Search results for: mortality prediction
3329 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites
Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar
Abstract:
Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.Keywords: online information services, prediction, security and protection, web based services
Procedia PDF Downloads 3643328 Examining Relationship between Resource-Curse and Under-Five Mortality in Resource-Rich Countries
Authors: Aytakin Huseynli
Abstract:
The paper reports findings of the study which examined under-five mortality rate among resource-rich countries. Typically when countries obtain wealth citizens gain increased wellbeing. Societies with new wealth create equal opportunities for everyone including vulnerable groups. But scholars claim that this is not the case for developing resource-rich countries and natural resources become the curse for them rather than the blessing. Spillovers from natural resource curse affect the social wellbeing of vulnerable people negatively. They get excluded from the mainstream society, and their situation becomes tangible. In order to test this hypothesis, the study compared under-5 mortality rate among resource-rich countries by using independent sample one-way ANOVA. The data on under-five mortality rate came from the World Bank. The natural resources for this study are oil, gas and minerals. The list of 67 resource-rich countries was taken from Natural Resource Governance Institute. The sample size was categorized and 4 groups were created such as low, low-middle, upper middle and high-income countries based on income classification of the World Bank. Results revealed that there was a significant difference in the scores for low, middle, upper-middle and high-income countries in under-five mortality rate (F(3(29.01)=33.70, p=.000). To find out the difference among income groups, the Games-Howell test was performed and it was found that infant mortality was an issue for low, middle and upper middle countries but not for high-income countries. Results of this study are in agreement with previous research on resource curse and negative effects of resource-based development. Policy implications of the study for social workers, policy makers, academicians and social development specialists are to raise and discuss issues of marginalization and exclusion of vulnerable groups in developing resource-rich countries and suggest interventions for avoiding them.Keywords: children, natural resource, extractive industries, resource-based development, vulnerable groups
Procedia PDF Downloads 2563327 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1683326 Survival Chances and Costs after Heart Attacks: An Instrumental Variable Approach
Authors: Alice Sanwald, Thomas Schober
Abstract:
We analyze mortality and follow-up costs of heart attack patients using administrative data from Austria (2002-2011). As treatment intensity in a hospital largely depends on whether it has a catheterization laboratory, we focus on the effects of patients' initial admission to these specialized hospitals. To account for the nonrandom selection of patients into hospitals, we exploit individuals' place of residence as a source of exogenous variation in an instrumental variable framework. We find that the initial admission to specialized hospitals increases patients' survival chances substantially. The effect on 3-year mortality is -9.5 percentage points. A separation of the sample into subgroups shows the strongest effects in relative terms for patients below the age of 65. We do not find significant effects on longterm inpatient costs and find only marginal increases in outpatient costs.Keywords: acute myocardial infarction, mortality, costs, instrumental variables, heart attack
Procedia PDF Downloads 4403325 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3223324 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 1013323 Epidemiology of Congenital Heart Defects in Kazakhstan: Data from Unified National Electronic Healthcare System 2014-2020
Authors: Dmitriy Syssoyev, Aslan Seitkamzin, Natalya Lim, Kamilla Mussina, Abduzhappar Gaipov, Dimitri Poddighe, Dinara Galiyeva
Abstract:
Background: Data on the epidemiology of congenital heart defects (CHD) in Kazakhstan is scarce. Therefore, the aim of this study was to describe the incidence, prevalence and all-cause mortality of patients with CHD in Kazakhstan, using national large-scale registry data from the Unified National Electronic Healthcare System (UNEHS) for the period of 2014-2020. Methods: In this retrospective cohort study, the included data pertained to all patients diagnosed with CHD in Kazakhstan and registered in UNEHS between January 2014 and December 2020. CHD was defined based on International Classification of Diseases 10th Revision (ICD-10) codes Q20-Q26. Incidence, prevalence, and all-cause mortality rates were calculated per 100,000 population. Survival analysis was performed using Cox proportional hazards regression modeling and the Kaplan-Meier method. Results: In total, 66,512 patients were identified. Among them, 59,534 (89.5%) were diagnosed with a single CHD, while 6,978 (10.5%) had more than two CHDs. The median age at diagnosis was 0.08 years (interquartile range (IQR) 0.01 – 0.66) for people with multiple CHD types and 0.39 years (IQR 0.04 – 8.38) for those with a single CHD type. The most common CHD types were atrial septal defect (ASD) and ventricular septal defect (VSD), accounting for 25.8% and 21.2% of single CHD cases, respectively. The most common multiple types of CHD were ASD with VSD (23.4%), ASD with patent ductus arteriosus (PDA) (19.5%), and VSD with PDA (17.7%). The incidence rate of CHD decreased from 64.6 to 47.1 cases per 100,000 population among men and from 68.7 to 42.4 among women. The prevalence rose from 66.1 to 334.1 cases per 100,000 population among men and from 70.8 to 328.7 among women. Mortality rates showed a slight increase from 3.5 to 4.7 deaths per 100,000 in men and from 2.9 to 3.7 in women. Median follow-up was 5.21 years (IQR 2.47 – 11.69). Male sex (HR 1.60, 95% CI 1.45 - 1.77), having multiple CHDs (HR 2.45, 95% CI 2.01 - 2.97), and living in a rural area (HR 1.32, 95% CI 1.19 - 1.47) were associated with a higher risk of all-cause mortality. Conclusion: The incidence of CHD in Kazakhstan has shown a moderate decrease between 2014 and 2020, while prevalence and mortality have increased. Male sex, multiple CHD types, and rural residence were significantly associated with a higher risk of all-cause mortality.Keywords: congenital heart defects (CHD), epidemiology, incidence, Kazakhstan, mortality, prevalence
Procedia PDF Downloads 1033322 Using Linear Logistic Regression to Evaluation the Patient and System Delay and Effective Factors in Mortality of Patients with Acute Myocardial Infarction
Authors: Firouz Amani, Adalat Hoseinian, Sajjad Hakimian
Abstract:
Background: The mortality due to Myocardial Infarction (MI) is often occur during the first hours after onset of symptom. So, for taking the necessary treatment and decreasing the mortality rate, timely visited of the hospital could be effective in this regard. The aim of this study was to investigate the impact of effective factors in mortality of MI patients by using Linear Logistic Regression. Materials and Methods: In this case-control study, all patients with Acute MI who referred to the Ardabil city hospital were studied. All of died patients were considered as the case group (n=27) and we select 27 matched patients without Acute MI as a control group. Data collected for all patients in two groups by a same checklist and then analyzed by SPSS version 24 software using statistical methods. We used the linear logistic regression model to determine the effective factors on mortality of MI patients. Results: The mean age of patients in case group was significantly higher than control group (75.1±11.7 vs. 63.1±11.6, p=0.001).The history of non-cardinal diseases in case group with 44.4% significantly higher than control group with 7.4% (p=0.002).The number of performed PCIs in case group with 40.7% significantly lower than control group with 74.1% (P=0.013). The time distance between hospital admission and performed PCI in case group with 110.9 min was significantly upper than control group with 56 min (P=0.001). The mean of delay time from Onset of symptom to hospital admission (patient delay) and the mean of delay time from hospital admissions to receive treatment (system delay) was similar between two groups. By using logistic regression model we revealed that history of non-cardinal diseases (OR=283) and the number of performed PCIs (OR=24.5) had significant impact on mortality of MI patients in compare to other factors. Conclusion: Results of this study showed that of all studied factors, the number of performed PCIs, history of non-cardinal illness and the interval between onset of symptoms and performed PCI have significant relation with morality of MI patients and other factors were not meaningful. So, doing more studies with a large sample and investigated other involved factors such as smoking, weather and etc. is recommended in future.Keywords: acute MI, mortality, heart failure, arrhythmia
Procedia PDF Downloads 1253321 Incidence of Orphans Neonatal Puppies Attend in Veterinary Hospital – Causes, Consequences and Mortality
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
Orphaned is a risk factor for mortality in newborns since it is a condition with total or partial absence of maternal care that is essential for neonatal survival, including nursing (nutrition, the transference of passive immunity and hydration), warmth, urination, and defecation stimuli, and protection. The most common causes of mortality in orphans are related to lack of assistance, handling mistakes and infections. This study aims to describe the orphans rates in neonatal puppies, the main causes, and the mortality rates. The study included 735 neonates admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, between January 2018 and November 2019. The orphans rate was 43.4% (319/735) of all neonates included, and the main causes for orphaned were related to maternal agalactia/hypogalactia (23.5%, 75/319); numerous litter (15.7%, 50/319), toxic milk syndrome due to maternal mastitis (14.4%, 46/319), absence of suction/weak neonate (12.2%, 39/319), maternal disease (9.4%, 30/319), cleft palate/lip (6.3%, 20/319), maternal death (5.9%, 19/319), prematurity (5.3%, 17/319), rejection/failure in maternal instinct (3.8%, 12/319) and abandonment by the owner/separation of mother and neonate (3.5%, 11/319). The main consequences of orphaned observed in the admitted neonates were hypoglycemia, hypothermia, dehydration, aspiration pneumonia, wasting syndrome, failure in the transference of passive immunity, infections and sepsis, which happened due to failure of identifying the problem early, lack of adequate assistance, negligence and handling mistakes by the owner. The total neonatal mortality rate was 8% (59/735) and the neonatal mortality rate among orphans was 18.5% (59/319). The orphaned and mortality rates were considered high, but even higher rates may be observed in locations without adequate neonatal assistance and owner orientation. The survival of these patients is related to constant monitoring of the litter, early diagnosis and assistance, and the implementation of effective handling for orphans. Understanding the correct handling for neonates and instructing the owners regarding proper handling are essential to minimize the consequences of orphaned and the mortality rates.Keywords: orphans, neonatal care, puppies, newborn dogs
Procedia PDF Downloads 2613320 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, though a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: trouble prevention, knowledge structure, structured knowledge, reusable knowledge
Procedia PDF Downloads 3733319 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4533318 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1403317 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: software quality, fuzzy logic, perception, prediction
Procedia PDF Downloads 3213316 On the Survival of Individuals with Type 2 Diabetes Mellitus in the United Kingdom: A Retrospective Case-Control Study
Authors: Njabulo Ncube, Elena Kulinskaya, Nicholas Steel, Dmitry Pshezhetskiy
Abstract:
Life expectancy in the United Kingdom (UK) has been near constant since 2010, particularly for the individuals of 65 years and older. This trend has been also noted in several other countries. This slowdown in the increase of life expectancy was concurrent with the increase in the number of deaths caused by non-communicable diseases. Of particular concern is the world-wide exponential increase in the number of diabetes related deaths. Previous studies have reported increased mortality hazards among diabetics compared to non-diabetics, and on the differing effects of antidiabetic drugs on mortality hazards. This study aimed to estimate the all-cause mortality hazards and related life expectancies among type 2 diabetes (T2DM) patients in the UK using the time-variant Gompertz-Cox model with frailty. The study also aimed to understand the major causes of the change in life expectancy growth in the last decade. A total of 221 182 (30.8% T2DM, 57.6% Males) individuals aged 50 years and above, born between 1930 and 1960, inclusive, and diagnosed between 2000 and 2016, were selected from The Health Improvement Network (THIN) database of the UK primary care data and followed up to 31 December 2016. About 13.4% of participants died during the follow-up period. The overall all-cause mortality hazard ratio of T2DM compared to non-diabetic controls was 1.467 (1.381-1.558) and 1.38 (1.307-1.457) when diagnosed between 50 to 59 years and 60 to 74 years, respectively. The estimated life expectancies among T2DM individuals without further comorbidities diagnosed at the age of 60 years were 2.43 (1930-1939 birth cohort), 2.53 (1940-1949 birth cohort) and 3.28 (1950-1960 birth cohort) years less than those of non-diabetic controls. However, the 1950-1960 birth cohort had a steeper hazard function compared to the 1940-1949 birth cohort for both T2DM and non-diabetic individuals. In conclusion, mortality hazards for people with T2DM continue to be higher than for non-diabetics. The steeper mortality hazard slope for the 1950-1960 birth cohort might indicate the sub-population contributing to a slowdown in the growth of the life expectancy.Keywords: T2DM, Gompetz-Cox model with frailty, all-cause mortality, life expectancy
Procedia PDF Downloads 1213315 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 803314 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 1623313 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5623312 Effects of Five Local Spices on the Mortality and Development of Larvae of Dermestes Maculatusdegeer (Coleoptera: Dermestidae) Reared on Dried Smoked Fish
Authors: A. Jatau, Q. Majeed, H. M. Bandiya
Abstract:
The efficacy of five local spices, namely; Hot pepper (Capsicum annum L.), Black pepper (Piper guinese Schum and Thonn), Sweet basil (Occimum canum Sim), African nut-meg (Monodora myristica Dunal), and Ginger (Zingiber officianale Ross) with conventional insecticide against the D. maculatus was studied under ambient laboratory conditions. The plants were pulverized into powders and applied at the rate of 1.0, 2.0 and 3.0g per 25g of disinfected dried fish. The same amount of fish (25g) was treated with 5ml of 1.0, 2.0 and 3.0 percent solution of conventional insecticide (dichlorvos) and air dried for 2hrs. Ten newly hatched 1st instar larvae (24hrs old) were introduced into each powdered smoked fish in separate beakers. Untreated control was also set up. Observation on the mortality and development were recorded daily until the larvae pupated. Each of the treated smoked fish showed significant (p<0.05) effect on the larval mortality and development when compared with the control. The Piper guinense was as efficacious as dichlorvos in killing all the larvae (100%) at all concentrations before pupation. Ocimum Canunm gave the second best results (50.00, 63.33 and 100%), while the other three spices resulted in less than 50% mortalities at all rate of application. The spice powders were also observed to have extended the larval developmental period. Thus, the spices tested can be recommended for the control of D. maculatus.Keywords: development, dermestes maculatus, insecticide, local spices, mortality
Procedia PDF Downloads 2663311 Inpatient Neonatal Deaths in Rural Uganda: A Retrospective Comparative Mortality Study of Labour Ward versus Community Admissions
Authors: Najade Sheriff, Malaz Elsaddig, Kevin Jones
Abstract:
Background: Death in the first month of life accounts for an increasing proportion of under-five mortality. Advancement to reduce this number is being made across the globe; however, progress is slowest in sub-Saharan Africa. Objectives: The study aims to identify differences between neonatal deaths of inpatient babies born in a hospital facility in rural Uganda to those of neonates admitted from the community and to explore whether they can be used to risk stratify neonatal admissions. Results: A retrospective chart review was conducted on records for neonates admitted to the Special Care Baby Unit (SCBU) Kitovu Hospital from 1st July 2016 to 21st July 2017. A total of 442 babies were admitted and the overall neonatal mortality was 24.8% (40% inpatient, 37% community, 23% hospital referrals). 40% of deaths occurred within 24 hours of admission and the majority were male (63%). 43% of babies were hypothermic upon admission, a significantly greater proportion of which were inpatient babies born in labour ward (P=0.0025). Intrapartum related death accounted for ½ of all inpatient babies whereas complications of prematurity were the predominant cause of death in the community group (37%). Severe infection does not seem like a significant factor of mortality for inpatients (2%) as it does for community admissions (29%). Furthermore, with 52.5% of community admissions weighing < 1500g, very low birth weight (VLBW) may be a significant risk factor for community neonatal death. Conclusion: The neonatal mortality rate in this study is high, and the leading causes of death are all largely preventable. A high rate of inpatient birth asphyxiation indicates the need for good quality facility-based perinatal care as well as a greater focus on the management of hypothermia, such as Kangaroo care. Moreover, a reduction in preterm deliveries is necessary to reduce associated comorbidities, and monitoring for signs of infection is especially important for community admissions.Keywords: community, mortality, newborn, Uganda
Procedia PDF Downloads 1943310 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin
Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran
Abstract:
The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids
Procedia PDF Downloads 4013309 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 3013308 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market
Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro
Abstract:
Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model
Procedia PDF Downloads 2473307 Improving Patient Outcomes for Aspiration Pneumonia
Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu
Abstract:
Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions
Procedia PDF Downloads 673306 Predictors of Glycaemic Variability and Its Association with Mortality in Critically Ill Patients with or without Diabetes
Authors: Haoming Ma, Guo Yu, Peiru Zhou
Abstract:
Background: Previous studies show that dysglycemia, mostly hyperglycemia, hypoglycemia and glycemic variability(GV), are associated with excess mortality in critically ill patients, especially those without diabetes. Glycemic variability is an increasingly important measure of glucose control in the intensive care unit (ICU) due to this association. However, there is limited data pertaining to the relationship between different clinical factors and glycemic variability and clinical outcomes categorized by their DM status. This retrospective study of 958 intensive care unit(ICU) patients was conducted to investigate the relationship between GV and outcome in critically ill patients and further to determine the significant factors that contribute to the glycemic variability. Aim: We hypothesize that the factors contributing to mortality and the glycemic variability are different from critically ill patients with or without diabetes. And the primary aim of this study was to determine which dysglycemia (hyperglycemia\hypoglycemia\glycemic variability) is independently associated with an increase in mortality among critically ill patients in different groups (DM/Non-DM). Secondary objectives were to further investigate any factors affecting the glycemic variability in two groups. Method: A total of 958 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The glycemic variability was defined as the coefficient of variation (CV) of blood glucose. The main outcome was death during hospitalization. The secondary outcome was GV. The logistic regression model was used to identify factors associated with mortality. The relationships between GV and other variables were investigated using linear regression analysis. Results: Information on age, APACHE II score, GV, gender, in-ICU treatment and nutrition was available for 958 subjects. Predictors remaining in the final logistic regression model for mortality were significantly different in DM/Non-DM groups. Glycemic variability was associated with an increase in mortality in both DM(odds ratio 1.05; 95%CI:1.03-1.08,p<0.001) or Non-DM group(odds ratio 1.07; 95%CI:1.03-1.11,p=0.002). For critically ill patients without diabetes, factors associated with glycemic variability included APACHE II score(regression coefficient, 95%CI:0.29,0.22-0.36,p<0.001), Mean BG(0.73,0.46-1.01,p<0.001), total parenteral nutrition(2.87,1.57-4.17,p<0.001), serum albumin(-0.18,-0.271 to -0.082,p<0.001), insulin treatment(2.18,0.81-3.55,p=0.002) and duration of ventilation(0.006,0.002-1.010,p=0.003).However, for diabetes patients, APACHE II score(0.203,0.096-0.310,p<0.001), mean BG(0.503,0.138-0.869,p=0.007) and duration of diabetes(0.167,0.033-0.301,p=0.015) remained as independent risk factors of GV. Conclusion: We found that the relation between dysglycemia and mortality is different in the diabetes and non-diabetes groups. And we confirm that GV was associated with excess mortality in DM or Non-DM patients. Furthermore, APACHE II score, Mean BG, total parenteral nutrition, serum albumin, insulin treatment and duration of ventilation were significantly associated with an increase in GV in Non-DM patients. While APACHE II score, mean BG and duration of diabetes (years) remained as independent risk factors of increased GV in DM patients. These findings provide important context for further prospective trials investigating the effect of different clinical factors in critically ill patients with or without diabetes.Keywords: diabetes, glycemic variability, predictors, severe disease
Procedia PDF Downloads 1923305 A Comparative Laboratory Evaluation of Efficacy of Two Fungi: Beauveria bassiana and Acremonium perscinum, on Dichomeris eridantis Meyrick (Lepidoptera: Gelechiidae) Larvae, an Important Pest of Dalbergia sissoo
Authors: Gunjan Srivastava, Shamila Kalia
Abstract:
Dalbergia sissoo Roxb., (Family- Leguminosae; Subfamily- Papilionoideae), is an economically and ecologically important tree species having medicinal value. Of the rich complex of insect fauna, ten have been recognized as potential pests of nurseries and plantations. Present study was conducted to explore an effective ecofriendly control of Dichomeris eridantis Meyrick, an important defoliator pest of D. sissoo. Health and environmental concerns demanded devising a bio-intensive pest management strategy and employing ecofriendly measures. In the present laboratory bioassay two entomopathogenic fungi Acremonium perscinum and Beauveria bassiana were tested and compared for evaluating the efficacy of their seven different concentrations (besides control) against the 3rd, 4th and 5th instar larvae of D. eridantis, on the basis of mean percent mortality data recorded and tabulated for seven days after treatment application. Analysis showed that both treatments vary significantly among themselves. Also, variations amongst instars and duration with respect to their mortality were highly significant (p < .001). All their interactions were found to vary significantly. B. bassiana at 0.25x107 spores / ml spore concentration caused maximum mean percent mortality (62.38%) followed by mean percent mortality at its 0.25x106 spores / ml concentration (56.67%). Mean percent mortality at maximum spore concentration (0.054x107 spores / ml) and next highest spore concentration (0.054 x106 spores / ml) due to A. perscinum treatment were far less effective (mean percent mortality of 45.40% and 31.29%, respectively). At 168 hours mean percent mortality of larval instars due to both fungal treatment applications reached its maximum (52.99%) whereas, at 24 hours mean percent mortality remained least (5.70%). In both cases, treatments were most effective against 3rd instar larvae and least effective against 5th instar larvae. A comparative acccount of efficacy of B. bassiana and A. perscinum on the 3rd, 4th and 5th instar larvae of D. eridantis on 5th, 6th and 7th post treatment observation days after their application, on the basis of their median lethal concentrations (LC50) proved B. bassiana to be more potential microbial pathogen of the two fungal microbes, for all the three instars (3rd, 4th and 5th) of D. eridantis, on all the three days (5th, 6th and 7th post observation days after application of both treatments). Percent mortality of D. eridantis increased in a dose dependent manner. Koch’s Postulates tested positive, thus confirming the pathogenicity of B. bassiana against the larval instars of D. eridantis. LC90 values of 0.280x1011 spores/ml, 0.301x108 spores/ml and 0.262x108 spores/ml concentrations of B. bassiana were standardized which can effectively cause mortality of all the larval instars of D. eridantis in the field after 5th, 6th and 7th day of their application, respectively. Therefore, these concentrations can be safely used in nurseries as well as plantations of D. sissoo for effective control of D. eridantis larvae.Keywords: Acremonium perscinum, Beauveria bassiana, Dalbergia sissoo, Dichomeris eridantis
Procedia PDF Downloads 2273304 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 1843303 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4253302 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 5003301 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 803300 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 423