Search results for: molecular mechanisms of cancer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6304

Search results for: molecular mechanisms of cancer

4204 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)

Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim

Abstract:

Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).

Keywords: pineapple, diagnosis, virus, NDVI

Procedia PDF Downloads 795
4203 Marker Assisted Selection of Rice Genotypes for Xa5 and Xa13 Bacterial Leaf Blight Resistance Genes

Authors: P. Sindhumole, K. Soumya, R. Renjimol

Abstract:

Rice (Oryza sativa L.) is the major staple food crop over the world. It is prone to a number of biotic and abiotic stresses, out of which Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is the most rampant. Management of this disease through chemicals or any other means is very difficult. The best way to control BLB is by the development of Host Plant Resistance. BLB resistance is not an activity of a single gene but it involves a cluster of more than thirty genes reported. Among these, Xa5 and Xa13 genes are two important ones, which can be diagnosed through marker assisted selection using closely linked molecular markers. During 2014, the first phase of field screening using forty traditional rice genotypes was carried out and twenty resistant symptomless genotypes were identified. Molecular characterisation of these genotypes using RM 122 SSR marker revealed the presence of Xa5 gene in thirteen genotypes. Forty-two traditional rice genotypes were used for the second phase of field screening for BLB resistance. Among these, sixteen resistant genotypes were identified. These genotypes, along with two susceptible check genotypes, were subjected to marker assisted selection for Xa13 gene, using the linked STS marker RG-136. During this process, presence of Xa13 gene could be detected in ten resistant genotypes. In future, these selected genotypes can be directly utilised as donors in Marker assisted breeding programmes for BLB resistance in rice.

Keywords: oryza sativa, SSR, STS, marker, disease, breeding

Procedia PDF Downloads 396
4202 Case Report of a Secretory Carcinoma of the Salivary Gland: Clinical Management Following High-Grade Transformation

Authors: Wissam Saliba, Mandy Nicholson

Abstract:

Secretory carcinoma (SC) is a rare type of salivary gland cancer. It was first realized as a distinct type of malignancy in 2010and wasinitially termed “mammary analogue secretory carcinoma” because of similarities with secretory breast cancer. The name was later changed to SC. Most SCs originate in parotid glands, and most harbour a rare gene mutation: ETV6-NTRK3. This mutation is rare in common cancers and common in rare cancers; it is present in most secretory carcinomas. Disease outcomes for SC are usually described as favourable as many cases of SC are lowgrade (LG), and cancer growth is slow. In early stages, localized therapy is usually indicated (surgery and/or radiation). Despitea favourable prognosis, a sub-set of casescan be much more aggressive.These cases tend to be of high-grade(HG).HG casesare associated with a poorer prognosis.Management of such cases can be challenging due to limited evidence for effective systemic therapy options. This case report describes the clinical management of a 46-year-oldmale patient with a unique case of SC. He was initially diagnosed with a low/intermediate grade carcinoma of the left parotid gland in 2009; he was treated with surgery and adjuvant radiation. Surgical pathology favoured primary salivary adenocarcinoma, and 2 lymph nodes were positive for malignancy. SC was not yet realized as a distinct type of cancerat the time of diagnosis, and the pathology reportvalidated this gap by stating that the specimen lacked features of the defined types of salivary carcinoma.Slow-growing pulmonary nodules were identified in 2017. In 2020, approximately 11 years after the initial diagnosis, the patient presented with malignant pleural effusion. Pathology from a pleural biopsy was consistent with metastatic poorly differentiated cancer of likely parotid origin, likely mammary analogue secretory carcinoma. The specimen was sent for Next Generation Sequencing (NGS); ETV6-NTRK3 gene fusion was confirmed, and systemic therapy was initiated.One cycle ofcarboplatin/paclitaxel was given in June 2020. He was switched to Larotrectinib (NTRK inhibitor (NTRKi)) later that month. Larotrectinib continued for approximately 9 months, with discontinuation in March 2021 due to disease progression. A second-generation NTRKi (Selitrectinib) was accessed and prescribedthrough a single patient study. Selitrectinib was well tolerated. The patient experienced a complete radiological response within~4 months. Disease progression occurred once again in October 2021. Progression was slow, and Selitrectinib continuedwhile the medical team performed a thorough search for additional treatment options. In January 2022, a liver lesion biopsy was performed, and NGS showed an NTRKG623R solvent-front resistance mutation. Various treatment pathways were considered. The patient pursuedanother investigational NTRKi through a clinical trial, and Selitrectinib was discontinued in July 2022. Excellent performance status was maintained throughout the entire course of treatment.It can be concluded that NTRK inhibitors provided satisfactory treatment efficacy and tolerance for this patient with high-grade transformation and NTRK gene fusion cancer. In the future, more clinical research is needed on systemic treatment options for high-grade transformations in NTRK gene fusion SCs.

Keywords: secretory carcinoma, high-grade transformations, NTRK gene fusion, NTRK inhibitor

Procedia PDF Downloads 110
4201 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 87
4200 Modeling Battery Degradation for Electric Buses: Assessment of Lifespan Reduction from In-Depot Charging

Authors: Anaissia Franca, Julian Fernandez, Curran Crawford, Ned Djilali

Abstract:

A methodology to estimate the state-of-charge (SOC) of battery electric buses, including degradation effects, for a given driving cycle is presented to support long-term techno-economic analysis integrating electric buses and charging infrastructure. The degradation mechanisms, characterized by both capacity and power fade with time, have been modeled using an electrochemical model for Li-ion batteries. Iterative changes in the negative electrode film resistance and decrease in available lithium as a function of utilization is simulated for every cycle. The cycles are formulated to follow typical transit bus driving patterns. The power and capacity decay resulting from the degradation model are introduced as inputs to a longitudinal chassis dynamic analysis that calculates the power consumption of the bus for a given driving cycle to find the state-of-charge of the battery as a function of time. The method is applied to an in-depot charging scenario, for which the bus is charged exclusively at the depot, overnight and to its full capacity. This scenario is run both with and without including degradation effects over time to illustrate the significant impact of degradation mechanisms on bus performance when doing feasibility studies for a fleet of electric buses. The impact of battery degradation on battery lifetime is also assessed. The modeling tool can be further used to optimize component sizing and charging locations for electric bus deployment projects.

Keywords: battery electric bus, E-bus, in-depot charging, lithium-ion battery, battery degradation, capacity fade, power fade, electric vehicle, SEI, electrochemical models

Procedia PDF Downloads 327
4199 Electrical Properties of Polarization-Induced Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride Sapphire Template by Molecular Beam Epitaxy

Authors: Guanlin Wu, Jiajia Yao, Fang Liu, Junshuai Xue, Jincheng Zhang, Yue Hao

Abstract:

Owing to the excellent thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN)/Gallium nitride (GaN) is a highly promising material to achieve high breakdown voltage and output power devices among III-nitrides. In this study, we explore the growth and characterization of polarization-induced AlN/GaN heterostructures using plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and demonstrate the effectiveness of the PA-MBE approach, a thick AlN buffer of 180 nm was first grown on the AlN-on sapphire template. This buffer acts as a back-barrier to enhance the breakdown characteristic and isolate leakage paths that exist in the interface between the AlN epilayer and the AlN template. A root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 was measured by atomic force microscopy (AFM), and the full-width at half-maximum of (002) and (102) planes on the X-ray rocking curve was 101 and 206 arcsec, respectively, using by high-resolution X-ray diffraction (HR-XRD). The electron mobility of 443 cm2/Vs with a carrier concentration of 2.50×1013 cm-2 at room temperature was achieved in the AlN/GaN heterostructures by using a polarization-induced GaN channel. The low depletion capacitance of 15 pF is resolved by the capacitance-voltage. These results indicate that the polarization-induced AlN/GaN heterostructures have great potential for next-generation high-temperature, high-frequency, and high-power electronics.

Keywords: AlN, GaN, MBE, heterostructures

Procedia PDF Downloads 88
4198 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects. 

Keywords: aromatic compounds, industrial soil, molecular sieve, normal formyl morpholine solvent

Procedia PDF Downloads 234
4197 The Role of Information and Communication Technology to Enhance Transparency in Public Funds Management in the DR Congo

Authors: Itulelo Matiyabu Imaja, Manoj Maharaj, Patrick Ndayizigamiye

Abstract:

Lack of transparency in public funds management is observed in many African countries. The DR Congo is among the most corrupted countries in Africa, and this is due mainly to lack of transparency and accountability in public funds management. Corruption has a negative effect on the welfare of the country’s citizens and the national economic growth. Public funds collection and allocation are the major areas whereby malpractices such as bribe, extortion, embezzlement, nepotism and other practices related to corruption are prevalent. Hence, there is a need to implement strong mechanisms to enforce transparency in public funds management. Many researchers have suggested some control mechanisms in curbing corruption in public funds management focusing mainly on law enforcement and administrative reforms with little or no insight on the role that ICT can play in preventing and curbing the corrupt behaviour. In the Democratic Republic of Congo (DRC), there are slight indications that the government of the DR Congo is integrating ICT to fight corruption in public funds collection and allocation. However, such government initiatives are at an infancy stage, with no tangible evidence on how ICT could be used effectively to address the issue of corruption in the context of the country. Hence, this research assesses the role that ICT can play for transparency in public funds management and suggest a framework for its adoption in the Democratic Republic of Congo. This research uses the revised Capability model (Capability, Empowerment, Sustainability model) as the guiding theoretical framework. The study uses the exploratory design methodology coupled with a qualitative approach to data collection and purposive sampling as sampling strategy.

Keywords: corruption, DR congo, ICT, management, public funds, transparency

Procedia PDF Downloads 354
4196 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 228
4195 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 107
4194 Characteristics of Serum Exosomes after Burn Injury and Dermal Fibroblast Regulation by Exosomes in Vitro

Authors: Jie Ding, Yingying Pan, Shammy Raj, Lindy Schaffrick, Jolene Wong, Antoinette Nguyen, Sharada Manchikanti, Larry Unsworth, Peter Kwan, Edward E. Tredget

Abstract:

Background: Exosomes (EXOs) have been considered a new target that is thought to be involved in and treat wound healing. More research is needed to fully understand the EXO characteristics and mechanisms of EXO-mediated wound healing, especially wound healing after burn injury. Methods: Total EXOs were isolated from 85 serum samples of 29 burn patients and 13 healthy individuals. We characterized the EXOs for morphology and density, serum concentration, protein level, marker expression, size distribution, and cytokine content. After confirmation of EXO uptake by dermal fibroblasts, we also explored functional regulation of primary human normal skin and hypertrophic scar fibroblast cell lines by the EXOs in vitro, including cell proliferation and apoptosis. Results: EXOs dynamically changed their morphology, density, size, and cytokine level during wound healing in burn patients, which were correlated with burn severity and the stages of wound healing. EXOs from both burn patients and healthy individuals stimulated dermal fibroblast proliferation and apoptosis. Conclusion: EXO features may be important signals that influence wound healing after burn injury; however, to understand the mechanisms by which EXOs regulated the fibroblasts in healing wounds, further studies will be required in the future.

Keywords: exosome, burn, wound healing, hypertrophic scarring, cytokines

Procedia PDF Downloads 86
4193 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis

Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe

Abstract:

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.

Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids

Procedia PDF Downloads 72
4192 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients

Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini

Abstract:

Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.

Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker

Procedia PDF Downloads 105
4191 Detection of Acrylamide Using Liquid Chromatography-Tandem Mass Spectrometry and Quantitative Risk Assessment in Selected Food from Saudi Market

Authors: Sarah A. Alotaibi, Mohammed A. Almutairi, Abdullah A. Alsayari, Adibah M. Almutairi, Somaiah K. Almubayedh

Abstract:

Concerns over the presence of acrylamide in food date back to 2002, when Swedish scientists stated that, in carbohydrate-rich foods, amounts of acrylamide were formed when cooked at high temperatures. Similar findings were reported by other researchers which, consequently, caused major international efforts to investigate dietary exposure and the subsequent health complications in order to properly manage this issue. Due to this issue, in this work, we aim to determine the acrylamide level in different foods (coffee, potato chips, biscuits, and baby food) commonly consumed by the Saudi population. In a total of forty-three samples, acrylamide was detected in twenty-three samples at levels of 12.3 to 2850 µg/kg. In reference to the food groups, the highest concentration of acrylamide was found in coffee samples (<12.3-2850 μg/kg), followed by potato chips (655-1310 μg/kg), then biscuits (23.5-449 μg/kg), whereas the lowest acrylamide level was observed in baby food (<14.75 – 126 μg/kg). Most coffee, biscuits and potato chips products contain high amount of acrylamide content and also the most commonly consumed product. Saudi adults had a mean exposure of acrylamide for coffee, potato, biscuit, and cereal (0.07439, 0.04794, 0.01125, 0.003371 µg/kg-b.w/day), respectively. On the other hand, exposure to acrylamide in Saudi infants and children to the same types of food was (0.1701, 0.1096, 0.02572, 0.00771 µg/kg-b.w/day), respectively. Most groups have a percentile that exceeds the tolerable daily intake (TDI) cancer value (2.6 µg/kg-b.w/day). Overall, the MOE results show that the Saudi population is at high risk of acrylamide-related disease in all food types, and there is a chance of cancer risk in all age groups (all values ˂10,000). Furthermore, it was found that in non-cancer risks, the acrylamide in all tested foods was within the safe limit (˃125), except for potato chips, in which there is a risk for diseases in the population. With potato and coffee as raw materials, additional studies were conducted to assess different factors, including temperature, cocking time, and additives affecting the acrylamide formation in fried potato and roasted coffee, by systematically varying processing temperatures and time values, a mitigation of acrylamide content was achieved when lowering the temperature and decreasing the cooking time. Furthermore, it was shown that the combination of the addition of chitosan and NaCl had a large impact on the formation.

Keywords: risk assessment, dietary exposure, MOA, acrylamide, hazard

Procedia PDF Downloads 61
4190 Students’ Participation in Higher Education Governance in Mainland China

Authors: Rurui Liu

Abstract:

Universities have been one of the most important institutions in society. They shoulder the responsibility to do research and teach further generations. Therefore, the governance of universities has been a heated topic and has been learned for years. Recently, it witnessed great changes, for example, the massification of Higher Education, marketization, and privatization. As a result, more stakeholders are involved in the governance of Higher Education, among which students’ participation in HE becomes more important. However, the research about students’ participation in HE governance in China is not sufficient, and the situation requires improvement. The paper aims to not only fill in the research gap but also put forward practical suggestions to follow the world’s trend of HE governance. The methodology of this paper is literature analysis with comparative studies between China and western countries. The research points out that the current situation of students’ participation in HE governance is unideal due to problems in three fields, values and concepts, mechanisms and systems, as well as student unions. Then, the policy implications are based on these reasons: universities should highlight students’ status, respect their subjectivity and adhere to the service awareness; the government requires to build a sound legal system while universities should establish complete mechanisms and systems; student unions should be encouraged by universities to take part in HE governance affairs with sufficient funds, and autonomy. On the one hand, this paper is a further application of four rationales (consumerism, political-realism, communitarian, democracy, and consequentialism) created by Luescher‐Mamashela for the inevitable trend of students’ participation in HE governance. On the other hand, the suggestions it made benefit the students, universities, and society in practical ways.

Keywords: students’ participation, higher education governance, Chinese higher education, university power

Procedia PDF Downloads 87
4189 Wettability Behavior of Organic Silane Molecules with Different Alkyl-Chain Length Coated Si Surface

Authors: Takahiro Ishizaki, Shutaro Hisada, Oi Lun Li

Abstract:

Control of surface wettability is very important in various industrial fields. Thus, contact angle hysteresis which is defined as the difference between advancing and receding water contact angles has been paid attention because the surface having low contact angle hysteresis can control wetting behavior of water droplet. Self-assembled monolayer (SAM) formed using organic silane molecules has been used to control surface wettability, in particular, static contact angles, however, the effect of alkyl-chain length in organic silane molecules on the contact angle hysteresis has not yet clarified. In this study, we aimed to investigate the effect of alkyl-chain length (C1-C18) in organic silane molecules on the contact angle hysteresis. SAMs were formed on Si wafer by thermal CVD method using silane coupling agents having different alkyl-chain length. The static water contact angles increased with an increase in the alkyl-chain length. On the other hand, although the water contact angle hysteresis tended to decrease with an increase in the alkyl-chain length, in case of the alkyl-chain length of more than C16 the contact angle hysteresis increased. This could be due to the decrease in the molecular mobility because of the increase in the molecular packing density in chemisorbed silane molecules.

Keywords: alkyl-chain length, self-assembled monolayer, silane coupling agent, surface wettability

Procedia PDF Downloads 394
4188 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications

Authors: Avinoam Rabinovich

Abstract:

CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.

Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow

Procedia PDF Downloads 75
4187 Impact of Pandemics on Cities and Societies

Authors: Deepak Jugran

Abstract:

Purpose: The purpose of this study is to identify how past Pandemics shaped social evolution and cities. Methodology: A historical and comparative analysis of major historical pandemics in human history their origin, transmission route, biological response and the aftereffects. A Comprehensive pre & post pandemic scenario and focuses selectively on major issues and pandemics that have deepest & lasting impact on society with available secondary data. Results: Past pandemics shaped the behavior of human societies and their cities and made them more resilient biologically, intellectually & socially endorsing the theory of “Survival of the fittest” by Sir Charles Darwin. Pandemics & Infectious diseases are here to stay and as a human society, we need to strengthen our collective response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, & especially animals who become carriers for these viruses. Conclusion: Pandemics always resulted in great mortality, but they also improved the overall individual human immunology & collective social response; at the same time, they also improved the public health system of cities, health delivery systems, water, sewage distribution system, institutionalized various welfare reforms and overall collective social response by the societies. It made human beings more resilient biologically, intellectually, and socially hence endorsing the theory of “AGIL” by Prof Talcott Parsons. Pandemics & infectious diseases are here to stay and as humans, we need to strengthen our city response & preparedness besides evolving mechanisms for strict controls on inter-continental movements of people, especially animals who always acted as carriers for these novel viruses. Pandemics over the years acted like natural storms, mitigated the prevailing social imbalances and laid the foundation for scientific discoveries. We understand that post-Covid-19, institutionalized city, state and national mechanisms will get strengthened and the recommendations issued by the various expert groups which were ignored earlier will now be implemented for reliable anticipation, better preparedness & help to minimize the impact of Pandemics. Our analysis does not intend to present chronological findings of pandemics but rather focuses selectively on major pandemics in history, their causes and how they wiped out an entire city’s population and influenced the societies, their behavior and facilitated social evolution.

Keywords: pandemics, Covid-19, social evolution, cities

Procedia PDF Downloads 118
4186 Continuous Processing Approaches for Tunable Asymmetric Photochemical Synthesis

Authors: Amanda C. Evans

Abstract:

Enabling technologies such as continuous processing (CP) approaches can provide the tools needed to control and manipulate reactivities and transform chemical reactions into micro-controlled in-flow processes. Traditional synthetic approaches can be radically transformed by the application of CP, facilitating the pairing of chemical methodologies with technologies from other disciplines. CP supports sustainable processes that controllably generate reaction specificity utilizing supramolecular interactions. Continuous photochemical processing is an emerging field of investigation. The use of light to drive chemical reactivity is not novel, but the controlled use of specific and tunable wavelengths of light to selectively generate molecular structure under continuous processing conditions is an innovative approach towards chemical synthesis. This investigation focuses on the use of circularly polarized (cp) light as a sustainable catalyst for the CP generation of asymmetric molecules. Chiral photolysis has already been achieved under batch, solid-phase conditions: using synchrotron-sourced cp light, asymmetric photolytic selectivities of up to 4.2% enantiomeric excess (e.e.) have been reported. In order to determine the optimal wavelengths to use for irradiation with cp light for any given molecular building block, CD and anisotropy spectra for each building block of interest have been generated in two different solvents (water, hexafluoroisopropanol) across a range of wavelengths (130-400 nm). These spectra are being used to support a series of CP experiments using cp light to generate enantioselectivity.

Keywords: anisotropy, asymmetry, flow chemistry, active pharmaceutical ingredients

Procedia PDF Downloads 157
4185 Understanding the Mechanisms of Salmonella typhimurium Resistance to Cannabidiol

Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel Abugri, Boakai Robertson, Olufemi S. Ajayi

Abstract:

The emergence of multidrug resistance poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate, with resistance rates significantly outpacing the speed of antibiotic development. This, therefore, presents an aura of related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight multidrug-resistant pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) was an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to Cannabidiol (CBD), we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both susceptible and resistant S. typhimurium. Using real-time quantitative polymerase chain reaction (RT-qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We discovered that there was a significantly higher expression of blaTEM, fimA, fimZ, and integrons in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as lipopolysaccharide (LPS) and sterols.

Keywords: antimicrobials, resistance, cannabidiol, gram-negative bacteria, integrons, blaTEM, Fim, LPS, ergosterols

Procedia PDF Downloads 103
4184 Circadian Expression of MicroRNAs in Colon and Its Changes during Colorectal Tumorigenesis

Authors: Katerina Balounova, Jiri Pacha, Peter Ergang, Martin Vodicka, Pavlina Kvapilova

Abstract:

MicroRNAs are small non-coding RNAs involved in a wide range of physiological processes. Post-transcriptional regulation of gene expression by microRNAs gives the organism a further level of control of the gene-expression program and the disruption of this microRNA regulatory mechanism seems to increase the risk of various pathophysiological conditions including tumorigenesis. To the present day, microRNAs were shown to participate in the mayor signalization pathways leading to tumorigenesis, including proliferation, cell cycle, apoptosis and metastasis formation. In addition, microRNAs have been found to play important roles in the generation and maintenance of circadian clock. These clocks generate circadian rhythms, which participate in a number of regulatory pathways. Disruption of the circadian signals seems to be associated with the development and the progression of tumours including colorectal cancer. We investigated therefore whether the diurnal profiles of miRNAs linked to tumorigenesis and regulation of circadian clock are changed during tumorigenesis. Based on published data we chose 10 microRNAs linked to tumorigenesis or circadian clock (let-7b-5p, miR 1 3p, miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p, miR 29a 3p, miR 34a 5p and miR 93 5p) and compared their 24-hr expression profiles in healthy and in chemically induces primary colorectal tumours of 52week-old mice. Using RT-qPCR we proved circadian rhythmicity in let-7b-5p, miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p, miR 29a 3p and miR 93 5p in healthy colon but not in tumours. The acrophases of miR 106b 5p, miR 141 3p, miR 191 5p, miR 20a 5p, miR 25 3p and miR 93 5p were reached around CT 24, the acrophases of let-7b-5p and miR-29a-3p were slightly shifted and reached around CT 21. In summary, our results show that circadian regulation of some colonic microRNAs is greatly affected by neoplastic transformation.

Keywords: circadian rhythm, colon, colorectal cancer, microRNA, tumorigenesis

Procedia PDF Downloads 170
4183 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications

Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira

Abstract:

Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.

Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass

Procedia PDF Downloads 159
4182 Totally Implantable Venous Access Device for Long Term Parenteral Nutrition in a Patient with High Output Enterocutaneous Fistula Due to Advanced Malignancy

Authors: Puneet Goyal, Aarti Agarwal

Abstract:

Background and Objective: Nutritional support is an integral part of palliative care of advanced non-resectable abdominal malignancy patients, though is frequently neglected aspect. Non-Healing high output Entero-cutaneous fistulas sometimes require long term parenteral nutrition, to take care of catabolism and replacement of nutrients. We present a case of inoperable pancreatic malignancy with high output entero-cutaneous fistula, which was provided parenteral nutritional support with the use of Totally Implantable Venous Access Device (TIVAD). Method and Results: 55 year old man diagnosed with carcinoma pancreas had developed high entero-cutaneous fistula. His tumor was found to be inoperable and was on total parenteral nutrition through routine central line. This line was difficult to maintain as he required it for a long term TPN. He was planned to undergo Totally Implantable Venous Access Device (TIVAD) implantation. 8Fr single lumen catheter with Groshong non-return Valve (Bard Access Systems, Inc. USA) was inserted through right internal jugular vein, under fluoroscopic guidance. The catheter was tunneled subcutaneously and brought towards infraclavicular pocket, cut at appropriate length and connected to port and locked. Port was sutured in floor of pocket. Free flow of blood aspirated, flushed with heparinized saline. There was no kink observed in entire length of catheter under fluoroscopy. Skin over infraclavicular pocket was sutured. Long term catheter care and associated risks were explained to patient and relatives. Patient continued to receive total parenteral nutrition as well as other supportive therapy though TIVAD for next 6 weeks, till his demise. Conclusion: TIVADs are standard of care for long term venous access solutions in cancer patients requiring chemotherapy. In this case, we extended its use for providing parenteral nutrition and other supportive therapy. TIVADs can be implanted in advanced cancer patients for providing venous access solution required for various palliative treatments and medications. This will help in improving quality of life and satisfaction amongst terminally ill cancer patients.

Keywords: parenteral nutrition, totally implantable venous access device, long term venous access, interventions in anesthesiology

Procedia PDF Downloads 250
4181 Rapid Green Synthesis of Silver Nanoparticles Using Solanum Nigrum Leaves Extract with Antimicrobial and Anticancer Properties

Authors: Anushaa A.

Abstract:

In this work, silver nanoparticles (AgNP) were manufactured directly without harmful chemicals utilising methanol extract (SNLME) Solanum nigrume leaves. We are using nigrum leaf extract from Solanum, which converts silver nitrate to silver ions, for synthesization purposes. An examination of the AgNP produced was performed using ultraviolet (UV-VIS) spectroscopy, infrared spectroscopy (FTIR) transformed from Fourier and scanning electrons (SEM). Biological activity was also tested. UV-VIS has proven that biosynthesized AgNP exists (420-450 nm). The FTIR spectrum has been utilised to confirm the presence of different functional groups within the biomolecules, which are a nanoparticular capping agent and the spectroscopic and crystal nature of AgNP. The viability of the silver nanoparticles was evaluated using zeta potential calculations. Negative zeta potential of -33.4 mV demonstrated the stability of silver-nanoparticles. The morphology of AgNP was examined using a scanning electron microscope. Greenly generated AgNP showed significant anti-Staphylococcus aureus, Candida, and Escherichia coli action. The green AgNP demonstration indicated that the IC50 for the human teratocarcinoma cell line was 29.24 μg/ml during 24 hours of therapy (PA1 Ovarian cell line). The dose-dependent effects were reported in both antibacterial and cytotoxicity assays and as an effective agent. Finally, the findings of this research showed that silver nanoparticles generated might serve as a viable therapeutic agent to combat microorganisms killing and curing cancer.

Keywords: antimicrobial activity, PA1 ovarian cancer cell line, silver nanoparticles, Solanum nigrum

Procedia PDF Downloads 191
4180 RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells

Authors: Ga-Young Lee, Hyun-Man Kim

Abstract:

The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells.

Keywords: E-cadherin junction, oral squamous cell carcinoma, PKC, RhoA, SCC-25

Procedia PDF Downloads 332
4179 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students

Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara

Abstract:

BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to:  cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people  Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.

Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer

Procedia PDF Downloads 117
4178 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles

Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia

Abstract:

This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.

Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes

Procedia PDF Downloads 20
4177 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 184
4176 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion

Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen

Abstract:

Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.

Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion

Procedia PDF Downloads 93
4175 Building Collapse: Factors and Resisting Mechanisms: A Review of Case Studies

Authors: Genevieve D. Fernandes, Nisha P. Naik

Abstract:

All through the ages in all human civilizations, men have been engaged in construction activity, not only to build their dwellings and house their activities, but also roads, bridges to facilitate means of transport, and communication etc. The main concern in this activity was to ensure safety and reduce the collapse of the buildings and other structures. But even after taking all precautions, it is impossible to guarantee safety and collapse because of several unforeseen reasons like faulty constructions, design errors, overloading, soil liquefaction, gas explosion, material degradation, terrorist attacks and economic factors also contributing to the collapse. It is also uneconomical to design the structure for unforeseen events unless they have a reasonable chance of occurrence. In order to ensure safety and prevent collapse, many guidelines have been framed by local bodies and government authorities in many countries like the United States Department of Defence (DOD), United States General Service Administration (GSA) and Euro-Codes in European Nations. Some other practices are followed to incorporate redundancies in the structure like detailing, ductile designs, tying of elements at particular locations, and provision of hinges and interconnections. It is also to be admitted that a full-proof safe design structure for accidental events cannot be prepared and implemented as it is uneconomical and the chances of such occurrences are less. This paper reviews past case studies of the collapse of structures with the aim of developing an understanding of the collapse mechanism. This study will definitely help to bring about a detailed improvement in the design to maximise the quality of the construction at a minimal cost.

Keywords: unforeseen factors, progressive collapse, collapse resisting mechanisms, column removal scenario

Procedia PDF Downloads 141