Search results for: dental composite restoration
633 Stiffness and Modulus of Subgrade Reaction of the Soft Soil Improved by Stone Columns
Authors: Sudheer Kumar J., Sudhanshu Sharma
Abstract:
Stone columns are extensively used as constructive and environmentally sustainable improvement methods for improving stiffness, modulus of subgrade reaction, and maximum lateral displacement in the multilayer soil system. The advantage of using stone columns in improving the single-layer soft soil as a ground reinforcement element for supporting various structures up to shallow depth is well researched, but the understanding of strengthening the multiplayer soil system for a deeper level requires further studies. In this paper, a series of cases have been conducted to study the behaviour of ordinary stone columns (OSC), geosynthetic encased stone columns (GESC) over various objectives for strengthening multilayer soil system up to deep level. A finite element analyses were carried out using the software package PLAXIS to study further correlate the results. The study aims to find the stiffness of composite soil, modulus of subgrade reaction, which is generally required for designing of various foundations, and also discusses the maximum horizontal displacement location, which is the major failure criteria seen after the installation of stone columns.Keywords: stone columns, geotextile, finite element method, stiffness, modulus of subgrade reaction, maximum lateral displacement point
Procedia PDF Downloads 136632 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles
Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee
Abstract:
Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite
Procedia PDF Downloads 326631 Modification of Polyurethane Adhesive for OSB/EPS Panel Production
Authors: Stepan Hysek, Premysl Sedivka, Petra Gajdacova
Abstract:
Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production.Keywords: adhesive, polyurethane, recyclate, SIP
Procedia PDF Downloads 275630 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran
Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava
Abstract:
Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.Keywords: deoiled rice bran, extrusion, rheological properties, RSM
Procedia PDF Downloads 375629 UV-Reactive Electrospinning: Preparation, Characterization and Cell Culture Applications of Nanofiber Scaffolds Containing Keratin
Authors: Duygu Yüksel Deniz, Memet Vezir Kahraman, Serap Erdem Kuruca, Mediha Süleymanoğlu
Abstract:
Our first aim was to synthesize Hydroxy Apatite (HAP) and then modify its surface by adding 4-Vinylbenzene boronic acid (4-VBBA). The characterization was done by FT-IR. By adding Polyvinyl alcohol (PVA) to 4- VBBA-HAP, we obtained a suitable electrospinning solution. PVA solution which was also modified by using alkoxy silanes, in order to prevent the scaffolds from being damaged by aqueous cell medium, was added. Keratin was dissolved and then added into the electrospinning solution. Keratin containing 4-VBBA- HAP/PVA composite was used to fabricate nanofiber scaffolds with the simultaneous UV-reactive electrospinning technique. The structural characterization was done by FT-IR. Thermal gravimetric analysis was also performed by using TGA. The morphological characterization was determined by SEM analyses. Our second aim was to create a scaffold where cells could grow. With this purpose, suitable nanofibers were choosen according to their SEM analysis. Keratin containing nanofibers were seeded with 3T3, ECV and SAOS cells and their cytotoxicity and cell proliferation were investigated by using MTT assay. After cell culturing process morphological characterization was determined by SEM analyses. These scaffolds were designed to be nontoxic biomaterials. Here, a comparision was made between keratin containing 3T3, ECV and SAOS seeded nanofiber scaffolds and the results were presented and discussed.Keywords: cell culture, keratin, nanofibers, UV-reactive electrospinning
Procedia PDF Downloads 454628 Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling
Authors: Diana Islam, Juan Fang, Vito Fanelli, Bing Han, Julie Khang, Jianfeng Wu, Arthur S. Slutsky, Haibo Zhang
Abstract:
Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS.Keywords: acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC), hydrochloric acid (HCl), mechanical ventilation (MV)
Procedia PDF Downloads 670627 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 377626 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 641625 Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications
Authors: Cam Minh Tri Tien, Richard Fenrich, Tristan Shelley, Nam Mai-Duy, Allan Malano, Xuesen Zeng
Abstract:
Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts.Keywords: 3D Printing, pressure vessels, interlayer bonding, controlled heat
Procedia PDF Downloads 51624 Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces
Authors: Martin Alexander Eder, Sergei Semenov
Abstract:
Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories.Keywords: adhesive, fatigue, interface, multiaxial stress
Procedia PDF Downloads 169623 Development of the Squamate Egg Tooth on the Basis of Grass Snake Natrix natrix Studies
Authors: Mateusz Hermyt, Pawel Kaczmarek, Weronika Rupik
Abstract:
The egg tooth is a crucial structure during hatching of lizards and snakes. In contrast to birds, turtles, crocodiles, and monotremes, egg tooth of squamate reptiles is a true tooth sharing common features of structure and development with all the other teeth of vertebrates. The egg tooth; however, due to its function, exhibits structural differences in relation to regular teeth. External morphology seems to be important in the context of phylogenetic relationships within Squamata but up to date, there is scarce information concerning structure and development of the egg tooth at the submicroscopical level. In presented studies detailed analysis of the egg tooth development in grass snake has been performed with the usage of light (including fluorescent), transmission and scanning electron microscopy. Grass snake embryo’s heads have been used in our studies. Grass snake is common snake species occurring in most of Europe including Poland. The grass snake is characterized by the presence of single unpaired egg tooth (as in most squamates) in contrast to geckos and dibamids possessing paired egg teeth. Studies show changes occurring on the external morphology, tissue and cellular levels of differentiating egg tooth. The egg tooth during its development changes its curvature. Initially, faces directly downward and in the course of its differentiation, it gradually changes to rostro-ventral orientation. Additionally, it forms conical dentinal protrusions on the sides. Histological analysis showed that egg tooth development occurs in similar steps in relation to regular teeth. It undergoes initiation, bud, cap and bell morphological stages. Analyses focused on describing morphological changes in hard tissues (mainly dentin and predentin) of egg tooth and in cells which enamel organ consists of. It included: outer enamel epithelium, stratum intermedium, inner enamel epithelium, odontoblasts, and cells of dental pulp. All specimens used in the study were captured according to the Polish regulations concerning the protection of wild species. Permission was granted by the Local Ethics Commission in Katowice (41/2010; 87/2015) and the Regional Directorate for Environmental Protection in Katowice (WPN.6401.257.2015.DC).Keywords: hatching, organogenesis, reptile, Squamata
Procedia PDF Downloads 179622 Laboratory Model Tests on Encased Group Columns
Authors: Kausar Ali
Abstract:
There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.Keywords: geosynthetic, ground improvement, soft clay, stone column
Procedia PDF Downloads 431621 Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin
Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg
Abstract:
In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis
Procedia PDF Downloads 360620 Microstracture of Iranian Processed Cheese
Authors: R. Ezzati, M. Dezyani, H. Mirzaei
Abstract:
The effects of the concentration of trisodium citrate (TSC) emulsifying salt (0.25 to 2.75%) and holding time (0 to 20 min) on the textural, rheological, and microstructural properties of Iranian Processed Cheese Cheddar cheese were studied using a central composite rotatable design. The loss tangent parameter (from small amplitude oscillatory rheology), extent of flow, and melt area (from the Schreiber test) all indicated that the meltability of process cheese decreased with increased concentration of TSC and that holding time led to a slight reduction in meltability. Hardness increased as the concentration of TSC increased. Fluorescence micrographs indicated that the size of fat droplets decreased with an increase in the concentration of TSC and with longer holding times. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is due to residual colloidal calcium phosphate, decreased as the concentration of TSC increased. The soluble phosphate content increased as concentration of TSC increased. However, the insoluble Ca decreased with increasing concentration of TSC. The results of this study suggest that TSC chelated Ca from colloidal calcium phosphate and dispersed casein; the citrate-Ca complex remained trapped within the process cheese matrix. Increasing the concentration of TSC helped to improve fat emulsification and casein dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.Keywords: Iranian processed cheese, cheddar cheese, emulsifying salt, rheology
Procedia PDF Downloads 443619 Mechanical Investigation Approach to Optimize the High-Velocity Oxygen Fuel Fe-Based Amorphous Coatings Reinforced by B4C Nanoparticles
Authors: Behrooz Movahedi
Abstract:
Fe-based amorphous feedstock powders are used as the matrix into which various ratios of hard B4C nanoparticles (0, 5, 10, 15, 20 vol.%) as reinforcing agents were prepared using a planetary high-energy mechanical milling. The ball-milled nanocomposite feedstock powders were also sprayed by means of high-velocity oxygen fuel (HVOF) technique. The characteristics of the powder particles and the prepared coating depending on their microstructures and nanohardness were examined in detail using nanoindentation tester. The results showed that the formation of the Fe-based amorphous phase was noticed over the course of high-energy ball milling. It is interesting to note that the nanocomposite coating is divided into two regions, namely, a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10–50 nm in a residual amorphous matrix. As the B4C content increases, the nanohardness of the composite coatings increases, but the fracture toughness begins to decrease at the B4C content higher than 20 vol.%. The optimal mechanical properties are obtained with 15 vol.% B4C due to the suitable content and uniform distribution of nanoparticles. Consequently, the changes in mechanical properties of the coatings were attributed to the changes in the brittle to ductile transition by adding B4C nanoparticles.Keywords: Fe-based amorphous, B₄C nanoparticles, nanocomposite coating, HVOF
Procedia PDF Downloads 135618 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite
Authors: Mohamed M. Emara, Heba Ashraf
Abstract:
This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability
Procedia PDF Downloads 526617 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain
Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu
Abstract:
Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality
Procedia PDF Downloads 68616 Electrochemical Reduction of Carbon-dioxide Using Metal Nano-particles Supported on Nano-Materials
Authors: Mulatu Kassie Birhanu
Abstract:
Electrochemical reduction of CO₂ is an emerging and current issue for its conversion in to valuable product upon minimization of its atmospheric level for contribution of maintaining within the range of permissible limit. Among plenty of electro-catalysts gold and copper are efficient and effective catalysts, which are synthesized and applicable for this research work. The two metal catalysts were prepared in inert environment with different compositions through co-reduction process from their corresponding precursors and then by adding multi-walled carbon nano-tube as a supporter and enhanced the conductivity. The catalytic performance of CO₂ reduction for each composition was performed and resulted an outstanding catalytic activity with generation of high current density (70 mA/cm² at 0.91V vs. RHE) and relatively small onset potential. The catalytic performance, compositions, morphologies, structure and geometric arrangements were evaluated by electrochemical analysis (LSV, impedance, chronoamperometry & tafel plot), EDS, SEM and XAS respectively. The composite metals showed better selectivity of products and faradaic efficiencies due to the synergetic effects of the combined nano-particles in addition to the impact of grain size in reduction of CO₂. Carbon monoxide, hydrogen, formate and ethanol are the reduction products, which are detected and quantifiable by chromatographic techniques considering their physical state of each product.Keywords: carbondioxide, faradaic efficiency, electrocatalyst, current density
Procedia PDF Downloads 56615 Properties and Antimicrobial Activity of Fish Protein Isolate/Fish Skin Gelatin Film Containing Basil Leaf Essential Oil and Zinc Oxide Nanoparticles
Authors: Yasir Ali Arfat
Abstract:
Composite films based on fish protein isolate (FPI) and fish skin gelatin (FSG) blend incorporated with 50 and 100% (w/w, protein) basil leaf essential oil (BEO) in the absence and presence of 3% (w/w, protein) ZnO nanoparticles (ZnONP) were prepared and characterised. Tensile strength (TS) decreased, whilst elongation at break (EAB) increased as BEO level increased (p < 0.05). However, ZnONP addition resulted in higher TS but lower EAB (p < 0.05). The lowest water vapour permeability (WVP) was observed for the film incorporated with 100% BEO and 3% ZnONP (p < 0.05). BEO and ZnONP incorporation decreased transparency of FPI/FSG films (p < 0.05). FTIR spectra indicated that films added with BEO exhibited higher hydrophobicity. Both BEO and ZnONP had a marked impact on thermal stability of the films. Microstructural study revealed that presence of ZnONP prevented bilayer formation of film containing 100% BEO. FPI/FSG films incorporated with 100% BEO, especially in combination with ZnONP, exhibited strong antibacterial activity against food pathogenic and spoilage bacteria and thus could be used as an active food packaging material to ensure safety and to extend the shelf-life of packaged foods.Keywords: bionanocomposite, fish protein isolate, fish skin gelatin, basil essential oil, ZnO nanoparticles, antimicrobial packaging
Procedia PDF Downloads 471614 CRLH and SRR Based Microwave Filter Design Useful for Communication Applications
Authors: Subal Kar, Amitesh Kumar, A. Majumder, S. K. Ghosh, S. Saha, S. S. Sikdar, T. K. Saha
Abstract:
CRLH (composite right/left-handed) based and SRR (split-ring resonator) based filters have been designed at microwave frequency which can provide better performance compared to conventional edge-coupled band-pass filter designed around the same frequency, 2.45 GHz. Both CRLH and SRR are unit cells used in metamaterial design. The primary aim of designing filters with such structures is to realize size reduction and also to realize novel filter performance. The CRLH based filter has been designed in microstrip transmission line, while the SRR based filter is designed with SRR loading in waveguide. The CRLH based filter designed at 2.45 GHz provides an insertion loss of 1.6 dB with harmonic suppression up to 10 GHz with 67 % size reduction when compared with a conventional edge-coupled band-pass filter designed around the same frequency. One dimensional (1-D) SRR matrix loaded in a waveguide shows the possibility of realizing a stop-band with sharp skirts in the pass-band while a stop-band in the pass-band of normal rectangular waveguide with tailoring of the dimensions of SRR unit cells. Such filters are expected to be very useful for communication systems at microwave frequency.Keywords: BPF, CRLH, harmonic, metamaterial, SRR and waveguide
Procedia PDF Downloads 427613 Transient Enhanced LDO Voltage Regulator with Improved Feed Forward Path Compensation
Authors: A. Suresh, Sreehari Rao Patri, K. S. R. Krishnaprasad
Abstract:
An ultra low power capacitor less low-dropout voltage regulator with improved transient response using gain enhanced feed forward path compensation is presented in this paper. It is based on a cascade of a voltage amplifier and a transconductor stage in the feed forward path with regular error amplifier to form a composite gain-enhanced feed forward stage. It broadens the gain bandwidth and thus improves the transient response without substantial increase in power consumption. The proposed LDO, designed for a maximum output current of 100 mA in UMC 180 nm, requires a quiescent current of 69 µA. An undershoot of 153.79mV for a load current changes from 0mA to 100mA and an overshoot of 196.24mV for current change of 100mA to 0mA. The settling time is approximately 1.1 µs for the output voltage undershoot case. The load regulation is of 2.77 µV/mA at load current of 100mA. Reference voltage is generated by using an accurate band gap reference circuit of 0.8V.The costly features of SOC such as total chip area and power consumption is drastically reduced by the use of only a total compensation capacitance of 6pF while consuming power consumption of 0.096 mW.Keywords: capacitor-less LDO, frequency compensation, transient response, latch, self-biased differential amplifier
Procedia PDF Downloads 451612 Study of Dermatoglyphics Pattern in Patient with Hypertension
Authors: Ajeevan Gautam, Gulam Anwer Khan, Pratibha Pokhrel
Abstract:
Introduction: Dermatoglyphics is the science which deals with the study of dermal ridge configuration on the digits, palms and soles. It is grooved by ridges and forms variety of configurations. The aim of the study was to identify dermal ridge patterns on fingertip of hypertensive patients and in normal population and to compare patterns among them. Methods: The subjects of the study were 130 hypertensives and 130 non-hypertensives cases of Kathmandu Valley aged between 40 to 80 years. Case history was recorded after consent finger prints were taken. Different parameters as whorl, loop, arch and composite patterns were studied and analysed. Result: It revealed, increased whorl pattern in hypertensive. It showed 65.69% whorl, 29.23% loop and 5.07% arch patterns in right hand of hypertensive people. In control, it was found to be 34.46% whorl, 58.15% loop and 5.38% arch patterns respectively. Similarly in left hand 63.69% whorl, 32% loop and 4.30% arch in hypertensive group. In control group it was 60.15% as loop, 35.69% as whorl and 15% as arch. Discussion: Based on findings of the result, it was concluded that the whorl, loop and arch patterns observed as 65.69%, 29.23% and 5.07% respectively in hypertensive cases in right hand. Similarly in left hand, it was found to be 4.30% as arch, 32% as loop and 63.69% as whorl patterns, but in normotensive subjects these patterns were recorded as 36.43%, 58.15%, 5.38% in right hand and 35.69%, 60.15%, 4.15% in left hand as whorl, loop and arch respectively.Keywords: arch, dermatoglyphics, hypertension, loop, whorl
Procedia PDF Downloads 294611 Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia
Authors: Elsayed A. M. Shokr, A. Alhazemi, T. Naser, Talal A. Zuhair, Adel A. Zuhair, Ahmed N. Alshamary, Thamer A. Alanazi, Hosam A. Alanazi
Abstract:
The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas.Keywords: heavy metals, liver functions, kidney functions and chronic renal failure, hail, renal, water
Procedia PDF Downloads 320610 Inflammatory Changes Caused by Lipopolysaccharide in Odontoblasts
Authors: Virve Pääkkönen, Heidi M. Cuffaro, Leo Tjäderhane
Abstract:
Objectives: Odontoblasts are the outermost cell layer of dental pulp and form the dentin. Importance of bacterial products, e.g. lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria and lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, have been indicated in the pathogenesis of pulpitis. Gram-positive bacteria are more prevalent in superficial carious lesion while the amount gram-negative is higher in the deep lesions. Objective of this study was to investigate the effect of these bacterial products on inflammatory response of pulp tissue. Interleukins (IL) were of special interest. Various ILs have been observed in the dentin-pulp complex of carious tooth in vivo. Methods: Tissue culture method was used for testing the effect of LTA and LPS on human odontoblasts. Enzymatic isolation technique was used to extract living odontoblasts for cell cultures. DNA microarray and quantitative PCR (qPCR) were used to characterize the changes in the expression profile of the tissue cultured odontoblasts. Laser microdissection was used to cut healthy and affected dentin and odontoblast layer directly under carious lesion for experiments. Cytokine array detecting 80 inflammatory cytokines was used to analyze the protein content of conditioned culture media as well as dentin and odontoblasts from the carious teeth. Results: LPS caused increased gene expression IL-1α, and -8 and decrease of IL-1β, 12 , -15 and -16 after 1h treatment, while after 24h treatment decrease of IL-8, -11 and 23 mRNAs was observed. LTA treatment caused cell death in the tissue cultured odontoblasts but in in the cell culture but not in cell culture. Cytokine array revealed at least 2-fold down-regulation of IL-1β, -10 and -12 in response to LPS treatment. Cytokine array of odontoblasts of carious teeth, as well as LPS-treated tissue-cultured odontoblasts, revealed increased protein amounts of IL-16, epidermal growth factor (EGF), angiogenin and IGFBP-1 as well as decreased amount of fractalkine. In carious dentin, increased amount of IL-1β, EGF and fractalkine was observed, as well as decreased level of GRO-1 and HGF. Conclusion: LPS caused marked changes in the expression of inflammatory cytokines in odontoblasts. Similar changes were observed in the odontoblasts cut directly under the carious lesion. These results help to shed light on the inflammatory processes happening during caries.Keywords: inflammation, interleukin, lipoteichoic acid, odontoblasts
Procedia PDF Downloads 211609 Influence of Annealing Temperature on Optical, Anticandidal, Photocatalytic and Dielectric Properties of ZnO/TiO2 Nanocomposites
Authors: Wasi Khan, Suboohi Shervani, Swaleha Naseem, Mohd. Shoeb, J. A. Khan, B. R. Singh, A. H. Naqvi
Abstract:
We have successfully synthesized ZnO/TiO2 nanocomposite using a two-step solochemical synthesis method. The influence of annealing temperature on microstructural, optical, anticandidal, photocatalytic activities and dielectric properties were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the formation of nanocomposite and uniform surface morphology of all samples. The UV-Vis spectra indicate decrease in band gap energy with increase in annealing temperature. The anticandidal activity of ZnO/TiO2 nanocomposite was evaluated against MDR C. albicans 077. The in-vitro killing assay revealed that the ZnO/TiO2 nanocomposite efficiently inhibit the growth of the C. albicans 077. The nanocomposite also exhibited the photocatalytic activity for the degradation of methyl orange as a function of time at 465 nm wavelength. The electrical behaviour of composite has been studied over a wide range of frequencies at room temperature using complex impedance spectroscopy. The dielectric constants, dielectric loss and ac conductivity (σac) were studied as the function of frequency, which have been explained by ‘Maxwell Wagner Model’. The data reveals that the dielectric constant and loss (tanδ) exhibit the normal dielectric behavior and decreases with the increase in frequency.Keywords: ZnO/TiO2 nanocomposites, SEM, photocatalytic activity, dielectric properties
Procedia PDF Downloads 406608 Downtime Estimation of Building Structures Using Fuzzy Logic
Authors: M. De Iuliis, O. Kammouh, G. P. Cimellaro, S. Tesfamariam
Abstract:
Community Resilience has gained a significant attention due to the recent unexpected natural and man-made disasters. Resilience is the process of maintaining livable conditions in the event of interruptions in normally available services. Estimating the resilience of systems, ranging from individuals to communities, is a formidable task due to the complexity involved in the process. The most challenging parameter involved in the resilience assessment is the 'downtime'. Downtime is the time needed for a system to recover its services following a disaster event. Estimating the exact downtime of a system requires a lot of inputs and resources that are not always obtainable. The uncertainties in the downtime estimation are usually handled using probabilistic methods, which necessitates acquiring large historical data. The estimation process also involves ignorance, imprecision, vagueness, and subjective judgment. In this paper, a fuzzy-based approach to estimate the downtime of building structures following earthquake events is proposed. Fuzzy logic can integrate descriptive (linguistic) knowledge and numerical data into the fuzzy system. This ability allows the use of walk down surveys, which collect data in a linguistic or a numerical form. The use of fuzzy logic permits a fast and economical estimation of parameters that involve uncertainties. The first step of the method is to determine the building’s vulnerability. A rapid visual screening is designed to acquire information about the analyzed building (e.g. year of construction, structural system, site seismicity, etc.). Then, a fuzzy logic is implemented using a hierarchical scheme to determine the building damageability, which is the main ingredient to estimate the downtime. Generally, the downtime can be divided into three main components: downtime due to the actual damage (DT1); downtime caused by rational and irrational delays (DT2); and downtime due to utilities disruption (DT3). In this work, DT1 is computed by relating the building damageability results obtained from the visual screening to some already-defined components repair times available in the literature. DT2 and DT3 are estimated using the REDITM Guidelines. The Downtime of the building is finally obtained by combining the three components. The proposed method also allows identifying the downtime corresponding to each of the three recovery states: re-occupancy; functional recovery; and full recovery. Future work is aimed at improving the current methodology to pass from the downtime to the resilience of buildings. This will provide a simple tool that can be used by the authorities for decision making.Keywords: resilience, restoration, downtime, community resilience, fuzzy logic, recovery, damage, built environment
Procedia PDF Downloads 160607 Connectivity: Connecting ActivityRethinking Streets as Public Space under the Six Dimensions of Urban Space Design in the Context of Bangladesh
Authors: Manal Anis, Bin Bakhti Sayeed
Abstract:
With the encroachment of automobile upon our communities for decades and the concomitant urban sprawl resulting in a loss of public place, it was only a matter of time before people, realizing the role of streets in stimulating urban prosperity, would start reclaiming them to rebuild their communities. In order for this restoration of communities to take effect it is imperative that streets be freed from the dominance of motor vehicles. A holistic approach to pedestrian-friendly street environment can help build communities that embody the cities in which they are found. While the developed countries are finding more and more innovative ways to integrate walkable streets to foster communal living, the developing countries still have a long way to go. Since Dhaka is still struggling to balance the growing needs of accommodating automobiles for increased population with the loss of urban community life that comes with it, it is high time that alternate approaches are looked into. This study aims to understand streets as a living corridor through which one discovers and identifies with the city. The research area is chosen to be Manik Mia Avenue, overlooking the South Plaza of the National Parliament Building in Dhaka city. Being the site of supreme power, it is precisely this symbolic importance that the National Parliament Building has in the psyche of Bangladeshis, which has given Manik Mia Avenue a significant place in the country’s history. Above all, being an avenue it is essentially a neutral territory, universally accessible, inclusive and pluralist. The needs of the Avenue’s frequent users are analyzed with the help of a multi-method approach to survey consisting of an empirical study, a questionnaire survey and interview with relevant users. The research then tries to understand the concept of walkability by exploring the different ways in which the built environment influences walking. For this analysis, the six dimensions of Matthew Carmona are taken as a guideline for a holistic approach toward the different interacting facets of an urban public space. Based on the studies, a set of criteria is proposed to evaluate, plan and design streets that are more contextual in nature. The study concludes with how the existing street patterns of Dhaka city can be rethought and redesigned to cater to peoples’ need for a public place. The proposal is meant to be an inspiration for further studies in this respect in the context of Bangladesh.Keywords: public space, six dimensions, street, urban, walkability
Procedia PDF Downloads 221606 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 457605 Therapeutic Role of T Subpopulations Cells (CD4, CD8 and Treg (CD25 and FOXP3+ Cells) of UC MSC Isolated from Three Different Methods in Various Disease
Authors: Kumari Rekha, Mathur K Dhananjay, Maheshwari Deepanshu, Nautiyal Nidhi, Shubham Smriti, Laal Deepika, Sinha Swati, Kumar Anupam, Biswas Subhrajit, Shiv Kumar Sarin
Abstract:
Background: Mesenchymal stem cells are multipotent stem cells derived from mesoderm and are used for therapeutic purposes because of their self-renewal, homing capacity, Immunomodulatory capability, low immunogenicity and mitochondrial transfer signaling. MSCs have the ability to regulate the mechanism of both innate as well as adaptive immune responses through the modulation of cellular response and the secretion of inflammatory mediators. Different sources of MSC are UC MSC, BM MSC, Dental Pulp, and Adipose MSC. The most frequent source used is umbilical cord tissue due to its being easily available and free of limitations of collection procedures from respective hospitals. The immunosuppressive role of MSCs is particularly interesting for clinical use since it confers resistance to rejection by the host immune response. Methodology: In this study, T helper cells (TH4), Cytotoxic T cells (CD-8), immunoregulatory cells (CD25 +FOXP3+) are compared from isolated MSC from three different methods, UC Dissociation Kit (Miltenyi), Explant Culture and Collagenase Type-IV. To check the immunomodulatory property, these MSCs were seeded with PBMC(Coculture) in CD3 coated 24 well plates. Cd28 antibody was added in coculture for six days. The coculture was analyzed in FACS Verse flow cytometry. Results: From flow cytometry analysis of coculture, it found that All over T helper cells (CD4+) number p<0.0264 increases in (All Enzymes) MSC rather than explant MSC(p>0.0895) as compared to Collagenase(p>0.7889) in a coculture of Activated T cell and Mesenchymal Stem Cell. Similar T reg cells (CD25+, FOXP3+) expression p<0.0234increases in All Enzymes), decreases in Explant and Collagenase. Experiments have shown that MSCs can also directly prevent the cytotoxic activity of CD8 lymphocytes mainly by blocking their proliferation rather than by inhibiting the cytotoxic effect. And promoting the t-reg cells, which helps in the mediation of immune response in various diseases. Conclusion: MSC suppress Cytotoxic CD8 T cell and Enhance immunoregulatory T reg (CD4+, CD25+, FOXP3+) Cell expression. Thus, MSC maintains a proper balance(ratio) between CD4 T cells and Cytotoxic CD8 T cells.Keywords: MSC, disease, T cell, T regulatory
Procedia PDF Downloads 114604 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle
Procedia PDF Downloads 189