Search results for: hot bomb conditions
7833 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites
Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen
Abstract:
Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.Keywords: enzyme, lignin valorisation, polyol, polyurethane foam
Procedia PDF Downloads 1537832 Growth of Droplet in Radiation-Induced Plasma of Own Vapour
Authors: P. Selyshchev
Abstract:
The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density.Keywords: irradiation, steam, plasma, cluster formation, liquid droplets, evolution
Procedia PDF Downloads 4417831 Future of the Supply Chain Management
Authors: Mehmet Şimşek
Abstract:
In the rapidly changing market conditions, it is getting harder to survive without adapting new abilities. Technology and globalization have enabled foreign producers to enter into national markets, even local ones. For this reason there is now big competition among production companies for market share. Furthermore, competition has provided customer with broad range of options to choose from. To be able to survive in this environment, companies need to produce at low price and at high quality. The best way to succeed this is the efficient use of supply chain management that has started to get shaped by the needs of customers and the environment.Keywords: cycle time, logistics, outsourcing, production, supply chain
Procedia PDF Downloads 4837830 Process Optimization and Microbial Quality of Provitamin A-Biofortified Amahewu, a Non-Alcoholic Maize Based Beverage
Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela, Oluwatosin A. Ijabadeniyi
Abstract:
Provitamin A-biofortified maize has been developed to alleviate Vitamin A deficiency; a major public health problem in developing countries. Amahewu, a non-alcoholic fermented maize based beverage is produced using white maize, which is deficient in Vitamin A. In this study, the suitable processing conditions for the production of amahewu using provitamin A-biofortified maize and the microbial quality of the processed products were evaluated. Provitamin A-biofortified amahewu was produced with reference to traditional processing method. Processing variables were Inoculum types (Malted provitamin A maize, Wheat bran, and lactobacillus mixed starter culture with either malted provitamin A or wheat bran) and concentration (0.5 %, 1 % and 2 %). A total of four provitamin A-biofortified amahewu products after fermentation were subjected to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. pH and TTA were monitored throughout the storage period. Sample of provitamin A-biofortified amahewu were plated and observed every day for 5 days to assess the presence of Aerobic and Anaerobic spore formers, E.coli, Lactobacillus and Mould. The addition of starter culture substantially reduced the fermentation time (6 hour, pH 3.3) compared to those with no addition of starter culture (24 hour pH 3.5). It was observed that Lactobacillus were present from day 0 for all the storage temperatures. The presence of aerobic spore former and mould were observed on day 3. E.coli and Anaerobic spore formers were not present throughout the storage period. These microbial growth were minimal at 4ᴼC while 25ᴼC had higher counts of growth with 37ᴼC having the highest colony count. Throughout the storage period, pH of provitamin A-biofortified amahewu was stable. Provitamin A-biofortified amahewu stored under refrigerated condition (4ᴼC) had better storability compared to 25ᴼC and 37ᴼC. The production and microbial quality of provitamin A-biofortified amahewu might be important in combating Vitamin A Deficiency.Keywords: biofortification, fermentation, maize, vitamin A deficiency
Procedia PDF Downloads 4327829 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri
Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit
Abstract:
The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM
Procedia PDF Downloads 4097828 Measurement Technologies for Advanced Characterization of Magnetic Materials Used in Electric Drives and Automotive Applications
Authors: Lukasz Mierczak, Patrick Denke, Piotr Klimczyk, Stefan Siebert
Abstract:
Due to the high complexity of the magnetization in electrical machines and influence of the manufacturing processes on the magnetic properties of their components, the assessment and prediction of hysteresis and eddy current losses has remained a challenge. In the design process of electric motors and generators, the power losses of stators and rotors are calculated based on the material supplier’s data from standard magnetic measurements. This type of data does not include the additional loss from non-sinusoidal multi-harmonic motor excitation nor the detrimental effects of residual stress remaining in the motor laminations after manufacturing processes, such as punching, housing shrink fitting and winding. Moreover, in production, considerable attention is given to the measurements of mechanical dimensions of stator and rotor cores, whereas verification of their magnetic properties is typically neglected, which can lead to inconsistent efficiency of assembled motors. Therefore, to enable a comprehensive characterization of motor materials and components, Brockhaus Measurements developed a range of in-line and offline measurement technologies for testing their magnetic properties under actual motor operating conditions. Multiple sets of experimental data were obtained to evaluate the influence of various factors, such as elevated temperature, applied and residual stress, and arbitrary magnetization on the magnetic properties of different grades of non-oriented steel. Measured power loss for tested samples and stator cores varied significantly, by more than 100%, comparing to standard measurement conditions. Quantitative effects of each of the applied measurement were analyzed. This research and applied Brockhaus measurement methodologies emphasized the requirement for advanced characterization of magnetic materials used in electric drives and automotive applications.Keywords: magnetic materials, measurement technologies, permanent magnets, stator and rotor cores
Procedia PDF Downloads 1417827 Mental Wellbeing Using Music Intervention: A Case Study of Therapeutic Role of Music, From Both Psychological and Neurocognitive Perspectives
Authors: Medha Basu, Kumardeb Banerjee, Dipak Ghosh
Abstract:
After the massive blow of the COVID-19 pandemic, several health hazards have been reported all over the world. Serious cases of Major Depressive Disorder (MDD) are seen to be common in about 15% of the global population, making depression one of the leading mental health diseases, as reported by the World Health Organization. Various psychological and pharmacological treatment techniques are regularly being reported. Music, a globally accepted mode of entertainment, is often used as a therapeutic measure to treat various health conditions. We have tried to understand how Indian Classical Music can affect the overall well-being of the human brain. A case study has been reported here, where a Flute-rendition has been chosen from a detailed audience response survey, and the effects of that clip on human brain conditions have been studied from both psychological and neural perspectives. Taking help from internationally-accepted depression-rating scales, two questionnaires have been designed to understand both the prolonged and immediate effect of music on various emotional states of human lives. Thereafter, from EEG experiments on 5 participants using the same clip, the parameter ‘ALAY’, alpha frontal asymmetry (alpha power difference of right and left frontal hemispheres), has been calculated. Works of Richard Davidson show that an increase in the ‘ALAY’ value indicates a decrease in depressive symptoms. Using the non-linear technique of MFDFA on EEG analysis, we have also calculated frontal asymmetry using the complexity values of alpha-waves in both hemispheres. The results show a positive correlation between both the psychological survey and the EEG findings, revealing the prominent role of music on the human brain, leading to a decrease in mental unrest and an increase in overall well-being. In this study, we plan to propose the scientific foundation of music therapy, especially from a neurocognition perspective, with appropriate neural bio-markers to understand the positive and remedial effects of music on the human brain.Keywords: music therapy, EEG, psychological survey, frontal alpha asymmetry, wellbeing
Procedia PDF Downloads 417826 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass
Authors: Mingizem Gashaw Seid
Abstract:
Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.Keywords: chromium, phytoremediation, tannery effluent, vetiver grass
Procedia PDF Downloads 4167825 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy
Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha
Abstract:
In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA
Procedia PDF Downloads 1547824 Knowledge, Attitude and Beliefs Towards Polypharmacy Amongst Older People Attending Family Medicine Clinic at the Aga Khan University Hospital, Nairobi, Kenya (AKUHN) Sub-Saharan Africa-Qualitative Study
Authors: Maureen Kamau, Gulnaz Mohamoud, Adelaide Lusambili, Njeri Nyanja
Abstract:
Life expectancy has increased over the last century amongst older individuals, and in particular, those 60 years and over. The World Health Organization estimates that the world's population of persons over 60 years will rise to 22 per cent by the year 2050. Ageing is associated with increasing disability, multiple chronic conditions, and an increase in the use of health services. These multiple chronic conditions are managed with polypharmacy. Polypharmacy has numerous adverse effects including non-adherence, poor compliance to the various medications, reduced appetite, and risk of fall. Studies on polypharmacy and ageing are few and poorly understood especially in low and middle - income countries. The aim of this study was to explore the knowledge, attitudes and beliefs of older people towards polypharmacy. A qualitative study of 15 patients aged 60 years and above, taking more than five medications per day were conducted at the Aga Khan University using Semi-structured in-depth interviews. Three interviews were pilot interviews, and data analysis was performed on 12 interviews. Data were analyzed using NVIVO 12 software. A thematic qualitative analysis was carried out guided by Braun and Clarke (2006) framework. Themes identified; - knowledge of their co-morbidities and of the medication that older persons take, sources of information about medicines, and storage of the medication, experiences and attitudes of older patients towards polypharmacy both positive and negative, older peoples beliefs and their coping mechanisms with polypharmacy. The study participants had good knowledge on their multiple co-morbidities, and on the medication they took. The patients had positive attitudes towards medication as it enhanced their health and well-being, and enabled them to perform their activities of daily living. There was a strong belief among older patients that the medications were necessary for their health. All these factors enhanced compliance to the multiple medication. However, some older patients had negative attitudes due to the pill burden, side effects of the medication, and stigma associated with being ill. Cost of healthcare was a concern, with most of the patients interviewed relying on insurance to cover the cost of their medication. Older patients had accepted that the medication they were prescribed were necessary for their health, as it enabled them to complete their activities of daily living. Some concerns about the side effects of the medication arose, and brought about the need for patient education that would ensure that the patients are aware of the medications they take, and potential side effects. The effect that the COVID 19 pandemic had in the healthcare of the older patients was evident by the number of the older patients avoided coming to the hospital during the period of the pandemic. The relationship with the primary care physician and the older patients is an important one, especially in LMICs such as Kenya, as many of the older patients trusted the doctors wholeheartedly to make the best decision about their health and about their medication. Prescription review is important to avoid the use of potentially inappropriate medication.Keywords: polypharmacy, older patients, multiple chronic conditions, Kenya, Africa, qualitative study, indepth interviews, primary care
Procedia PDF Downloads 1007823 Settings of Conditions Leading to Reproducible and Robust Biofilm Formation in vitro in Evaluation of Drug Activity against Staphylococcal Biofilms
Authors: Adela Diepoltova, Klara Konecna, Ondrej Jandourek, Petr Nachtigal
Abstract:
A loss of control over antibiotic-resistant pathogens has become a global issue due to severe and often untreatable infections. This state is reflected in complicated treatment, health costs, and higher mortality. All these factors emphasize the urgent need for the discovery and development of new anti-infectives. One of the most common pathogens mentioned in the phenomenon of antibiotic resistance are bacteria of the genus Staphylococcus. These bacterial agents have developed several mechanisms against the effect of antibiotics. One of them is biofilm formation. In staphylococci, biofilms are associated with infections such as endocarditis, osteomyelitis, catheter-related bloodstream infections, etc. To author's best knowledge, no validated and standardized methodology evaluating candidate compound activity against staphylococcal biofilms exists. However, a variety of protocols for in vitro drug activity testing has been suggested, yet there are often fundamental differences. Based on our experience, a key methodological step that leads to credible results is to form a robust biofilm with appropriate attributes such as firm adherence to the substrate, a complex arrangement in layers, and the presence of extracellular polysaccharide matrix. At first, for the purpose of drug antibiofilm activity evaluation, the focus was put on various conditions (supplementation of cultivation media by human plasma/fetal bovine serum, shaking mode, the density of initial inoculum) that should lead to reproducible and robust in vitro staphylococcal biofilm formation in microtiter plate model. Three model staphylococcal reference strains were included in the study: Staphylococcus aureus (ATCC 29213), methicillin-resistant Staphylococcus aureus (ATCC 43300), and Staphylococcus epidermidis (ATCC 35983). The total biofilm biomass was quantified using the Christensen method with crystal violet, and results obtained from at least three independent experiments were statistically processed. Attention was also paid to the viability of the biofilm-forming staphylococcal cells and the presence of extracellular polysaccharide matrix. The conditions that led to robust biofilm biomass formation with attributes for biofilms mentioned above were then applied by introducing an alternative method analogous to the commercially available test system, the Calgary Biofilm Device. In this test system, biofilms are formed on pegs that are incorporated into the lid of the microtiter plate. This system provides several advantages (in situ detection and quantification of biofilm microbial cells that have retained their viability after drug exposure). Based on our preliminary studies, it was found that the attention to the peg surface and substrate on which the bacterial biofilms are formed should also be paid to. Therefore, further steps leading to the optimization were introduced. The surface of pegs was coated by human plasma, fetal bovine serum, and L-polylysine. Subsequently, the willingness of bacteria to adhere and form biofilm was monitored. In conclusion, suitable conditions were revealed, leading to the formation of reproducible, robust staphylococcal biofilms in vitro for the microtiter model and the system analogous to the Calgary biofilm device, as well. The robustness and typical slime texture could be detected visually. Likewise, an analysis by confocal laser scanning microscopy revealed a complex three-dimensional arrangement of biofilm forming organisms surrounded by an extracellular polysaccharide matrix.Keywords: anti-biofilm drug activity screening, in vitro biofilm formation, microtiter plate model, the Calgary biofilm device, staphylococcal infections, substrate modification, surface coating
Procedia PDF Downloads 1557822 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 3987821 Development of a Microfluidic Device for Low-Volume Sample Lysis
Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
Abstract:
We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet
Procedia PDF Downloads 797820 Evolutions of Structural Properties of Native Phospho Casein (NPC) Powder during Storage
Authors: Sarah Nasser, Anne Moreau, Alain Hedoux, Romain Jeantet, Guillaume Delaplace
Abstract:
Background: Spray dryed powders containing some caseins are commonly produced in dairy industry. It is widely admitted that the structure of casein evolves during powder storage, inducing a loss of solubility. However few studies evaluate accurately the destabilization mechanisms at molecular and mesoscopic level, in particular for Native Phospho Casein powder (NPC). Consequently, at the state of the art, it is very difficult to assess which secondary structure change or crosslinks initiate insolubility during storage. To address this issue, controlled ageing conditions have been applied to a NPC powder (which was obtained by spray drying a concentrate containing a higher content of casein (90%), whey protein (8%) and lactose (few %)). Evolution of structure and loss of solubility, with the effects of temperature and time of storage were systematically reported. Methods: FTIR spectroscopy, Raman and Circular Dichroism were used to monitor changes of secondary structure in dry powder and in solution after rehydration. Besides, proteomic tools and electrophoresis have been performed after varying storage conditions for evaluating aggregation and post translational modifications, like lactosylation or phosphorylation. Finally, Tof Sims and MEB were used to follow in parallel evolution of structure in surface and skin formation due to storage. Results + conclusion: These results highlight the important role of storage temperature in the stability of NPC. It is shown that this is not lactosylation at the heart of formation of aggregates, as advanced in others publications This is almost the rise of multitude post translational modifications (chemical cross link), added to disulphide bridges (physical cross link) wich contribute to the destabilisation of structure and aggregation of casein. A relative quantification of each kind of cross link, source of aggregates, is proposed. In addition, it has been proved that migration of lipids and formation of skin in surface during the ageing also explains the evolution of structure casein and thus the alterations of functional properties of NPC powder.Keywords: casein, cross link, powder, storage
Procedia PDF Downloads 3797819 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment
Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa
Abstract:
The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 327818 MR Imaging Spectrum of Intracranial Infections: An Experience of 100 Cases in a Tertiary Hospital in Northern India
Authors: Avik Banerjee, Kavita Saggar
Abstract:
Infections of the nervous system and adjacent structures are often life-threatening conditions. Despite the recent advances in neuroimaging evaluation, the diagnosis of unclear infectious CNS disease remains a challenge. Our aim is to evaluate the typical and atypical neuro-imaging features of the various routinely encountered CNS infected patients so as to form guidelines for their imaging recognition and differentiation from tumoral, vascular and other entities that warrant a different line of therapy.Keywords: central nervous system (CNS), Cerebro Spinal Fluid (Csf), Creutzfeldt Jakob Disease (CJD), progressive multifocal leukoencephalopathy (PML)
Procedia PDF Downloads 3017817 Study of the Morphological and Optical Properties of Nanometric NiO
Authors: Nassima Hamzaoui, Mostefa Ghamnia
Abstract:
Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.Keywords: films, NiO, AFM, X-ray diffraction
Procedia PDF Downloads 607816 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions
Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar
Abstract:
The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.Keywords: sowing, irrigation, yield, heat stress
Procedia PDF Downloads 977815 Effect of Sanitary-Environmental Conditions of Diabetic Hypertension Incidence of Displaced Persons
Authors: Radmila Maksimovic, Sonja Ketin, Rade Biocanin, Jelena Maksimovic
Abstract:
The abnormal conditions of life and work genetic factors often play a major role in incidence of diabetes-diabetes, heart disease and vascular disease, jaundice, and post traumatic stress. Trauma and post traumatic stress are most common in the displaced persons,and the focus of this paper is to shed light on this issue in former Yugoslavia, Yugoslavia and now in our country. This is caused by increased beta-cell sensitivity to viruses, the development of autoimmune antibodies against its own pancreascells, degenerative changes in cells that r esult in change of structure and insulin. In this paper, we dealt with traumatic events and long-term psycho social consequences for internally displaced persons, several years after displacement, and found a high level of PTSD symptoms. This stress is present in almost 1/3 of internally displaced persons, and every sixth person is suffering from PTSD in the past. Respondents generally suffer from symptoms of intrusion, but there was a large number of symptoms, avoidance and increased arousal. We also found that gender, age andeducation related to the symptoms. Females, and older respondents and internally displaced persons with lower levels of education how a higher level of PTSD symptoms, especially symptoms of intrusion and increase darousal. It is a highly traumatized sample in which more than 1/2 of respondents experienced more than three traumatic events in life,although the number of traumas experienced before, during and after the conflict varies.We found that during the war, internally displaced persons haveexperienced more traumatic events compared with the periodbefore and after the conflict. Trauma are different in type. No significant correlation between the number of experienced trauma and PTSD, suggesting that it is necessary to further study the structure of past traumas and the intermediary effects of certain risk factors and protective factors.Keywords: living environment, displaced persons, jaundice, diabetes, trauma, diabetic hypertension, post-traumatic stress (PTSD), treatment
Procedia PDF Downloads 3937814 Expression of Micro-RNA268 in Zinc Deficient Rice
Authors: Sobia Shafqat, Saeed Ahmad Qaisrani
Abstract:
MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.Keywords: micro RNA268, zinc, rice, agronomic approach
Procedia PDF Downloads 617813 Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant
Authors: Samuel Abebe Ebebo
Abstract:
Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study.Keywords: magnesium silicate, scaling, inhibitor, geothermal power plant
Procedia PDF Downloads 667812 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 2967811 Exploring the Prebiotic Potential of Glucosamine
Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh
Abstract:
Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid
Procedia PDF Downloads 3337810 Comparison of Shell-Facemask Responses in American Football Helmets during NOCSAE Drop Tests
Authors: G. Alston Rush, Gus A. Rush III, M. F. Horstemeyer
Abstract:
This study compares the shell-facemask responses of four commonly used American football helmets, under the National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop impact test method, to show that the test standard would more accurately simulate in-use conditions by modification to include the facemask. In our study, the need for a more vigorous systematic approach to football helmet testing procedures is emphasized by comparing the Head Injury Criterion (HIC), the Gadd Severity Index (SI), and peak acceleration values for different helmets at different locations on the helmet under modified NOCSAE standard drop tower tests. Drop tests were performed on the Rawlings Quantum Plus, Riddell 360, Schutt Ion 4D, and Xenith X2 helmets at eight impact locations, impact velocities of 5.46 and 4.88 meters per second, and helmet configurations with and without facemasks. Analysis of NOCSAE drop test results reveal significant differences (p < 0.05) for when the facemasks were attached to helmets, as compared to the NOCSAE Standard, without facemask configuration. The boundary conditions of the facemask attachment can have up to a 50% decrease (p < 0.001) in helmet performance with respect to peak acceleration. While generally, all helmets with the facemasks gave greater HIC, SI, and acceleration values than helmets without the facemasks, significant helmet dependent variations were observed across impact locations and impact velocities. The variations between helmet responses could be attributed to the unique design features of each helmet tested, which include different liners, chin strap attachments, and faceguard attachment systems. In summary, these comparative drop test results revealed that the current NOCSAE standard test methods need improvement by attaching the facemasks to helmets during testing. The modified NOCSAE football helmet standard test gives a more accurate representation of a helmet’s performance and its ability to mitigate the on-field impact.Keywords: football helmet testing, gadd severity index, head injury criterion, mild traumatic brain injury
Procedia PDF Downloads 4477809 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather
Authors: D. Castillo T., Luis F. Jimenez
Abstract:
The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather
Procedia PDF Downloads 4017808 Elucidating the Defensive Role of Silicon-Induced Biochemical Responses in Wheat Exposed to Drought and Diuraphis noxia Infestation
Authors: Lintle Mohase, Ninikoe Lebusa, Mpho Stephen Mafa
Abstract:
Wheat is an economically important cereal crop. However, the changing climatic conditions that intensify drought in production areas, and additional pest infestation, such as the Russian wheat aphid (RWA, Diuraphis noxia), severely hamper its production. Drought and pest management require an additional water supply through irrigation and applying inorganic nutrients (including silicon) as alternative strategies to mitigate the stress effects. Therefore, other approaches are needed to enhance wheat productivity during drought stress and aphid abundance. Two wheat cultivars were raised under greenhouse conditions, exposed to drought stress, and treated with silicon before infestation with the South African RWA biotype 2 (RWASA2). The morphological evaluations showed that severe drought or a combination of drought and infestation significantly reduced the plant height of wheat cultivars. Silicon treatment did not alleviate the growth reduction. The biochemical responses were measured using spectrophotometric assays with specific substrates. An evaluation of the enzyme activities associated with oxidative stress and defence responses indicated that drought stress increased NADPH oxidase activity, while silicon treatment significantly reduced it in drought-stressed and infested plants. At 48 and 72 hours sampling periods, a combination of silicon, drought and infestation treatment significantly increased peroxidase activity compared to drought and infestation treatment. The treatment also increased β-1,3-glucanase activity 72 hours after infestation. In addition, silicon and drought treatment increased glucose but reduced sucrose accumulation. Furthermore, silicon, drought, and infestation treatment combinations reduced the sucrose content. Finally, silicon significantly increased the trehalose content under severe drought and infestation, evident at 48 and 72-hour sampling periods. Our findings shed light on silicon’s ability to induce protective biochemical responses during drought and aphid infestation.Keywords: drought, enzyme activity, silicon, soluble sugars, Russian wheat aphid, wheat
Procedia PDF Downloads 777807 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure
Authors: Adriano Losso, Birgit Dämon, Stefan Mayr
Abstract:
In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.Keywords: conifers, Picea abies, Pinus mugo, timberline
Procedia PDF Downloads 2947806 The Impact of the AEC to Influence the Direction of Politics in Thailand
Authors: Jiraporn Weenuttranon
Abstract:
The ASEAN Economic Community (AEC) shall be the goal of regional economic integration among ASEAN countries. The goal of establishing AEC is to transform the region into a single market and production base with a highly competitive advantage to make it a stable and prosperous region. However, with the wild range of economic conditions in each country, the implementation of its objectives under the limited resources available in the past showed the weakness of the region. For this reason, the group of countries in the region should allocate its rich potential of the region by collaborating effectively.Keywords: impact, AEC, influence, direction, politics, Thailand
Procedia PDF Downloads 3457805 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3797804 Cerebral Pulsatility Mediates the Link Between Physical Activity and Executive Functions in Older Adults with Cardiovascular Risk Factors: A Longitudinal NIRS Study
Authors: Hanieh Mohammadi, Sarah Fraser, Anil Nigam, Frederic Lesage, Louis Bherer
Abstract:
A chronically higher cerebral pulsatility is thought to damage cerebral microcirculation, leading to cognitive decline in older adults. Although it is widely known that regular physical activity is linked to improvement in some cognitive domains, including executive functions, the mediating role of cerebral pulsatility on this link remains to be elucidated. This study assessed the impact of 6 months of regular physical activity upon changes in an optical index of cerebral pulsatility and the role of physical activity for the improvement of executive functions. 27 older adults (aged 57-79, 66.7% women) with cardiovascular risk factors (CVRF) were enrolled in the study. The participants completed the behavioral Stroop test, which was extracted from the Delis-Kaplan executive functions system battery at baseline (T0) and after 6 months (T6) of physical activity. Near-infrared spectroscopy (NIRS) was applied for an innovative approach to indexing cerebral pulsatility in the brain microcirculation at T0 and T6. The participants were at standing rest while a NIRS device recorded hemodynamics data from frontal and motor cortex subregions at T0 and T6. The cerebral pulsatility index of interest was cerebral pulse amplitude, which was extracted from the pulsatile component of NIRS data. Our data indicated that 6 months of physical activity was associated with a reduction in the response time for the executive functions, including inhibition (T0: 56.33± 18.2 to T6: 53.33± 15.7,p= 0.038)and Switching(T0: 63.05± 5.68 to T6: 57.96 ±7.19,p< 0.001) conditions of the Stroop test. Also, physical activity was associated with a reduction in cerebral pulse amplitude (T0: 0.62± 0.05 to T6: 0.55± 0.08, p < 0.001). Notably, cerebral pulse amplitude was a significant mediator of the link between physical activity and response to the Stroop test for both inhibition (β=0.33 (0.61,0.23),p< 0.05)and switching (β=0.42 (0.69,0.11),p <0.01) conditions. This study suggests that regular physical activity may support cognitive functions through the improvement of cerebral pulsatility in older adults with CVRF.Keywords: near-infrared spectroscopy, cerebral pulsatility, physical activity, cardiovascular risk factors, executive functions
Procedia PDF Downloads 195