Search results for: smoke flow visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5293

Search results for: smoke flow visualization

3163 Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter

Authors: Dheyaa Wajid Abbood, Ali Mohammed Tawfeeq Baqer, Eitizaz Awad Jasim

Abstract:

The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.

Keywords: Marginal water , Toxic matter, Stepped Cascade weir, limestone trickling filter

Procedia PDF Downloads 381
3162 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile

Authors: Fikru Fentaw Abera

Abstract:

Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.

Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE

Procedia PDF Downloads 344
3161 CFD Investigation on Heat Transfer and Friction Characteristics of Rib Roughened Evacuated Tube Collector Solar Air Heater

Authors: Mohit Singla, Vishavjeet Singh Hans, Sukhmeet Singh

Abstract:

Heat transfer and friction characteristics of evacuated tube collector solar air heater artificially roughened with periodic circular rib of uniform cross-section were investigated. The present investigation was carried out in ANSYS Fluent 15.0 to study the impact of roughness geometry parameters, i.e. relative roughness pitch (P/e) of 8 and relative roughness height (e/Dh) of 0.064 and flow parameters, i.e. Reynolds number range of 2500-8000 on Nusselt number and friction factor. RNG k-ε with enhanced wall treatment turbulence model was selected for analysis. The results obtained for roughened evacuated tube collector has been compared with smooth evacuated tube collector for the similar flow conditions. With the increment in Reynolds number from 2500 to 8000, Nusselt number augments while friction factor decreases. Maximum enhancement ratio of Nusselt number and friction factor was 1.71 and 2.7 respectively, obtained at Reynolds number value of 8000. The value of thermo-hydraulic performance parameter was varied between 1.18 - 1.23 for the entire range of Reynolds number, indicates the advantage to use the roughened evacuated tube collector over smooth evacuated tube collector in solar air heater.

Keywords: artificial roughness, evacuated tube collector, friction factor, Nusselt number

Procedia PDF Downloads 146
3160 Thermal Performance of Fully Immersed Server into Saturated Fluid Porous Medium

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in dielectric liquid is studied numerically. In present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid, which can be modelled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increase, the average Nusselt number of the upper unit is increased sharply, whereas the lower one keeps on same level.

Keywords: convective cooling of server, darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 386
3159 Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality

Authors: Aftab Ali

Abstract:

Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen.

Keywords: cryopreservation, computer assisted sperm, flow cytometry, luminometry

Procedia PDF Downloads 131
3158 Delivery System Design of the Local Part to Reduce the Logistic Costs in an Automotive Industry

Authors: Alesandro Romero, Inaki Maulida Hakim

Abstract:

This research was conducted in an automotive company in Indonesia to overcome the problem of high logistics cost. The problem causes high of additional truck delivery. From the breakdown of the problem, chosen one route, which has the highest gap value, namely for RE-04. Research methodology will be started from calculating the ideal condition, making simulation, calculating the ideal logistic cost, and proposing an improvement. From the calculation of the ideal condition, box arrangement was done on the truck; the average efficiency was 97,4 % with three trucks delivery per day. Route simulation making uses Tecnomatix Plant Simulation software as a visualization for the company about how the system is occurred on route RE-04 in ideal condition. Furthermore, from the calculation of logistics cost of the ideal condition, it brings savings of Rp53.011.800,00 in a month. The last step is proposing improvements on the area of route RE-04. The route arrangement is done by Saving Method and sequence of each supplier with the Nearest Neighbor. The results of the proposed improvements are three new route groups, where was expected to decrease logistics cost Rp3.966.559,40 per day, and increase the average of the truck efficiency 8,78% per day.

Keywords: efficiency, logistic cost, milkrun, saving methode, simulation

Procedia PDF Downloads 432
3157 Cationic Surfactants Influence on the Fouling Phenomenon Control in Ultrafiltration of Latex Contaminated Water and Wastewater

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

The goal of the present study was to minimize the ultrafiltration fouling of latex effluent using Cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant. Hydrophilic Polysulfone and Ultrafilic flat heterogeneous membranes, with MWCO of 60,000 and 100,000, respectively, as well as hydrophobic Polyvinylidene Difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a Polycarbonate flat membrane with uniform pore size of 0.05 µm was also used. The effect of CTAB on the latex particle size distribution was investigated at different concentrations, various treatment times, and diverse agitation duration. The effects of CTAB on the zeta potential of latex particles and membrane surfaces were also investigated. The results obtained indicated that the particle size distribution of treated latex effluent showed noticeable shifts in the peaks toward a larger size range due to the aggregation of particles. As a consequence, the mass of fouling contributing to pore blocking and the irreversible fouling were significantly reduced. The optimum results occurred with the addition of CTAB at the critical micelle concentration of 0.36 g/L for 10 minutes with minimal agitation. Higher stirring rate had a negative effect on membrane fouling minimization.

Keywords: cationic surfactant, latex particles, membrane fouling, ultrafiltration, zeta potential

Procedia PDF Downloads 516
3156 Represent Light and Shade of Old Beijing: Construction of Historical Picture Display Platform Based on Geographic Information System (GIS)

Authors: Li Niu, Jihong Liang, Lichao Liu, Huidi Chen

Abstract:

With the drawing of ancient palace painter, the layout of Beijing famous architect and the lens under photographers, a series of pictures which described whether emperors or ordinary people, whether gardens or Hutongs, whether historical events or life scenarios has emerged into our society. These precious resources are scattered around and preserved in different places Such as organizations like archives and libraries, along with individuals. The research combined decentralized photographic resources with Geographic Information System (GIS), focusing on the figure, event, time and location of the pictures to map them with geographic information in webpage and to display them productively. In order to meet the demand of reality, we designed a metadata description proposal, which is referred to DC and VRA standards. Another essential procedure is to formulate a four-tier classification system to correspond with the metadata proposals. As for visualization, we used Photo Waterfall and Time Line to display our resources in front end. Last but not the least, leading the Web 2.0 trend, the research developed an artistic, friendly, expandable, universal and user involvement platform to show the historical and culture precipitation of Beijing.

Keywords: historical picture, geographic information system, display platform, four-tier classification system

Procedia PDF Downloads 255
3155 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.

Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 295
3154 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 251
3153 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 139
3152 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: earth dams, flow, moisture content, slope stability

Procedia PDF Downloads 172
3151 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 119
3150 Fuel Oxidation Reactions: Pathways and Reactive Intermediates Characterization via Synchrotron Photoionization Mass Spectrometry

Authors: Giovanni Meloni

Abstract:

Recent results are presented from experiments carried out at the Advanced Light Source (ALS) at the Chemical Dynamics Beamline of Lawrence Berkeley National Laboratory using multiplexed synchrotron photoionization mass spectrometry. The reaction mixture and a buffer gas (He) are introduced through individually calibrated mass flow controllers into a quartz slow flow reactor held at constant pressure and temperature. The gaseous mixture effuses through a 650 μm pinhole into a 1.5 mm skimmer, forming a molecular beam that enters a differentially pumped ionizing chamber. The molecular beam is orthogonally intersected by a tunable synchrotron radiation produced by the ALS in the 8-11 eV energy range. Resultant ions are accelerated, collimated, and focused into an orthogonal time-of-flight mass spectrometer. Reaction species are identified by their mass-to-charge ratios and photoionization (PI) spectra. Comparison of experimental PI spectra with literature and/or simulated curves is routinely done to assure the identity of a given species. With the aid of electronic structure calculations, potential energy surface scans are performed, and Franck-Condon spectral simulations are obtained. Examples of these experiments are discussed, ranging from new intermediates characterization to reaction mechanisms elucidation and biofuels oxidation pathways identification.

Keywords: mass spectrometry, reaction intermediates, synchrotron photoionization, oxidation reactions

Procedia PDF Downloads 55
3149 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 62
3148 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 289
3147 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 241
3146 A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows

Authors: Yanni Chang, Dezhi Dai, Albert Y. Tong

Abstract:

Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones.

Keywords: interpolation scheme, multiphase flows, overset meshes, PLIC-VOF method

Procedia PDF Downloads 159
3145 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 238
3144 Perusing the Influence of a Visual Editor in Enabling PostgreSQL Query Learn-Ability

Authors: Manuela Nayantara Jeyaraj

Abstract:

PostgreSQL is an Object-Relational Database Management System (ORDBMS) with an architecture that ensures optimal quality data management. But due to the shading growth of similar ORDBMS, PostgreSQL has not been renowned among the database user community. Despite having its features and in-built functionalities shadowed, PostgreSQL renders a vast range of utilities for data manipulation and hence calling for it to be upheld more among users. But introducing PostgreSQL in order to stimulate its advantageous features among users, mandates endorsing learn-ability as an add-on as the target groups considered consist of both amateur as well as professional PostgreSQL users. The scope of this paper deliberates providing easy contemplation of query formulations and flows through a visual editor designed according to user interface principles that standby to support every aspect of making PostgreSQL learn-able by self-operation and creation of queries within the visual editor. This paper tends to scrutinize the importance of choosing PostgreSQL as the working database environment, the visual perspectives that influence human behaviour and ultimately learning, the modes in which learn-ability can be provided via visualization and the advantages reaped by the implementation of the proposed system features.

Keywords: database, learn-ability, PostgreSQL, query, visual-editor

Procedia PDF Downloads 161
3143 Media Representation of China: A Content Analysis of Coverage of China-Related Energy in the New York Times

Authors: Lian Liu

Abstract:

By analyzing the content of the New York Times' China-related energy reports, this study aims to explore the construction of China's national image by the mainstream media in the United States. The study analyzes three aspects of the coverage: topics, reporting tendencies, and countries involved. The results of the study show that economic issues are the main focus of the New York Times’ China-related energy coverage, followed by political issues and environmental issues. Overall, the coverage tendency was mainly negative, but positive coverage was dominated by science and technology issues. In addition, the study found that U.S.-China relations and Sino-Russian relations were important contexts for the construction of China's national image in the NYT's China-related energy coverage. These stories highlight China's interstate interactions with the United States, Japan, and Russia, which serve as important links in the coverage. The findings of this study reveal some characteristics and trends of the U.S. mainstream media's country image of China, which are important for a deeper understanding of the U.S.-China relationship and the media's influence on the construction of the country's image.

Keywords: media coverage, China, content analysis, visualization technology

Procedia PDF Downloads 59
3142 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 332
3141 Collagen Deposition in Lung Parenchyma Driven by Depletion of LYVE-1+ Macrophages Protects Emphysema and Loss of Airway Function

Authors: Yinebeb Mezgebu Dagnachew, Hwee Ying Lim, Liao Wupeng, Sheau Yng Lim, Lim Sheng Jie Natalie, Veronique Angeli

Abstract:

Collagen is essential for maintaining lung structure and function, and its remodeling has been associated with respiratory diseases, including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood. Using a mouse model of Lyve-1 expressing macrophage depletion, we found that the absence of this subpopulation of tissue-resident macrophage led to the preferential deposition of type I collagen fibers around the alveoli and bronchi in the steady state. Further analysis by polarized light microscopy revealed that the collagen fibers accumulating in the lungs depleted of Lyve-1+ macrophages were thicker and crosslinked. A decrease in MMP-9 gene expression and proteolytic activity, together with an increase in Col1a1, Timp-3 and Lox gene expression, accompanied the collagen alterations. Next, we investigated the effect of the collagen remodeling on the pathophysiology of COPD and airway function in mouse lacking Lyve-1+ macrophage exposed chronically to cigarette smoke (CS), a well-established animal model of COPD. We showed that the deposition of collagen protected mouse against the destruction of alveoli (emphysema) and bronchi thickening after CS exposure and prevented loss of airway function. Thus, we demonstrate that interstitial Lyve-1+ macrophages regulate the composition, amount, and architecture of the collagen network in the lungs and that such collagen remodeling functionally impacts the development of COPD. This study further supports the potential of targeting collagen as a promising approach to treating respiratory diseases.

Keywords: lung, extracellular matrix, chronic obstructive pulmonary disease, matrix metalloproteinases, collagen

Procedia PDF Downloads 15
3140 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: particle swarm optimization, GIS, traffic data, outliers

Procedia PDF Downloads 462
3139 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 16
3138 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer

Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić

Abstract:

Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.

Keywords: dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate

Procedia PDF Downloads 282
3137 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 205
3136 Adhesion of Sputtered Copper Thin Films Deposited on Flexible Substrates

Authors: Rwei-Ching Chang, Bo-Yu Su

Abstract:

Adhesion of copper thin films deposited on polyethylene terephthAdhesion of copper thin films deposited on polyethylene terephthalate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.alate substrate by direct current sputtering with different sputtering parameters is discussed in this work. The effects of plasma treatment with 0, 5, and 10 minutes on the thin film properties are investigated first. Various argon flow rates at 40, 50, 60 standard cubic centimeters per minute (sccm), deposition power at 30, 40, 50 W, and film thickness at 100, 200, 300 nm are also discussed. The 3-dimensional surface profilometer, micro scratch machine, and optical microscope are used to characterize the thin film properties. The results show that the increase of the plasma treatment time on the polyethylene terephthalate surface affects the roughness and critical load of the films. The critical load increases as the plasma treatment time increases. When the plasma treatment time was adjusted from 5 minutes to 10 minutes, the adhesion increased from 8.20 mN to 13.67 mN. When the argon flow rate is decreased from 60 sccm to 40 sccm, the adhesion increases from 8.27 mN to 13.67 mN. The adhesion is also increased by the condition of higher power, where the adhesion increased from 13.67 mN to 25.07 mN as the power increases from 30 W to 50 W. The adhesion of the film increases from 13.67 mN to 21.41mN as the film thickness increases from 100 nm to 300 nm. Comparing all the deposition parameters, it indicates the change of the power and thickness has much improvement on the film adhesion.

Keywords: flexible substrate, sputtering, adhesion, copper thin film

Procedia PDF Downloads 118
3135 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 41
3134 Nanofluids and Hybrid Nanofluids: Comparative Study of Mixed Convection in a Round Bottom Flask

Authors: Hicham Salhi

Abstract:

This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results. This research project focuses on the numerical investigation of the mixed convection of Hybrid nanofluids in a round bottom flask commonly used in organic chemistry synthesis. The aim of this study is to improve the thermal properties of the reaction medium and enhance the rate of chemical reactions by using hybrid nanofluids. The flat bottom wall of the flask is maintained at a constant high temperature, while the top, left, and right walls are kept at a low temperature. The nanofluids used in this study contain suspended Cu and Al2O3 nanoparticles in pure water. The governing equations are solved numerically using the finite-volume approach and the Boussinesq approximation. The effects of the volume fraction of nanoparticles (φ) ranging from 0% to 5%, the Rayleigh number from 103 to 106, and the type of nanofluid (Cu and Al2O3) on the flow streamlines, isotherm distribution, and Nusselt number are examined in the simulation. The results indicate that the addition of Cu and Al2O3 nanoparticles increases the mean Nusselt number, which improves heat transfer and significantly alters the flow pattern. Moreover, the mean Nusselt number increases with increasing Rayleigh number and volume fraction, with Cu- Al2O3 hybrid nanofluid producing the best results.

Keywords: bottom flask, mixed convection, hybrid nanofluids, numerical simulation

Procedia PDF Downloads 64