Search results for: HEp-2 cell line
3836 Correlation Analysis between Sensory Processing Sensitivity (SPS), Meares-Irlen Syndrome (MIS) and Dyslexia
Authors: Kaaryn M. Cater
Abstract:
Students with sensory processing sensitivity (SPS), Meares-Irlen Syndrome (MIS) and dyslexia can become overwhelmed and struggle to thrive in traditional tertiary learning environments. An estimated 50% of tertiary students who disclose learning related issues are dyslexic. This study explores the relationship between SPS, MIS and dyslexia. Baseline measures will be analysed to establish any correlation between these three minority methods of information processing. SPS is an innate sensitivity trait found in 15-20% of the population and has been identified in over 100 species of animals. Humans with SPS are referred to as Highly Sensitive People (HSP) and the measure of HSP is a 27 point self-test known as the Highly Sensitive Person Scale (HSPS). A 2016 study conducted by the author established base-line data for HSP students in a tertiary institution in New Zealand. The results of the study showed that all participating HSP students believed the knowledge of SPS to be life-changing and useful in managing life and study, in addition, they believed that all tutors and in-coming students should be given information on SPS. MIS is a visual processing and perception disorder that is found in approximately 10% of the population and has a variety of symptoms including visual fatigue, headaches and nausea. One way to ease some of these symptoms is through the use of colored lenses or overlays. Dyslexia is a complex phonological based information processing variation present in approximately 10% of the population. An estimated 50% of dyslexics are thought to have MIS. The study exploring possible correlations between these minority forms of information processing is due to begin in February 2017. An invitation will be extended to all first year students enrolled in degree programmes across all faculties and schools within the institution. An estimated 900 students will be eligible to participate in the study. Participants will be asked to complete a battery of on-line questionnaires including the Highly Sensitive Person Scale, the International Dyslexia Association adult self-assessment and the adapted Irlen indicator. All three scales have been used extensively in literature and have been validated among many populations. All participants whose score on any (or some) of the three questionnaires suggest a minority method of information processing will receive an invitation to meet with a learning advisor, and given access to counselling services if they choose. Meeting with a learning advisor is not mandatory, and some participants may choose not to receive help. Data will be collected using the Question Pro platform and base-line data will be analysed using correlation and regression analysis to identify relationships and predictors between SPS, MIS and dyslexia. This study forms part of a larger three year longitudinal study and participants will be required to complete questionnaires at annual intervals in subsequent years of the study until completion of (or withdrawal from) their degree. At these data collection points, participants will be questioned on any additional support received relating to their minority method(s) of information processing. Data from this study will be available by April 2017.Keywords: dyslexia, highly sensitive person (HSP), Meares-Irlen Syndrome (MIS), minority forms of information processing, sensory processing sensitivity (SPS)
Procedia PDF Downloads 2453835 Follicular Fluid Proteins and Cells Study on Small, Medium, and Large Follicles of Large White Pig
Authors: Mayuva Youngsabanant-Areekijseree, Chanikarn Srinark, S. Sengsai, Mayuree Pumipaiboon
Abstract:
Our project was aimed at morphology of oocytes, follicle cells and follicular fluid proteins study of Large White pig (at local slaughter house in Nakhon Pathom Province). The porcine oocytes and follicular fluid of healthy small follicles (1-2 mm), medium follicles (3-6 mm in diameters) and large follicles (7-8 mm and 10 mm in diameter) were aspirated and collected from the ovary by sterile technique. Then, the oocytes and the follicle cells were separated from the fluid. The oocytes were round shape and surrounded by zona pellucida with numerous layers of cumulus cells. Based on the number of cumulus cell layers surrounding oocytes, the oocytes were classified into 5 types, which were intact-, multi-, partial-cumulus layer oocyte, completely denuded oocyte and degenerative oocyte. The collected oocytes showed high percentages of intact- and multi- cumulus cell layers in the small follicles (53.48%) medium follicles (56.94%) and large follicles (56.52%) which have high potential to develop into mature oocytes in vitro. Proteins from follicular fluid of 3 size follicles were separated by SDS-PAGE and LC/MS/MS. The molecular weight of follicular fluid proteins from the small follicles were 24, 60-65, 79, 110, 140, 160, and > 220 kDa. Meanwhile, the follicular fluid protein from medium and large follicle contained 52, 65, 79, 90, 110, 120, 160, 190 and > 220 kDa. Almost all proteins played important roles in promoting and regulating growth and development of oocytes and ovulation. This finding was an initial tool for in vitro testing and applied biotechnology research. Acknowledgements: The project was funded by a grant from Silpakorn University Research & Development Institute (SURDI) and Faculty of Science, Silpakorn University, Thailand.Keywords: follicular fluid protein, LC/MS/MS, porcine oocyte, SDS-PAGE, reproductive biology
Procedia PDF Downloads 2353834 Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser
Authors: Sharmin Ferdewsi Rakhi, A. H. M. Mohsinul Reza, Brynley Davies, Jianzhong Wang, Youhong Tang, Jian Qin
Abstract:
Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel.Keywords: microalgae, photosensitiser, lipid, biomass, aggregation-induced-emission, reactive oxygen species
Procedia PDF Downloads 533833 Effect of Crystallographic Characteristics on Toughness of Coarse Grain Heat Affected Zone for Different Heat Inputs
Authors: Trishita Ray, Ashok Perka, Arnab Karani, M. Shome, Saurabh Kundu
Abstract:
Line pipe steels are used for long distance transportation of crude oil and gas under extreme environmental conditions. Welding is necessary to lay large scale pipelines. Coarse Grain Heat Affected Zone (CGHAZ) of a welded joint exhibits worst toughness because of excessive grain growth and brittle microstructures like bainite and martensite, leading to early failure. Therefore, it is necessary to investigate microstructures and properties of the CGHAZ for different welding heat inputs. In the present study, CGHAZ for two heat inputs of 10 kJ/cm and 50 kJ/cm were simulated in Gleeble 3800, and the microstructures were investigated in detail by means of Scanning Electron Microscopy (SEM) and Electron Backscattered Diffraction (EBSD). Charpy Impact Tests were also done to evaluate the impact properties. High heat input was characterized with very low toughness and massive prior austenite grains. With the crystallographic information from EBSD, the area of a single prior austenite grain was traced out for both the welding conditions. Analysis of the prior austenite grains showed the formation of high angle boundaries between the crystallographic packets. Effect of these packet boundaries on secondary cleavage crack propagation was discussed. It was observed that in the low heat input condition, formation of finer packets with a criss-cross morphology inside prior austenite grains was effective in crack arrest whereas, in the high heat input condition, formation of larger packets with higher volume of low angle boundaries failed to resist crack propagation resulting in a brittle fracture. Thus, the characteristics in a crystallographic packet and impact properties are related and should be controlled to obtain optimum properties.Keywords: coarse grain heat affected zone, crystallographic packet, toughness, line pipe steel
Procedia PDF Downloads 2453832 Construction of Microbial Fuel Cells from Local Benthic Zones
Authors: Maria Luiza D. Ramiento, Maria Lissette D. Lucas
Abstract:
Electricity is said to serve as the backbone of modern technology. Considering this, electricity consumption has dynamically grown due to the continuous demand. An alternative producer of energy concerning electricity must therefore be given focus. Microbial fuel cell wholly characterizes a new method of renewable energy recovery: the direct conversion of organic matter to electricity using bacteria. Electricity is produced as fuel or new food is given to the bacteria. The study concentrated in determining the feasibility of electricity production from local benthic zones. Microbial fuel cells were constructed to harvest the possible electricity and to test the presence of electricity producing microorganisms. Soil samples were gathered from Calumpang River, Palawan Mangrove Forest, Rosario River and Batangas Port. Eleven modules were constructed for the different trials of the soil samples. These modules were made of cathode and anode chambers connected by a salt bridge. For 85 days, the harvested voltage was measured daily. No parameter is added for the first 24 days. For the next 61 days, acetic acid was included in the first and second trials of the modules. Each of the trials of the soil samples gave a positive result in electricity production.There were electricity producing microbes in local benthic zones. It is observed that the higher the organic content of the soil sample, the higher the electricity harvested from it. It is recommended to identify the specific species of the electricity-producing microorganism present in the local benthic zone. Complement experiments are encouraged like determining the kind of soil particles to test its effect on the amount electricity that can be harvested. To pursue the development of microbial fuel cells by building a closed circuit in it is also suggested.Keywords: microbial fuel cell, benthic zone, electricity, reduction-oxidation reaction, bacteria
Procedia PDF Downloads 4003831 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone
Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga
Abstract:
Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study
Procedia PDF Downloads 1633830 Superparamagnetic Sensor with Lateral Flow Immunoassays as Platforms for Biomarker Quantification
Authors: M. Salvador, J. C. Martinez-Garcia, A. Moyano, M. C. Blanco-Lopez, M. Rivas
Abstract:
Biosensors play a crucial role in the detection of molecules nowadays due to their advantages of user-friendliness, high selectivity, the analysis in real time and in-situ applications. Among them, Lateral Flow Immunoassays (LFIAs) are presented among technologies for point-of-care bioassays with outstanding characteristics such as affordability, portability and low-cost. They have been widely used for the detection of a vast range of biomarkers, which do not only include proteins but also nucleic acids and even whole cells. Although the LFIA has traditionally been a positive/negative test, tremendous efforts are being done to add to the method the quantifying capability based on the combination of suitable labels and a proper sensor. One of the most successful approaches involves the use of magnetic sensors for detection of magnetic labels. Bringing together the required characteristics mentioned before, our research group has developed a biosensor to detect biomolecules. Superparamagnetic nanoparticles (SPNPs) together with LFIAs play the fundamental roles. SPMNPs are detected by their interaction with a high-frequency current flowing on a printed micro track. By means of the instant and proportional variation of the impedance of this track provoked by the presence of the SPNPs, quantitative and rapid measurement of the number of particles can be obtained. This way of detection requires no external magnetic field application, which reduces the device complexity. On the other hand, the major limitations of LFIAs are that they are only qualitative or semiquantitative when traditional gold or latex nanoparticles are used as color labels. Moreover, the necessity of always-constant ambient conditions to get reproducible results, the exclusive detection of the nanoparticles on the surface of the membrane, and the short durability of the signal are drawbacks that can be advantageously overcome with the design of magnetically labeled LFIAs. The approach followed was to coat the SPIONs with a specific monoclonal antibody which targets the protein under consideration by chemical bonds. Then, a sandwich-type immunoassay was prepared by printing onto the nitrocellulose membrane strip a second antibody against a different epitope of the protein (test line) and an IgG antibody (control line). When the sample flows along the strip, the SPION-labeled proteins are immobilized at the test line, which provides magnetic signal as described before. Preliminary results using this practical combination for the detection and quantification of the Prostatic-Specific Antigen (PSA) shows the validity and consistency of the technique in the clinical range, where a PSA level of 4.0 ng/mL is the established upper normal limit. Moreover, a LOD of 0.25 ng/mL was calculated with a confident level of 3 according to the IUPAC Gold Book definition. Its versatility has also been proved with the detection of other biomolecules such as troponin I (cardiac injury biomarker) or histamine.Keywords: biosensor, lateral flow immunoassays, point-of-care devices, superparamagnetic nanoparticles
Procedia PDF Downloads 2323829 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation
Authors: Chih-Wei Chao, Jiashing Yu
Abstract:
Microfluidic devices have recently emerged as promising tools for the fabrication of scaffolds for cell culture. To mimic the natural circumstances of organism for cells to grow, here we present three-dimensional (3D) scaffolds fabricated by microfluidics for cells cultivation. This work aims at investigating the behavior in terms of the viability and the proliferation capability of rat H9c2 cardiomyocytes in the gelatin 3D scaffolds by fluorescent images.Keywords: microfluidic device, H9c2, tissue engineering, 3D scaffolds
Procedia PDF Downloads 4223828 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.
Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama
Abstract:
The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel
Procedia PDF Downloads 1483827 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: aesthetics, crease line, cropped straight leg pants, knee width
Procedia PDF Downloads 1863826 Apoptosis Inducing Potential of Onosma Bracteata Wall. in Mg-63 Human Osteosarcoma Cells via cdk2/Cyclin E Pathway
Authors: Ajay Kumar, Satwinderjeet Kaur
Abstract:
Onosma bracteata Wall. (Boraginaceae), is known to be a medicinal plant, useful in the treatment of body swellings, abdominal pain and urinary calculi, etc. The present study focused on the radical scavenging and cancer growth inhibitory properties of isolates from O. bracteata. Obea fraction demonstrated noticeable free radical scavenging ability along with antiproliferative activity in human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay with GI50 values of 88.56, 101.61 and 112.7 μg/ml, respectively. The scanning electron and confocal microscopy studies showed morphological alterations including nuclear condensation and formation of apoptotic bodies in osteosarcoma MG-63 cells. Obea fraction in osteosarcoma MG-63 cells augmented the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential. Flow cytometry analysis revealed the Obea treated cells to be arrested in the G0/G1 phase in a dose dependent manner supported by the observed increase in the early apoptotic cell population. Western blotting analysis showed that the expression of p-NF-kB, COX-2, p-Akt, and Bcl-xL decreased whereas, the expression of GSK-3β, p53, caspase-3 and caspase-9 proteins increased. The downregulation of Bcl-2, Cyclin E, CDK2 and mortalin gene expression and upregulation of p53 genes was unfolded in RT-qPCR studies. The presence of catechin, kaempferol, Onosmin A and epicatechin, as revealed in high-performance liquid chromatography (HPLC) studies, contributes towards the chemopreventive potential of O. bracteata which can be tapped for chemotherapeutic use.Keywords: apoptosis, confocal microscopy, HPLC, mitochondria membrane potential, reactive oxygen species
Procedia PDF Downloads 1363825 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery
Authors: Atef Y. Shenouda, Anton A. Momchilov
Abstract:
Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.Keywords: CdO, graphene, negative electrode, lithium battery
Procedia PDF Downloads 1623824 Cytotoxic Effect of Biologically Transformed Propolis on HCT-116 Human Colon Cancer Cells
Authors: N. Selvi Gunel, L. M. Oktay, H. Memmedov, B. Durmaz, H. Kalkan Yildirim, E. Yildirim Sozmen
Abstract:
Object: Propolis which consists of compounds that are accepted as antioxidant, antimicrobial, antiseptic, antibacterial, anti-inflammatory, anti-mutagenic, immune-modulator and cytotoxic, is frequently used in current therapeutic applications. However, some of them result in allergic side effects, causing consumption to be restricted. Previously our group has succeeded in producing a new biotechnological product which was less allergenic. In this study, we purpose to optimize production conditions of this biologically-transformed propolis and determine the cytotoxic effects of obtained new products on colon cancer cell line (HCT-116). Method: Firstly, solid propolis samples were dissolved in water after weighing, grinding and sizing (sieve-35mesh) and applied 40 kHz/10 min ultrasonication. Samples were prepared according to inoculation with Lactobacillus plantarum in two different proportions (2.5% and 3.5%). Chromatographic analyzes of propolis were performed by UPLC-MS/MS (Waters, Milford, MA) system. Results were analysed by UPLC-MS/MS system MassLynx™ 4.1 software. HCT-116 cells were treated with propolis examples at 25-1000 µg/ml concentrations and cytotoxicity were measured by using WST-8 assay at 24, 48, and 72 hours. Samples with biological transformation were compared with the non-transformed control group samples. Our experiment groups were formed as follows: untreated (group 1), propolis dissolved in water ultrasonicated at 40 kHz/10 min (group 2), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 2.5% L. plantarum L1 strain (group 3), propolis dissolved in water ultrasonicated at 40 kHz/10 min and inoculated 3.5% L. plantarum L3 strain (group 4). Obtained data were calculated with Graphpad Software V5 and analyzed by two-way ANOVA test followed by Bonferroni test. Result: As a result of our study, the cytotoxic effect of propolis samples on HCT-116 cells was evaluated. There was a 7.21 fold increase in group 3 compared to group 2 in the concentration of 1000 µg/ml, and it was a 6.66 fold increase in group 3 compared to group 1 at the end of 24 hours. At the end of 48 hours, in the concentration of 500 µg/ml, it was determined 4.7 fold increase in group 4 compared to group 3. At the same time, in the concentration of 750 µg/ml it was determined 2.01 fold increase in group 4 compared to group 3 and in the same concentration, it was determined 3.1 fold increase in group 4 compared to group 2. Also, at the 72 hours, in the concentration of 750 µg/ml, it was determined 2.42 fold increase in group 3 according to group 2 and in the same time, in the concentration of 1000 µg/ml, it was determined 2.13 fold increase in group 4 according to group 2. According to cytotoxicity results, the group which were ultrasonicated at 40 kHz/10min and inoculated 3.5% L. plantarum L3-strain had a higher cytotoxic effect. Conclusion: It is known that bioavailability of propolis is halved in six months. The data obtained from our results indicated that biologically-transformed propolis had more cytotoxic effect than non-transformed group on colon cancer cells. Consequently, we suggested that L. plantarum-transformation provides both reduction of allergenicity and extension of bioavailability period by enhancing healthful polyphenols.Keywords: bio-transformation, propolis, colon cancer, cytotoxicity
Procedia PDF Downloads 1403823 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories
Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim
Abstract:
Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria
Procedia PDF Downloads 2853822 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions
Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba
Abstract:
The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan
Procedia PDF Downloads 3093821 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 1423820 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 953819 Myomectomy and Blood Loss: A Quality Improvement Project
Authors: Ena Arora, Rong Fan, Aleksandr Fuks, Kolawole Felix Akinnawonu
Abstract:
Introduction: Leiomyomas are benign tumors that are derived from the overgrowth of uterine smooth muscle cells. Women with symptomatic leiomyomas who desire future fertility, myomectomy should be the standard surgical treatment. Perioperative hemorrhage is a common complication in myomectomy. We performed the study to investigate blood transfusion rate in abdominal myomectomies, risk factors influencing blood loss and modalities to improve perioperative blood loss. Methods: Retrospective chart review was done for patients who underwent myomectomy from 2016 to 2022 at Queens hospital center, New York. We looked at preoperative patient demographics, clinical characteristics, intraoperative variables, and postoperative outcomes. Mann-Whitney U test were used for parametric and non-parametric continuous variable comparisons, respectively. Results: A total of 159 myomectomies were performed between 2016 and 2022, including 1 laparoscopic, 65 vaginal and 93 abdominal. 44 patients received blood transfusion during or within 72 hours of abdominal myomectomy. The blood transfusion rate was 47.3%. Blood transfusion rate was found to be twice higher than the average documented rate in literature which is 20%. Risk factors identified were black race, preoperative hematocrit<30%, preoperative blood transfusion within 72 hours, large fibroid burden, prolonged surgical time, and abdominal approach. Conclusion: Preoperative optimization with iron supplements or GnRH agonists is important for patients undergoing myomectomy. Interventions to decrease intra operative blood loss should include cell saver, tourniquet, vasopressin, misoprostol, tranexamic acid and gelatin-thrombin matrix hemostatic sealant.Keywords: myomectomy, perioperative blood loss, cell saver, tranexamic acid
Procedia PDF Downloads 853818 Haematological Changes and Anticoccidial Activities of Kaempferol in Eimeria Tenella Infected Broiler Chickens
Authors: Ya'u Muhammad, Umar Umar A. Mallammadori, Dahiru Mansur
Abstract:
Effect of kaempferol on haematological parameters in two weeks old broiler chickens with experimental Eimeria tenella infection was evaluated in this study. Sixty-day old broilers were randomly allotted into six groups (I-VI) of ten broilers each and brooded for two weeks with commercial broiler feed (vital feed®) and provided water ad libitum. At two weeks of age broilers in group 1 were neither infected nor treated. Broilers in groups II-VI were infected with Eimeria tenella sporulated oocyst (104/ml) via oral inoculation. After infection was established, broilers in groups II-IV were treated orally with 1 mg/kg, 1.5 mg/kg, and 2 mg/kg of kaempferol, respectively. Broilers in group V were treated for five days with amprolium, 1.25 g/L in drinking water. Broilers in group VI were administered normal saline, 5 ml/kg per os for five days. Five days post infection; all broilers were sacrificed by severing their jugular veins. Blood sample from each bird was collected in EDTA container for haematology. Caecal contents were harvested and used to determine the lesion score and caecal Oocyst count respectively. Data obtained was analyzed using pad prism version 5.0. Mean Packed Cell Volume (PCV), haemoglobin (Hb) concentration, and Red Blood Cell (RBC) count significantly (P < 0.05) increased in groups II, III, and IV in a dose dependent manner. Similarly, PCV, Hb concentration, and RBC count significantly (P < 0.05) increased in groups II, III, and IV when compared to VI. No significant (P > 0.05) difference in the mean values of PCV, Hb and RBC count were recorded between groups treated with kaempferol and group V. Caecal Oocyst counts and lesion scores reduced significantly (P < 0.05) in groups II, III, and IV in a dose dependent manner. It was therefore observed in this study that kaempferol improved haematological parameters and reduced Oocyst count as well as the lesion scores in broilers infected with Eimeria tenella.Keywords: broilers, Eimeria tenella, kaempferol, lesion scores, oocyst count,
Procedia PDF Downloads 1943817 A Review of Optomechatronic Ecosystem
Authors: Sam Zhang
Abstract:
The landscape of Opto mechatronics is viewed along the line of light vs. matter, photonics vs. semiconductors, and optics vs. mechatronics. Optomechatronics is redefined as the integration of light and matter from the atom, device, and system to the application. The markets and megatrends in Opto mechatronics are further listed. The author then focuses on Opto mechatronic technology in the semiconductor industry as an example and reviews the practical systems, characteristics, and trends. Opto mechatronics, together with photonics and semiconductor, will continue producing the computational and smart infrastructure required for the 4th industrial revolution.Keywords: photonics, semiconductor, optomechatronics, 4th industrial revolution
Procedia PDF Downloads 1303816 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals
Authors: Yunus Onur Yildiz, Mesut Kirca
Abstract:
In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation
Procedia PDF Downloads 2773815 MR Imaging Spectrum of Intracranial Infections: An Experience of 100 Cases in a Tertiary Hospital in Northern India
Authors: Avik Banerjee, Kavita Saggar
Abstract:
Infections of the nervous system and adjacent structures are often life-threatening conditions. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS disease remains a challenge. Our aim is to evaluate the typical and atypical neuro-imaging features of the various routinely encountered CNS infected patients so as to form guidelines for their imaging recognition and differentiation from tumoral, vascular and other entities that warrant a different line of therapy.Keywords: central nervous system (CNS), Cerebro Spinal Fluid (Csf), Creutzfeldt Jakob Disease (CJD), progressive multifocal leukoencephalopathy (PML)
Procedia PDF Downloads 3013814 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed
Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach
Abstract:
This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.Keywords: Antenna, CPW, fractal, GSM, multiband
Procedia PDF Downloads 3863813 Transformation of Hexagonal Cells into Auxetic in Core Honeycomb Furniture Panels
Authors: Jerzy Smardzewski
Abstract:
Structures with negative Poisson's ratios are called auxetic. They are characterized by better mechanical properties than conventional structures, especially shear strength, the ability to better absorb energy and increase strength during bending, especially in sandwich panels. Commonly used paper cores of cellular boards are made of hexagonal cells. With isotropic facings, these cells provide isotropic properties of the entire furniture board. Shelves made of such panels with a thickness similar to standard chipboards do not provide adequate stiffness and strength of the furniture. However, it is possible to transform the shape of hexagonal cells into polyhedral auxetic cells that improve the mechanical properties of the core. The work aimed to transform the hexagonal cells of the paper core into auxetic cells and determine their basic mechanical properties. Using numerical methods, it was decided to design the most favorable proportions of cells distinguished by the lowest Poisson's ratio and the highest modulus of linear elasticity. Standard cores for cellular boards commonly used to produce 34 mm thick furniture boards were used for the tests. Poisson's ratios, bending strength, and linear elasticity moduli were determined for such cores and boards. Then, the cells were transformed into auxetic structures, and analogous cellular boards were made for which mechanical properties were determined. The results of numerical simulations for which the variable parameters were the dimensions of the cell walls, wall inclination angles, and relative cell density were presented in the further part of the paper. Experimental tests and numerical simulations showed the beneficial effect of auxeticization on the mechanical quality of furniture panels. They allowed for the selection of the optimal shape of auxetic core cells.Keywords: auxetics, honeycomb, panels, simulation, experiment
Procedia PDF Downloads 123812 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity
Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim
Abstract:
Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin
Procedia PDF Downloads 2343811 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes
Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien
Abstract:
UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress
Procedia PDF Downloads 3803810 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data
Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery
Abstract:
Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.Keywords: El Sadat city, joint inversion, VES, TEM
Procedia PDF Downloads 3703809 Flexible Technologies of Granulated Complex Fertilizers
Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy
Abstract:
The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).Keywords: ammoniator-granulator drier drum, phosphorus-containing fertilizer technology, PK, PKS and NPKS-fertilizers, WPA
Procedia PDF Downloads 2043808 Effect of Z-VAD-FMK on in Vitro Viability of Dog Follicles
Authors: Leda Maria Costa Pereira, Maria Denise Lopes, Nucharin Songsasen
Abstract:
Mammalian ovaries contain thousands of follicles that eventually degenerate or die after culture in vitro. Caspase-3 is a key enzyme that regulating cell death. Our objective was to examine the influence of anti-apoptotic drug Z-VAD-FMK (pan-caspase inhibitor) on in vitro viability of dog follicles within the ovarian cortex. Ovaries were obtained from prepubertal (age, 2.5–6 months) and adult (age, 8 months to 2 years) bitches and ovarian cortical fragments were recovered. The cortices were then incubated on 1.5% (w/v) agarose gel blocks within a 24-wells culture plate (three cortical pieces/well) containing Minimum Essential Medium Eagle - Alpha Modification (Alpha MEM) supplemented with 4.2 µg/ml insulin, 3.8 µg/ml transferrin, 5 ng/ml selenium, 2 mM L-glutamine, 100 µg/mL of penicillin G sodium, 100 µg/mL of streptomycin sulfate, 0.05 mM ascorbic acid, 10 ng/mL of FSH and 0.1% (w/v) polyvinyl alcohol in humidified atmosphere of 5% CO2 and 5% O2. The cortices were divided in six treatment groups: 1) 10 ng/mL EGF (EGF V0); 2) 10 ng/mL of EGF plus 1 mM Z-VAD-FMK (EGF V1); 3) 10 ng/mL of EGF and 10 mM Z-VAD-FMK (EGF V10); 4) 1 mM Z-VAD-FMK; 5) 10 mM Z-VAD-FMK and (6) no EGF and Z-VAD-FMK supplementation. Ovarian follicles within the tissues were processed for histology and assessed for follicle density, viability (based on morphology) and diameter immediately after collection (Control) or after 3 or 7 days of in vitro incubation. Comparison among fresh and culture treatment group was performed using ANOVA test. There were no differences (P > 0.05) in follicle density and viability among different culture treatments. However, there were differences in this parameter between culture days. Specifically, culturing tissue for 7 days resulted in significant reduction in follicle viability and density, regardless of treatments. We found a difference in size between culture days when these follicles were cultured using 10 mM Z-VAD-FMK or 10 ng/mL EGF (EGF V0). In sum, the finding demonstrated that Z-VAD-FMK at the dosage used in the present study does not provide the protective effect to ovarian tissue during in vitro culture. Future studies should explore different Z-VAD-FMK dosages or other anti-apoptotic agent, such as surviving in protecting ovarian follicles against cell death.Keywords: anti apoptotic drug, bitches, follicles, Z-VAD-FMK
Procedia PDF Downloads 3613807 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis
Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin
Abstract:
Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer
Procedia PDF Downloads 163