvement

Procedia PDF Downloads 88
19796 Assessment of Genetic Variability of Potato Genotypes for Proline Under Salt Stress Conditions

Authors: Elchin Hajiyev, Afet Memmedova Dadash, Sabina Hajiyeva, Aynur Karimova, Ramiz Aliyev

Abstract:

Although potatoes have a wide distribution range, the yield potential of varieties varies greatly depending on the region. Our country is made up of agricultural regions with very different environmental characteristics.In this case, we cannot expect the introduced varieties to show the same adaptation to the different conditions of our country. For this reason, in our country, varieties with high general adaptability should be used, rather than varieties with special adaptability in certain areas. Soil salinization has become a global problem.Increased salinity has a serious impact on food security by reducing plant productivity. Plants have protective mechanisms of adaptation to salt stress, such as the synthesis of physiologically active substances, resistance to antioxidant stress and oxidation of membrane lipids. One of these substances is free proline. Our study revealed genetic variation in proline accumulation among samples exposed to stress factors.Changes in proline content under stress conditions were studied in 50 samples. There was wide variation across all treatments.The amount of proline varied between 7.2–37.7 μM/g under salinity conditions.The lowest rate was in the SF33 genotype (1.5 times more than the control (2.5 μM/g)).The highest level of proline under the influence of salt stress was in the SF45 genotype (7.25 times higher than the control (32.5 μM/g)). Our studies have found that the protective system reacts differently to the influence of stress factors. According to the results obtained on the amount of proline, adaptation mechanisms must be more actively activated to maintain metabolism and ensure viability in sensitive forms under the influence of stress factors. At high doses of the salt stressor, a tenfold increase in proline compared to the control indicates significant damage to the plant organism as a result of stress.To prevent damage to the body, the antioxidant system needs to quickly mobilize and work at full capacity in adverse conditions. An increase in the dose of the stress factor salt in our study caused a greater increase in the amount of free proline in plant tissues. Considering the functions of proline as an osmoprotector and antioxidant, it was found that increasing its amount is aimed at protecting the plant from the acute effects of stressors.

Keywords: genetic variability, potato, genotypes, proline, stress

Procedia PDF Downloads 37
19795 Effect of Yeast Selenium on CD4 T Cell and WAZ of HIV1 Positive Children in Nyamasaria in Kisumu Kenya

Authors: S. B. Otieno1, F. Were, A. Afullo, K. Waza

Abstract:

Background: Multi drug resistance HIV has emerged rendering the current conventional treatment of HIV ineffective. There is a need for new treatment regime which is cheap, effective and not prone to resistance development by HIV. Methods: In randomized clinical study of 68 HIV positive children 3 – 15 years to asses the efficacy of yeast selenium in HIV/AIDS patients, 50μ yeast selenium was administered to 34 children while in matched control of 34 were put on placebo. Blood samples and weight of the both groups which were taken every 3 months intervals up to 6 months, were analyzed by ELIZA for CD4T cells, the data was analyzed by SPSS version 16, WAZ scores were analyzed by Epi Info version 6. Results: No significant difference in age { χ2 (1, 62) =0.03, p =0.853}, cause of morbidity between test and controls {χ2 (1, 65) = 5.87, p= 0.015} and on condition of foster parents {χ2 ( 1,63) = 5.57, p= 0.0172} was observed. Children on selenium showed progressive improvement of WAZ and significant difference at six months {F (5,12) = =5.758, P=0.006}, and weight gain of up to 4.1 kilograms in six months, and significant CD4 T cell count increase t= -2.943, p<0.05 compared to matched controls t = -1.258 p> 0.05. CD4 T cell count increased among all age groups on test 3-5 years (+ 267.1),5-8 years (+200.3) 9-15 years (+71.2) cells/mm3 and in matched controls a decrease 3-5 years (-71), 5-8 years (-125) and 9-13 years (-10.1) cells/mm3 . No significant difference inCD4 T cell count between boys {F (2, 32) = 1.531 p= 0.232} and between boys {F (2, 49) = 1.040, p= 0.361} on test and between boys and girls {F (5, 81) = 1.379, p= 0.241} on test. Similarly no significant difference between boys and girls were observed {F (5, 86) = 1.168, p= 0.332}.In the test group there was significant positive correlation β =252.23 between weight for age (WAZ), and CD4 T Cell Count p=0.007, R2= 0.252, F< 0.05. In matched controls no significant correlation between weight gain and CD4 T cell count change was observed at six months p > 0.05. No positive correlation β =-138.23 was observed between CD4T Cell count, WAZ, p=0.934, R2 =0.0337 F >0.05. Majority (96.78%) of children on test either remained or progressed to WHO immunological stage I. Conclusion: From this study it can be concluded that yeast Selenium is effective in slowing the progress of HIV 1 in children from WHO clinical stage I by improving CD4 T cell count and hence the immunity.

Keywords: selenium, HIV, AIDS, WAZ

Procedia PDF Downloads 474
19794 Effect of Mineral Ion Addition on Yeast Performance during Very High Gravity Wort Fermentation

Authors: H. O. Udeh, T. E. Kgatla, A. I. O. Jideani

Abstract:

The effect of Zn2+, Mg2+, and Ba2+ on Saccharomyces pastorianus during very high gravity fermentation was evaluated in this study at independent and three variable combinations. Wort gravity of 21oP was prepared from barley malt, hops and water, to which the metal ions were supplemented in their combinations and subsequently pitched. After 96 h of fermentation, high wort fermentability (%F)= 29.53 was obtained in wort medium containing 900:4 ppm Mg2+ + Ba2+. Increased ethanol titre 7.3491 %(v/v) and 7.1313 %(v/v) were obtained in media containing 900:4 ppm Mg2+ + Ba2+ and 12:900 ppm Zn2+ + Mg2+. Decrease %F= 22.54 and ethanol titre 6.1757% (v/v) was recorded in wort medium containing 12:4 ppm Zn2+ + Ba2+. In media containing the individual metal ions, increased %F= 27.94 and %F= 26.03 were obtained in media containing 700 ppm Mg2+ and 2 ppm Ba2+, with increased ethanol yield of 7.8844% (v/v) and 7.6245% (v/v) respectively. Least %F of 11.75 and 10.80, and ethanol titre of 4.99 (%v/v) and 4.80 (%v/v) were obtained for 10 ppm Zn2+ and 4 ppm Ba2+ respectively.

Keywords: ethanol yield, fermentability, mineral ions, yeast stress, very high gravity fermentation

Procedia PDF Downloads 367
19793 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection

Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi

Abstract:

The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).

Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora

Procedia PDF Downloads 92
19792 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior

Procedia PDF Downloads 303
19791 Sintered Phosphate Cement for HLW Encapsulation

Authors: S. M. M. Nelwamondo, W. C. M. H. Meyer, H. Krieg

Abstract:

The presence of volatile radionuclides in high level waste (HLW) in the nuclear industry limits the use of high temperature encapsulation technologies (glass and ceramic). Chemically bonded phosphate cement (CBPC) matrixes can be used for encapsulation of low level waste. This waste form is however not suitable for high level waste due to the radiolysis of water in these matrixes. In this research, the sintering behavior of the magnesium potassium phosphate cement waste forms was investigated. The addition of sintering aids resulted in the sintering of these phosphate cement matrixes into dense monoliths containing no water. Experimental evidence will be presented that this waste form can now be considered as a waste form for volatile radionuclides and high level waste as radiation studies indicated no chemical phase transition or physical degradation of this waste form.

Keywords: chemically bonded phosphate cements, HLW encapsulation, thermal stability, radiation stability

Procedia PDF Downloads 634
19790 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator

Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan

Abstract:

Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.

Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator

Procedia PDF Downloads 358
19789 Partially Fluorinated Electrolyte for Lithium-Ion Batteries

Authors: Gebregziabher Brhane Berhe, Bing Joe Hwange, Wei-Nien Su

Abstract:

For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity.

Keywords: high voltage, LNMO, fluorinated electrolyte, lithium-ion batteries

Procedia PDF Downloads 58
19788 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 94
19787 Cultivation of High-value Patent from the Perspective of Knowledge Diffusion: A Case Study of the Power Semiconductor Field

Authors: Lin Qing

Abstract:

[Objective/Significance] The cultivation of high-value patents is the focus and difficulty of patent work, which is of great significance to the construction of a powerful country with intellectual property rights. This work should not only pay attention to the existing patent applications, but also start from the pre-application to explore the high-value technical solutions as the core of high-value patents. [Methods/processes] Comply with the principle of scientific and technological knowledge diffusion, this study studies the top academic conference papers and their cited patent applications, taking the power semiconductor field as an example, using facts date show the feasibility and rationality of mining technology solutions from high quality research results to foster high value patents, stating the actual benefits of these achievements to the industry, giving patent protection suggestions for Chinese applicants comparative with field situation. [Results/Conclusion] The research shows that the quality of citation applications of ISPSD papers is significantly higher than the field average level, and the ability of Chinese applicants to use patent protection related achievements needs to be improved. This study provides a practical and highly targeted reference idea for patent administrators and researchers, and also makes a positive exploration for the practice of the spirit of breaking the five rules.

Keywords: high-value patents cultivation, technical solutions, knowledge diffusion, top academic conference papers, intellectual property information analysis

Procedia PDF Downloads 122
19786 Phylogenetic Analysis of Klebsiella Species from Clinical Specimens from Nelson Mandela Academic Hospital in Mthatha, South Africa

Authors: Sandeep Vasaikar, Lary Obi

Abstract:

Rapid and discriminative genotyping methods are useful for determining the clonality of the isolates in nosocomial or household outbreaks. Multilocus sequence typing (MLST) is a nucleotide sequence-based approach for characterising bacterial isolates. The genetic diversity and the clinical relevance of the drug-resistant Klebsiella isolates from Mthatha are largely unknown. For this reason, prospective, experimental study of the molecular epidemiology of Klebsiella isolates from patients being treated in Mthatha over a three-year period was analysed. Methodology: PCR amplification and sequencing of the drug-resistance-associated genes, and multilocus sequence typing (MLST) using 7 housekeeping genes mdh, pgi, infB, FusAR, phoE, gapA and rpoB were conducted. A total of 32 isolates were analysed. Results: The percentages of multidrug-resistant (MDR), extensively drug-resistance (XDR) and pandrug-resistant (PDR) isolates were; MDR 65.6 % (21) and XDR and PDR with 0 % each. In this study, K. pneumoniae was 19/32 (59.4 %). MLST results showed 22 sequence types (STs) were identified, which were further separated by Maximum Parsimony into 10 clonal complexes and 12 singletons. The most dominant group was Klebsiella pneumoniae with 23/32 (71.8 %) isolates, Klebsiella oxytoca as a second group with 2/32 (6.25 %) isolates, and a single (3.1 %) K. varricola as a third group while 6 isolates were of unknown sequences. Conclusions/significance: A phylogenetic analysis of the concatenated sequences of the 7 housekeeping genes showed that strains of K. pneumoniae form a distinct lineage within the genus Klebsiella, with K. oxytoca and K. varricola its nearest phylogenetic neighbours. With the analysis of 7 genes were determined 1 K. variicola, which was mistakenly identified as K. pneumoniae by phenotypic methods. Two misidentifications of K. oxytoca were found when phenotypic methods were used. No significant differences were observed between ESBL blaCTX-M, blaTEM and blaSHV groups in the distribution of Sequence types (STs) or Clonal complexes (CCs).

Keywords: phylogenetic analysis, phylogeny, klebsiella phylogenetic, klebsiella

Procedia PDF Downloads 362