Search results for: superparamagnetic iron oxide nanoparticles (SPIONS)
1238 Evaluation of the Behavior of Micronutrients in Salty Soils of Low Cheliff
Abstract:
The study investigates the assessment of micronutrient bioavailability and behavior in saline soils based on the determination of three cations and one anion on three soil profiles affected by secondary salinization in Lower Cheliff. The chemical fractionation method was used for the speciation study (different forms) of micronutrients in these soils. The results show that total form quantities of cations are height than norms in agricultural soils, thus the quantities of anion are lows. At the other hand, the quantities of available forms are lows. Statistical analysis reveals that cationic micronutrients localize preferentially in the coarse fraction of the soil in salty conditions and that sodicity causes a decrease in the iron reserve in the soil. The pH range ‘7.49 - 8.76’ represents a constraint for the complexation of micronutrients by organic matter. The study concluded that quantities of total and available forms of micronutrients in salty soils are influenced by soil properties such as: pH, electrical conductivity and exchangeable sodium.Keywords: chemical fractionation, micronutrients, salty soils, speciation
Procedia PDF Downloads 1601237 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis
Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han
Abstract:
Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.Keywords: nanoparticles, catalysis, multicomponent, quinoline
Procedia PDF Downloads 1281236 Sol-Gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application
Authors: Arabi Nour El Houda, Iratni Aicha, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui
Abstract:
TiO2 thin films have been prepared by the sol-gel dip-coating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral do mains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.Keywords: thin film, dip-coating, mono-crystalline silicon, titanium oxide
Procedia PDF Downloads 4391235 Electrical and Optical Properties of Polyaniline: Cadmium Sulphide Quantum Dots Nanocomposites
Authors: Akhtar Rasool, Tasneem Zahra Rizvi
Abstract:
In this study, a series of the cadmium sulphide quantum dots/polyaniline nanocomposites with varying compositions were prepared by in-situ polymerization technique and were characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology was studied by scanning electron microscopy. UV-Visible spectroscopy was used to find out the energy band gap of the nanoparticles and the nanocomposites. Temperature dependence of DC electrical conductivity and temperature and frequency dependence of AC conductivity were investigated to study the charge transport mechanism in the nanocomposites. DC conductivity was found to be a typical for a semiconducting behavior following Mott’s 1D variable range hoping model. The frequency dependent AC conductivity followed the universal power law.Keywords: conducting polymers, nanocomposites, polyaniline composites, quantum dots
Procedia PDF Downloads 2551234 Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation
Authors: D. Jakubowska, M. Malek, P. Wisniewski, J. Mizera, K. J. Kurzydlowski
Abstract:
The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication.Keywords: ceramic slurries, mechanizal properties, viscosity, fabrication
Procedia PDF Downloads 5471233 [Keynote Talk]: Ultrasound Assisted Synthesis of ZnO of Different Morphologies by Solvent Variation
Authors: Durata Haciu, Berti Manisa, Ozgur Birer
Abstract:
ZnO nanoparticles have been synthesized by ultrasonic irradiation from simple linear alcohols and water/ethanolic mixtures, at 50 oC. By changing the composition of the solvent, the shape could be altered. While no product was obtained from methanolic solutions, in ethanol, sheet like lamellar structures prevail.n-propanol and n-butanol resulted in needle like structures. The morphology of ZnO could be thus tailored in a simple way, by varying the solvent, under ultrasonic irradiation, in a relatively less time consuming method. Variation of the morphology and size of Zn also provides a means for modulating the band-gap. Although the chemical effects of ultrasound do not come from direct interaction with molecular species, the high energy derived from acoustic cavitation creates a unique interaction of energy and matter with great potential for synthesis.Keywords: ultrasound, ZnO, linear alcohols, morphology
Procedia PDF Downloads 2441232 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold
Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho
Abstract:
The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold
Procedia PDF Downloads 1451231 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company
Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.Keywords: Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability-center-maintenance
Procedia PDF Downloads 3031230 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury
Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas
Abstract:
Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.Keywords: antibacterial, chitosan, healing process, nanocomposites, silver
Procedia PDF Downloads 2881229 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films
Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali
Abstract:
Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes
Procedia PDF Downloads 4281228 Isothermal and Cyclic Oxidation of the Ti-6Al-4V Alloy
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
In this study, the Ti-6Al-4V alloy was isothermally and cyclically oxidized at 800oC for 40 hours in air, and its oxidation behavior was characterized in terms of its oxidation rate, scaling rate, and scale spallation tendency. The isothermal oxidation tests indicated that Ti-6Al-4V oxidized fast and almost linearly, forming thick oxide scales. However, the scales that formed during isothermal oxidation were adherent. The cyclic oxidation tests indicated that the scales that formed on Ti-6Al-4V were highly susceptible to spallation owing to the large growth stress arisen and the thermal stress imposed during thermal cyclings. The formed scales frequently delaminated into several pieces owing to the excessive stress aroused by the repetitive thermal shock. Particularly, excessive oxidation and heavy spallation occurred at the edge of Ti-6Al-4V during cyclic oxidation.Keywords: cyclic, isothermal, oxidation, spallation
Procedia PDF Downloads 3711227 Concentrated Winding Permanent Magnet Axial Flux Motor with Soft Magnetic Composite Core
Authors: N. Aliyu, G. Atkinson, N. Stannard
Abstract:
Compacted insulated iron powder is a key material in high volume electric motors manufacturing. It offers high production rates, dimensionally stable components, and low scrap volumes. It is the aim of this paper to develop a three-phase compact single sided concentrated winding axial flux PM motor with soft magnetic composite (SMC) core for reducing core losses and cost. To succeed the motor would need to be designed in such a way as to exploit the isotropic magnetic properties of the material and open slot constructions with surface mounted PM for higher speed up to 6000 rpm, without excessive rotor losses. Higher fill factor up to 70% was achieved by compacting the coils, which offered a significant improvement in performance. A finite-element analysis was performed for accurate parameters calculation and the simulation results are thoroughly presented and agree with the theoretical calculations very well.Keywords: SMC core, axial gap motor, high efficiency, torque
Procedia PDF Downloads 3381226 Nanotechnology Innovations for the Sustainable Buildings of the Future
Authors: Ayşin Sev, Meltem Ezel
Abstract:
Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed.Keywords: nanomaterial, self-healing concrete, self cleaning sensor, nanosensor, steel, wood, aerogel, flexible solar panel
Procedia PDF Downloads 4581225 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic
Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak
Abstract:
Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂
Procedia PDF Downloads 1951224 A Compilation of Nanotechnology in Thin Film Solar Cell Devices
Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Nik Hasniza Nik Aman
Abstract:
Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as cadmium telluride (CdTe), copper-indium-gallium-diSelenide (CIGS), copper-zinc-tin-sulphide (CZTS), and dye-sensitized solar cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.Keywords: nanotechnology, nanocrystalline, nanowires, carbon nanotubes, nanorods, thin film solar cells
Procedia PDF Downloads 6271223 Gate Voltage Controlled Humidity Sensing Using MOSFET of VO2 Particles
Authors: A. A. Akande, B. P. Dhonge, B. W. Mwakikunga, A. G. J. Machatine
Abstract:
This article presents gate-voltage controlled humidity sensing performance of vanadium dioxide nanoparticles prepared from NH4VO3 precursor using microwave irradiation technique. The X-ray diffraction, transmission electron diffraction, and Raman analyses reveal the formation of VO2 (B) with V2O5 and an amorphous phase. The BET surface area is found to be 67.67 m2/g. The humidity sensing measurements using the patented lateral-gate MOSFET configuration was carried out. The results show the optimum response at 5 V up to 8 V of gate voltages for 10 to 80% of relative humidity. The dose-response equation reveals the enhanced resilience of the gated VO2 sensor which may saturate above 272% humidity. The response and recovery times are remarkably much faster (about 60 s) than in non-gated VO2 sensors which normally show response and recovery times of the order of 5 minutes (300 s).Keywords: VO2, VO2(B), MOSFET, gate voltage, humidity sensor
Procedia PDF Downloads 3221222 Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe
Authors: D. Mala, S. Sendhilnathan, D. Ratchagaraja
Abstract:
In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications.Keywords: heat pipe, angle of inclination, thermal resistance, thermal efficiency
Procedia PDF Downloads 5641221 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete
Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali
Abstract:
Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.Keywords: compressive strength, deflection, induction furnace slag, workability
Procedia PDF Downloads 3051220 Simulation of Gamma Rays Attenuation Coefficient for Some common Shielding Materials Using Monte Carlo Program
Authors: Cherief Houria, Fouka Mourad
Abstract:
In this work, the simulation of the radiation attenuation is carried out in a photon detector consisting of different common shielding material using a Monte Carlo program called PTM. The aim of the study is to investigate the effect of atomic weight and the thickness of shielding materials on the gamma radiation attenuation ability. The linear attenuation coefficients of Aluminum (Al), Iron (Fe), and lead (Pb) elements were evaluated at photons energy of 661:7KeV that are considered to be emitted from a standard radioactive point source Cs 137. The experimental measurements have been performed for three materials to obtain these linear attenuation coefficients, using a Gamma NaI(Tl) scintillation detector. Our results have been compared with the simulation results of the linear attenuation coefficient using the XCOM database and Geant4 codes and reveal that they are well agreed with both simulation data.Keywords: gamma photon, Monte Carlo program, radiation attenuation, shielding material, the linear attenuation coefficient
Procedia PDF Downloads 2041219 Design and Study of a Low Power High Speed 8 Transistor Based Full Adder Using Multiplexer and XOR Gates
Authors: Biswarup Mukherjee, Aniruddha Ghoshal
Abstract:
In this paper, we propose a new technique for implementing a low power high speed full adder using 8 transistors. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have high speed operation for the sub components. The explored method of implementation achieves a high speed low power design for the full adder. Simulated results indicate the superior performance of the proposed technique over conventional 28 transistor CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.Keywords: high speed low power full adder, 2-T MUX, 3-T XOR, 8-T FA, pass transistor logic, CMOS (complementary metal oxide semiconductor)
Procedia PDF Downloads 3491218 Environmental Impact of Trade Sector Growth: Evidence from Tanzania
Authors: Mosses E. Lufuke
Abstract:
This paper attempted to investigate whether there is Granger-causality running from trade to environment as evidenced in the changing climatic condition and land degradation. Using Tanzania as the reference, VAR-Granger-causality test was employed to rationalize the conundrum of causal-effect relationship between trade and environment. The changing climatic condition, as the proxy of both nitrous oxide emissions (in thousand metric tons of CO2 equivalent) and land degradation measured by the size of arable land were tested against trade using both exports and imports variables. The result indicated that neither of the trade variables Granger-cause the variability on gas emissions and arable land size. This suggests the possibility that all trade concerns in relation to environment to have been internalized in domestic policies to offset any likely negative consequence.Keywords: environment, growth, impact, trade
Procedia PDF Downloads 3211217 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles
Authors: Antonina A. Shumakova, Sergey A. Khotimchenko
Abstract:
The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.Keywords: absorption, cadmium, engineered nanomaterials, lead
Procedia PDF Downloads 871216 Liquid Sulphur Storage Tank
Authors: Roya Moradifar, Naser Agharezaee
Abstract:
In this paper corrosion in the liquid sulphur storage tank at South pars gas complex phases 2&3 is presented. This full hot insulated field-erected storage tanks are used for the temporary storage of 1800m3 of molten sulphur. Sever corrosion inside the tank roof was observed during over haul inspections, in the direction of roof gradient. Investigation shown, in spite of other parts of tank there was no insulation around these manholes. Internal steam coils do not maintain a sufficiently high tank roof temperature in the vapor space. Sulphur and formation of liquid water at cool metal surface, this combination leads to the formation of iron sulfide. By employing a distributed external heating system, the temperatures of any point of the tank roof should be based on ambient dew point and the liquid storage solidification point. Also other construction and operation of tank is more important. This paper will review potential corrosion mechanism and operational case study which illustrate the importance of heating systems.Keywords: tank, steam, corrosion, sulphur
Procedia PDF Downloads 5701215 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel
Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho
Abstract:
The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding
Procedia PDF Downloads 1961214 Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH
Authors: K. M. Salim Reza, M. Hafiz Mia, M. A. Aziz, M. A. Motin, M. M. Rahman, M. A. Hasem
Abstract:
The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process.Keywords: cyclic voltammetry, Fe-Cc Complex, pH effect, redox interaction
Procedia PDF Downloads 3621213 The Determination of the Zinc Sulfate, Sodium Hydroxide and Boric Acid Molar Ratio on the Production of Zinc Borates
Authors: N. Tugrul, A. S. Kipcak, E. Moroydor Derun, S. Piskin
Abstract:
Zinc borate is an important boron compound that can be used as multi-functional flame retardant additive due to its high dehydration temperature property. In this study, the raw materials of ZnSO4.7H2O, NaOH and H3BO3 were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) and used in the synthesis of zinc borates. The synthesis parameters were set to 100°C reaction temperature and 120 minutes of reaction time, with different molar ratio of starting materials (ZnSO4.7H2O:NaOH:H3BO3). After the zinc borate synthesis, the identifications of the products were conducted by XRD and FT-IR. As a result, Zinc Oxide Borate Hydrate [Zn3B6O12.3.5H2O], were synthesized at the molar ratios of 1:1:3, 1:1:4, 1:2:5 and 1:2:6. Among these ratios 1:2:6 had the best results.Keywords: Zinc borate, ZnSO4.7H2O, NaOH, H3BO3, XRD, FT-IR
Procedia PDF Downloads 3611212 Determination of Antimicrobial Effect and Essential Oil Composition Salvia verticillata L. Subsp. amasiaca
Authors: Tanju Teker, Yener Tekeli̇, Esra Karpuz
Abstract:
Salvia species are known as medicinal plant and often used in public. The antimicrobial effects and essential oil composition of Salvia verticillata L. subsp. amasiaca were determined. The antimicrobial activity is determined by using disk diffusion method against two Gram-positive bacteria, two Gram-negative bacteria and one kind of yeast and essential oil composition was determined by GC - MS. As a result of antimicrobial analysis while sample has shown very strong antimicrobial activity against Staphylococcus aureus, moderately effective against Pseudomonas aeruginosa and low effective against Enterococcus faecalis, it has not shown antimicrobial activity against Escherichia coli and C. albicans. Trans-caryophyllene (% 35.07), germacrene-d (% 10.98) and caryopyllene oxide (% 5.81) are the main components of essential oil composition.Keywords: salvia, medicinal plant, antimicrobial activity, essential oil
Procedia PDF Downloads 4601211 Dynamic Model of Heterogeneous Markets with Imperfect Information for the Optimization of Company's Long-Time Strategy
Authors: Oleg Oborin
Abstract:
This paper is dedicated to the development of the model, which can be used to evaluate the effectiveness of long-term corporate strategies and identify the best strategies. The theoretical model of the relatively homogenous product market (such as iron and steel industry, mobile services or road transport) has been developed. In the model, the market consists of a large number of companies with different internal characteristics and objectives. The companies can perform mergers and acquisitions in order to increase their market share. The model allows the simulation of long-time dynamics of the market (for a period longer than 20 years). Therefore, a large number of simulations on random input data was conducted in the framework of the model. After that, the results of the model were compared with the dynamics of real markets, such as the US steel industry from the beginning of the XX century to the present day, and the market of mobile services in Germany for the period between 1990 and 2015.Keywords: Economic Modelling, Long-Time Strategy, Mergers and Acquisitions, Simulation
Procedia PDF Downloads 3681210 Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol
Authors: Ali Garba Danjani, Abdulrasheed Halliru Usman
Abstract:
Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength.Keywords: chitosan, polymeric nanocomposites, antibacterial activity, polymer blend
Procedia PDF Downloads 1001209 Application of Magnetic-Nano Photocatalyst for Removal of Xenobiotic Compounds
Authors: Prashant K. Sharma, Kavita Shah
Abstract:
In recent years, the photochemistry of nanomagnetic particles is being utilized for the removal of various pollutants. In the current era where large quantities of various xenobiotic compounds are released in the environment some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical removal of xenobiotic compounds. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration, light intensity and so on and so forth. Since the xenobiotics are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the xenobiotics. However, commercial application of this technology has to be clearly assessed.Keywords: magnetic, nanoparticles, photocatalayst, xenobiotic compounds
Procedia PDF Downloads 376