Search results for: logistic regression factor analysis
31971 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station
Authors: Musthaya Patchanee
Abstract:
This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district
Procedia PDF Downloads 39131970 Sero-Prevalence of Hepatitis B Surface Antigen and Associated Factors among Pregnant Mothers Attending Antenatal Care Service, Mekelle, Ethiopia: Evidence from Institutional Based Quantitative Cross-Sectional Study
Authors: Semaw A., Awet H., Yohannes M.
Abstract:
Background: Hepatitis B Virus (HBV) is a major global public health problem. Individuals living in Sub-Sahara Africa have 60% lifetime risk of acquiring HBV infection. Evidences showed that 80-90% of those born from infected mothers developed chronic HBV. Perinatal HBV transmission is a major determinant of HBV carrier status, its chronic squeal and maintains HBV transmission across generations. Method: Institution based cross-sectional study was conducted among 406 pregnant mothers attending Antenatal clinics at Mekelle and Ayder referral hospital from January 30 to April 1/2014. Epidata version 3.1 was used for data entry and SPSS version 21 statistical software was used for data cleaning, management and finally determine associated factors of hepatitis B surface antigen adjusting important confounders using multivariable logistic regression analysis at 5% level of significance. Result: The overall prevalence of hepatitis B surface antigen among pregnant women was 33 (8.1%). The socio-demographic characteristic of the study population showed that there is high positivity among secondary school 189 (46.6%). In the multivariable logistic regression analysis, history of a contact with individuals who had history of hepatitis B infection or jaundice and lifetime number of multiple sexual partners were found to be significantly associated with HBsAg positivity at AOR = 3.73 95%C.I (1.373-10.182) and AOR = 2.57 95%C.I (1.173-5.654), respectively. Moreover, Human Immunodeficiency Virus (HIV) and HBV confection rate was found 3.6%. Conclusion: This study has shown that HBV prevalence in pregnant women is highly prevalent (8.1%) in the study area. Contact with individuals who had a history of hepatitis or have jaundice and report of multiple lifetime sexual partnership were associated with hepatitis B infection. Education about HBV transmission and prevention as well as screening all pregnant mothers shall be sought to reduce the serious public health crisis of HBV.Keywords: HBsAg, hepatitis B, pregnant women, prevalence
Procedia PDF Downloads 34031969 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia
Authors: Atikah Nurhayati, Asep A. Handaka
Abstract:
Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.Keywords: fishery, food security, logistic, supply chain
Procedia PDF Downloads 24131968 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 9031967 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey
Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal
Abstract:
During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut
Procedia PDF Downloads 39431966 Modelling the Impacts of Geophysical Parameters on Deforestation and Forest Degradation in Pre and Post Ban Logging Periods in Hindu Kush Himalayas
Authors: Alam Zeb, Glen W. Armstrong, Muhammad Qasim
Abstract:
Loss of forest cover is one of the most important land cover changes and has been of great concern to policy makers. This study quantified forest cover changes over pre logging ban (1973-1993) and post logging ban (1993-2015) to examine the role of geophysical factors and spatial attributes of land in the two periods. We show that despite a complete ban on green felling, forest cover decreased by 28% and mostly converted to rangeland. Nevertheless, the logging ban was completely effective in controlling agriculture expansion. The binary logistic regression revealed that the south facing aspects at low elevation witnessed more deforestation in the pre-ban period compared to post-ban. Opposite to deforestation, forest degradation was more prominent on the northern aspects at higher elevation during the policy period. Agriculture expansion was widespread in the low elevation flat areas with gentle slope, while during the policy period agriculture contraction in the form of regeneration was observed on the low elevation areas of north facing slopes. All proximity variables, except distance to administrative boundary, showed a similar trend across the two periods and were important explanatory variables in understanding forest and agriculture expansion. The changes in determinants of forest and agriculture expansion and contraction over the two periods might be attributed to the influence of policy and a general decrease in resource availability.Keywords: forest conservation , wood harvesting ban, logistic regression, deforestation, forest degradation, agriculture expansion, Chitral, Pakistan
Procedia PDF Downloads 23031965 Giving Right-of-Way to Emergency Ambulances: Attitude and Behavior of Road Users in Developing Countries
Authors: Mahmoud T. Alwidyan, Ahmad Alrawashdeh, Alaa O. Oteir
Abstract:
Background: Emergency medical service (EMS) providers, oftentimes, use the lights and sirens (L&S) of their ambulances to warn road users, navigate through traffic, and expedite transport to save lives of ill and injured patients. Despite the contribution of road users in the effectiveness of reducing transport time of EMS ambulances using L&S, there is a lack of empirical assessments exploring the road user’s attitude and behavior in such situations. This study, therefore, aimed to assess the attitude and behavior of road users in response to EMS ambulances with warning L&S in use. Methods: This was a cross-sectional survey developed and distributed to adult road users in Northern Jordan. The questionnaire included 20 items addressing demographics, attitudes, and behavior toward emergency ambulances. We described the participants’ responses and assessed the association between demographics and attitude statements using logistic regression. Results: A total of 1302 questionnaires were complete and appropriate for analysis. The mean age was 34.2 (SD± 11.4) years, and the majority were males (72.6%). About half of road users (47.9%) in our sample would perform inappropriate action in response to EMS ambulances with L&S in use. The multivariate logistic regression model show that being female (OR, 0.63; 95% CI = 0.48-0.81), more educated (OR, 0.68; 95% CI = 0.53-0.86), or public transport driver (OR, 0.55; 95% CI = 0.34-0.90) is significantly associated with inappropriate response to EMS ambulances. Additionally, a significant proportion of road users may perform inappropriate and lawless driving practices such as crossing red traffic lights or following the passing by EMS ambulances, which would, in turn, increase the risk on ambulances and other road users. Conclusions: A large proportion of road users in Jordan may respond inappropriately to the EMS ambulances, and many engage in risky driving behaviors due perhaps to the lack of procedural knowledge. Policy-related interventions and educational programs are crucially needed to increase public awareness of the traffic law concerning EMS ambulances and to enhance appropriate driving behavior, which, in turn, improves the efficiency of ambulance services.Keywords: EMS ambulances, lights and sirens, road users, attitude and behavior
Procedia PDF Downloads 8831964 Prevalence of Microalbuminuria and Its Relation with Various Risk Factors in Type 1 Diabetes Mellitus
Authors: Singh Baljinder, Sharma Navneet
Abstract:
Microalbuminuria is the earliest detectable marker of diabetic nephropathy. We planned to evaluate the prevalence of microalbuminuria in type 1 diabetics and correlate with various risk factor. We randomly selected 100 type 1 diabetic patients after inclusion and exclusion criteria from DCRC, S. P. Medical College, Bikaner. Clinical examinations for anthropometeric parameters, hypertension, retinopathy, glycaemic status, lipid profile were done and microalbuminuria was estimated by micral test. Microalbuminuria was seen in 38% patients. The mean urinary albumin concentration was 96.61 mg/l in microalbuminuria positive cases, 134 mg/L in hypertensive patients while 74.5 mg/L in normal patients. Mean diabetic duration was 6.43 years in microalbuminurics. Albumin excretion increased significantly with age at onset of 10-18 years and declined thereafter. Microalbuminuria cases exhibited mean cholesterol 181.63 mg%, TG 130.94 mg%, LDL 109.87 mg%, HDL 57.5 mg% and VLDL 30.64 mg%. Mean urinary albumin concentration in patients with retinopathy was 160.52 mg/L while 78.66 mg/L without retinopathy. In multiple stepwise logistic regression analysis, a strong positive association was seen between microalbuminuria and hypertension (OR=5.087, CI=2.1319-12.101), fasting blood sugar (OR=3. 491, CI=1.138-10.70), duration of diabetes (OR=3.41, CI=1.360-8.55) and HbA1c (OR=2.381, CI-=1.1-5.64). The present study indicates that microalbuminuria is a common complication of type 1 diabetes mellitus and can be prevented by careful management of risk factors.Keywords: type 1 diabetes, microalbuminuria, diabetic nephropathy, retinopathy, hypertension
Procedia PDF Downloads 44531963 Evaluating Factors Influencing Information Quality in Large Firms
Authors: B. E. Narkhede, S. K. Mahajan, B. T. Patil, R. D. Raut
Abstract:
Information quality is a major performance measure for an Enterprise Resource Planning (ERP) system of any firm. This study identifies various critical success factors of information quality. The effect of various critical success factors like project management, reengineering efforts and interdepartmental communications on information quality is analyzed using a multiple regression model. Here quantitative data are collected from respondents from various firms through structured questionnaire for assessment of the information quality, project management, reengineering efforts and interdepartmental communications. The validity and reliability of the data are ensured using techniques like factor analysis, computing of Cronbach’s alpha. This study gives relative importance of each of the critical success factors. The findings suggest that among the various factors influencing information quality careful reengineering efforts are the most influencing factor. This paper gives clear insight to managers and practitioners regarding the relative importance of critical success factors influencing information quality so that they can formulate a strategy at the beginning of ERP system implementation.Keywords: Enterprise Resource Planning (ERP), information systems (IS), multiple regression, information quality
Procedia PDF Downloads 33231962 A Hybrid Adomian Decomposition Method in the Solution of Logistic Abelian Ordinary Differential and Its Comparism with Some Standard Numerical Scheme
Authors: F. J. Adeyeye, D. Eni, K. M. Okedoye
Abstract:
In this paper we present a Hybrid of Adomian decomposition method (ADM). This is the substitution of a One-step method of Taylor’s series approximation of orders I and II, into the nonlinear part of Adomian decomposition method resulting in a convergent series scheme. This scheme is applied to solve some Logistic problems represented as Abelian differential equation and the results are compared with the actual solution and Runge-kutta of order IV in order to ascertain the accuracy and efficiency of the scheme. The findings shows that the scheme is efficient enough to solve logistic problems considered in this paper.Keywords: Adomian decomposition method, nonlinear part, one-step method, Taylor series approximation, hybrid of Adomian polynomial, logistic problem, Malthusian parameter, Verhulst Model
Procedia PDF Downloads 40031961 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 54331960 The Influence of Production Hygiene Training on Farming Practices Employed by Rural Small-Scale Organic Farmers - South Africa
Authors: Mdluli Fezile, Schmidt Stefan, Thamaga-Chitja Joyce
Abstract:
In view of the frequently reported foodborne disease outbreaks caused by contaminated fresh produce, consumers have a preference for foods that meet requisite hygiene standards to reduce the risk of foodborne illnesses. Producing good quality fresh produce then becomes critical in improving market access and food security, especially for small-scale farmers. Questions of hygiene and subsequent microbiological quality in the rural small-scale farming sector of South Africa are even more crucial, given the policy drive to develop small-scale farming as a measure for reinforcement of household food security and reduction of poverty. Farming practices and methods, throughout the fresh produce value chain, influence the quality of the final product, which in turn determines its success in the market. This study’s aim was to therefore determine the extent to which training on organic farming methods, including modules such as Importance of Production Hygiene, influenced the hygienic farming practices employed by eTholeni small-scale organic farmers in uMbumbulu, KwaZulu-Natal- South Africa. Questionnaires were administered to 73 uncertified organic farmers and analysis showed that a total of 33 farmers were trained and supplied the local Agri-Hub while 40 had not received training. The questionnaire probed respondents’ attitudes, knowledge of hygiene and composting practices. Data analysis included descriptive statistics such as the Chi-square test and a logistic regression model. Descriptive analysis indicated that a majority of the farmers (60%) were female, most of which (73%) were above the age of 40. The logistic regression indicated that factors such as farmer training and prior experience in the farming sector had a significant influence on hygiene practices both at 5% significance levels. These results emphasize the importance of training, education and farming experience in implementing good hygiene practices in small-scale farming. It is therefore recommended that South African policies should advocate for small-scale farmer training, not only for subsistence purposes, but also with an aim of supplying produce markets with high fresh produce.Keywords: small-scale farmers, leafy salad vegetables, organic produce, food safety, hygienic practices, food security
Procedia PDF Downloads 42531959 The Predictors of Student Engagement: Instructional Support vs Emotional Support
Authors: Tahani Salman Alangari
Abstract:
Student success can be impacted by internal factors such as their emotional well-being and external factors such as organizational support and instructional support in the classroom. This study is to identify at least one factor that forecasts student engagement. It is a cross-sectional, conducted on 6206 teachers and encompassed three years of data collection and observations of math instruction in approximately 50 schools and 300 classrooms. A multiple linear regression revealed that a model predicting student engagement from emotional support, classroom organization, and instructional support was significant. Four linear regression models were tested using hierarchical regression to examine the effects of independent variables: emotional support was the highest predictor of student engagement while instructional support was the lowest.Keywords: student engagement, emotional support, organizational support, instructional support, well-being
Procedia PDF Downloads 8131958 Factors Affecting Green Consumption Behaviors of the Urban Residents in Hanoi, Vietnam
Authors: Phan Thi Song Thuong
Abstract:
This paper uses data from a survey on the green consumption behavior of Hanoi residents in October 2022. Data was gathered from a survey conducted in ten districts in the center of Hanoi, with 393 respondents. The hypothesis focuses on understanding the factors that may affect green consumption behavior, such as demographic characteristics, concerns about the environment and health, people living around, self-efficiency, and mass media. A number of methods, such as the T-test, exploratory factor analysis, and a linear regression model, are used to prove the hypotheses. Accordingly, the results show that gender, age, and education level have separate effects on the green consumption behavior of respondents.Keywords: green consumption, urban residents, environment, sustainable, linear regression
Procedia PDF Downloads 13131957 The Role of Brooding and Reflective as Subtypes of Rumination toward Psychological Distress in University of Indonesia First-Year Undergraduate Students
Authors: Hepinda Fajari Nuharini, Sugiarti A. Musabiq
Abstract:
Background: Various and continuous pressures that exceed individual resources can cause first-year undergraduate college students to experience psychological distress. Psychological distress can occur when individuals use rumination as cognitive coping strategies. Rumination is one of the cognitive coping strategies that can be used by individuals to respond to psychological distress that causes individuals to think about the causes and consequences of events that have occurred. Rumination had two subtypes, such as brooding and reflective. Therefore, the purpose of this study was determining the role of brooding and reflective as subtypes of rumination toward psychological distress in University of Indonesia first-year undergraduate students. Methods: Participants of this study were 403 University of Indonesia first-year undergraduate students aged between 18 and 21 years old. Psychological distress measured using self reporting questionnaire (SRQ-20) and brooding and reflective as subtypes of rumination measured using Ruminative Response Scale - Short Version (RRS - Short Version). Results: Binary logistic regression analyses showed that 22.8% of the variation in psychological distress could be explained by the brooding and reflective as subtypes of rumination, while 77.2% of the variation in psychological distress could be explained by other factors (Nagelkerke R² = 0,228). The results of the binary logistic regression analysis also showed rumination subtype brooding is a significant predictor of psychological distress (b = 0,306; p < 0.05), whereas rumination subtype reflective is not a significant predictor of psychological distress (b = 0,073; p > 0.05). Conclusion: The findings of this study showed a positive relationship between brooding and psychological distress indicates that a higher level of brooding will predict higher psychological distress. Meanwhile, a negative relationship between reflective and psychological distress indicates a higher level of reflective will predict lower psychological distress in University of Indonesia first-year undergraduate students. Added Values: The psychological distress among first-year undergraduate students would then have an impact on student academic performance. Therefore, the results of this study can be used as a reference for making preventive action to reduce the percentage and impact of psychological distress among first-year undergraduate students.Keywords: brooding as subtypes of rumination, first-year undergraduate students, psychological distress, reflective as subtypes of rumination
Procedia PDF Downloads 10731956 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle
Authors: L. Q. Yuan, J. Yang, A. Siddiqui
Abstract:
A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method
Procedia PDF Downloads 41631955 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 8031954 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application
Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro
Abstract:
This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.Keywords: item response theory, dimensionality, submodel theory, factorial analysis
Procedia PDF Downloads 37231953 The Impact of Corporate Social Responsibility and Relationship Marketing on Relationship Maintainer and Customer Loyalty by Mediating Role of Customer Satisfaction
Authors: Anam Bhatti, Sumbal Arif, Mariam Mehar, Sohail Younas
Abstract:
CSR has become one of the imperative implements in satisfying customers. The impartial of this research is to calculate CSR, relationship marketing, and customer satisfaction. In Pakistan, there is not enough research work on the effect of CSR and relationship marketing on relationship maintainer and customer loyalty. To find out deductive approach and survey method is used as research approach and research strategy respectively. This research design is descriptive and quantitative study. For data, collection questionnaire method with semantic differential scale and seven point scales are adopted. Data has been collected by adopting the non-probability convenience technique as sampling technique and the sample size is 400. For factor confirmatory factor analysis, structure equation modeling and medication analysis, regression analysis Amos software were used. Strong empirical evidence supports that the customer’s perception of CSR performance is highly influenced by the values.Keywords: CSR, Relationship marketing, Relationship maintainer, Customer loyalty, Customer satisfaction
Procedia PDF Downloads 48031952 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 8331951 Spatial Temporal Rainfall Trends in Australia
Authors: Bright E. Owusu, Nittaya McNeil
Abstract:
Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.
Procedia PDF Downloads 35231950 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 25631949 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment
Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong
Abstract:
Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.Keywords: lung cancer, screening, China., discrete choice experiment
Procedia PDF Downloads 25931948 Empirical Evidence to Beliefs and Perceptions About Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
Context: In the United States, there have been significant advancements in programs aimed at improving the lives of individuals with mental health disorders and substance abuse problems. However, public attitudes and beliefs regarding these issues have not improved correspondingly. This study aims to explore the perceptions and beliefs surrounding mental health disorders and substance abuse in the context of data analytics in the field of social work. Research Aim: The aim of this research is to provide empirical evidence on the beliefs and perceptions regarding mental health disorders and substance abuse. Specifically, the study seeks to answer the question of whether being diagnosed with a mental disorder implies a diagnosis of substance abuse. Additionally, the research aims to analyze the specific roles that social workers can play in addressing individuals with mental disorders. Methodology: This research adopts a data-driven methodology, acquiring comprehensive data from the Substance Abuse and Mental Health Services Administration (SAMHSA). A noteworthy causal connection between mental disorders and substance abuse exists, a relationship that current literature tends to overlook critically. To address this gap, we applied logistic regression with an Instrumental Variable approach, effectively mitigating potential endogeneity issues in the analysis in order to ensure robust and unbiased results. This methodology allows for a rigorous examination of the relationship between mental disorders and substance abuse. Empirical Findings: The analysis of the data reveals that depressive, anxiety, and trauma/stressor mental disorders are the most common in the United States. However, the study does not find statistically significant evidence to support the notion that being diagnosed with these mental disorders necessarily implies a diagnosis of substance abuse. This suggests that there is a misconception among the public regarding the relationship between mental health disorders and substance abuse. Theoretical Importance: The research contributes to the existing body of literature by providing empirical evidence to challenge prevailing beliefs and perceptions regarding mental health disorders and substance abuse. By using a novel methodological approach and analyzing new US data, the study sheds light on the cultural and social factors that influence these attitudes.Keywords: mental health disorder, substance abuse, empirical evidence, logistic regression with IV
Procedia PDF Downloads 6431947 Farmers’ Access to Agricultural Extension Services Delivery Systems: Evidence from a Field Study in India
Authors: Ankit Nagar, Dinesh Kumar Nauriyal, Sukhpal Singh
Abstract:
This paper examines the key determinants of farmers’ access to agricultural extension services, sources of agricultural extension services preferred and accessed by the farmers. An ordered logistic regression model was used to analyse the data of the 360 sample households based on a primary survey conducted in western Uttar Pradesh, India. The study finds that farmers' decision to engage in the agricultural extension programme is significantly influenced by factors such as education level, gender, farming experience, social group, group membership, farm size, credit access, awareness about the extension scheme, farmers' perception, and distance from extension sources. The most intriguing finding of this study is that the progressive farmers, which have long been regarded as a major source of knowledge diffusion, are the most distrusted sources of information as they are suspected of withholding vital information from potential beneficiaries. The positive relationship between farm size and ‘Access’ underlines that the extension services should revisit their strategies for targeting more marginal and small farmers constituting over 85 percent of the agricultural households by incorporating their priorities in their outreach programs. The study suggests that marginal and small farmers' productive potential could still be greatly augmented by the appropriate technology, advisory services, guidance, and improved market access. Also, the perception of poor quality of the public extension services can be corrected by initiatives aimed at building up extension workers' capacity.Keywords: agriculture, access, extension services, ordered logistic regression
Procedia PDF Downloads 21431946 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 43231945 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern
Procedia PDF Downloads 18231944 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection
Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew
Abstract:
The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.
Procedia PDF Downloads 4731943 Using Confirmatory Factor Analysis to Test the Dimensional Structure of Tourism Service Quality
Authors: Ibrahim A. Elshaer, Alaa M. Shaker
Abstract:
Several previous empirical studies have operationalized service quality as either a multidimensional or unidimensional construct. While few earlier studies investigated some practices of the assumed dimensional structure of service quality, no study has been found to have tested the construct’s dimensionality using confirmatory factor analysis (CFA). To gain a better insight into the dimensional structure of service quality construct, this paper tests its dimensionality using three CFA models (higher order factor model, oblique factor model, and one factor model) on a set of data collected from 390 British tourists visited Egypt. The results of the three tests models indicate that service quality construct is multidimensional. This result helps resolving the problems that might arise from the lack of clarity concerning the dimensional structure of service quality, as without testing the dimensional structure of a measure, researchers cannot assume that the significant correlation is a result of factors measuring the same construct.Keywords: service quality, dimensionality, confirmatory factor analysis, Egypt
Procedia PDF Downloads 59131942 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 75