Search results for: genetic determinant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1875

Search results for: genetic determinant

1695 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm

Procedia PDF Downloads 124
1694 Genetic Variation among the Wild and Hatchery Raised Populations of Labeo rohita Revealed by RAPD Markers

Authors: Fayyaz Rasool, Shakeela Parveen

Abstract:

The studies on genetic diversity of Labeo rohita by using molecular markers were carried out to investigate the genetic structure by RAPAD marker and the levels of polymorphism and similarity amongst the different groups of five populations of wild and farmed types. The samples were collected from different five locations as representatives of wild and hatchery raised populations. RAPAD data for Jaccard’s coefficient by following the un-weighted Pair Group Method with Arithmetic Mean (UPGMA) for Hierarchical Clustering of the similar groups on the basis of similarity amongst the genotypes and the dendrogram generated divided the randomly selected individuals of the five populations into three classes/clusters. The variance decomposition for the optimal classification values remained as 52.11% for within class variation, while 47.89% for the between class differences. The Principal Component Analysis (PCA) for grouping of the different genotypes from the different environmental conditions was done by Spearman Varimax rotation method for bi-plot generation of the co-occurrence of the same genotypes with similar genetic properties and specificity of different primers indicated clearly that the increase in the number of factors or components was correlated with the decrease in eigenvalues. The Kaiser Criterion based upon the eigenvalues greater than one, first two main factors accounted for 58.177% of cumulative variability.

Keywords: variation, clustering, PCA, wild, hatchery, RAPAD, Labeo rohita

Procedia PDF Downloads 449
1693 Molecular Survey and Genetic Diversity of Bartonella henselae Strains Infecting Stray Cats from Algeria

Authors: Naouelle Azzag, Nadia Haddad, Benoit Durand, Elisabeth Petit, Ali Ammouche, Bruno Chomel, Henri J. Boulouis

Abstract:

Bartonella henselae is a small, gram negative, arthropod-borne bacterium that has been shown to cause multiple clinical manifestations in humans including cat scratch disease, bacillary angiomatosis, endocarditis, and bacteremia. In this research, we report the results of a cross sectional study of Bartonella henselae bacteremia in stray cats from Algiers. Whole blood of 227 stray cats from Algiers was tested for the presence of Bartonella species by culture and for the evaluation of the genetic diversity of B. henselae strains by multi-locus variable number of tandem repeats assay (MLVA). Bacteremia prevalence was 17% and only B. henselae was identified. Type I was the predominant type (64%). MLVA typing of 259 strains from 30 bacteremic cats revealed 52 different profiles. 51 of these profiles were specific to Algerian cats/identified for the first time. 20/30 cats (67%) harbored 2 to 7 MLVA profiles simultaneously. The similarity of MLVA profiles obtained from the same cat, neighbor-joining clustering and structure-neighbor clustering showed that such a diversity likely results from two different mechanisms occurring either independently or simultaneously independent infections and genetic drift from a primary strain.

Keywords: Bartonella, cat, MLVA, genetic

Procedia PDF Downloads 149
1692 The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete

Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan

Abstract:

Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.

Keywords: addiction, athletic performance, genotype, sport genetics

Procedia PDF Downloads 213
1691 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony

Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika

Abstract:

This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.

Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization

Procedia PDF Downloads 352
1690 Genetic Assessment of The Managed Gharial Population In The Girwa River, India

Authors: Surya Prasad Sharma, Suyash Katdare, Syed Ainul Hussain

Abstract:

Human-induced factors contributed to the population decline of crocodylians in India which became evident by the mid-20th century when authorities forewarned the extinction risk for the crocodile and proposed regulation in the crocodile trade. The proposed action led to the enactment of national and international wildlife regulations to prohibit the trade-in of crocodile skins and parts. Subsequently, conservation translocation programs were initiated to restore the species in the wild through a 'head-start' approach. In India, the crocodile conservation program, which began in the early 1970s, has been one of India's longest-running conservation initiatives. The gharial (Gavialis gangeticus) population has benefitted, and the gharial number increased rapidly owing to these efforts. The immediate risk of extinction was averted as the gharial has recovered due to decades-long cumulative conservation efforts, the consideration of the genetic for monitoring the recovery of the recovered populations is still lacking. Hence, we assessed the genetic diversity of the Girwa gharial population in India using six polymorphic nuclear microsatellites loci and mitochondrial control region. The number of alleles per loci ranged between 2 to 5, and the allelic richness (Ar) was 2.67 ± 0.49, and the observed (Ho) and expected (He) heterozygosities were 0.42 ± 0.08 and 0.42 ± 0.09, respectively. The M-ratio yielded a value of (0.41 ± 0.16) lower than critical M, suggesting a genetic bottleneck in the Girwa population. We observed more mitochondrial control region haplotypes in the Girwa population than previously reported in the largest gharial population in the Chambal River. Overall, our study indicates that genetic diversity remains low despite the recovery in the Girwa population. Hence, we recommend a range-wide genetic assessment of gharial populations using high-throughput techniques to identify the source population and plan future translocation programs.

Keywords: conservation translocation, recovery, crocodile, bottleneck

Procedia PDF Downloads 108
1689 Genetic Diversity Analysis of Pearl Millet (Pennisetum glaucum [L. R. Rr.]) Accessions from Northwestern Nigeria

Authors: Sa’adu Mafara Abubakar, Muhammad Nuraddeen Danjuma, Adewole Tomiwa Adetunji, Richard Mundembe, Salisu Mohammed, Francis Bayo Lewu, Joseph I. Kiok

Abstract:

Pearl millet is the most drought tolerant of all domesticated cereals, is cultivated extensively to feed millions of people who mainly live in hash agroclimatic zones. It serves as a major source of food for more than 40 million smallholder farmers living in the marginal agricultural lands of Northern Nigeria. Pearl millet grain is more nutritious than other cereals like maize, is also a principal source of energy, protein, vitamins, and minerals for millions of poorest people in the regions where it is cultivated. Pearl millet has recorded relatively little research attention compared with other crops and no sufficient work has analyzed its genetic diversity in north-western Nigeria. Therefore, this study was undertaken with the objectives to analyze the genetic diversity of pearl millet accessions using SSR marker and to analyze the extent of evolutionary relationship among pearl millet accessions at the molecular level. The result of the present study confirmed diversity among accessions of pearl millet in the study area. Simple Sequence Repeats (SSR) markers were used for genetic analysis and evolutionary relationship of the accessions of pearl millet. To analyze the level of genetic diversity, 8 polymorphic SSR markers were used to screen 69 accessions collected based on three maturity periods. SSR markers result reveal relationships among the accessions in terms of genetic similarities, evolutionary and ancestral origin, it also reveals a total of 53 alleles recorded with 8 microsatellites and an average of 6.875 per microsatellite, the range was from 3 to 9 alleles in PSMP2248 and PSMP2080 respectively. Moreover, both the factorial analysis and the dendrogram of phylogeny tree grouping patterns and cluster analysis were almost in agreement with each other that diversity is not clustering according to geographical patterns but, according to similarity, the result showed maximum similarity among clusters with few numbers of accessions. It has been recommended that other molecular markers should be tested in the same study area.

Keywords: pearl millet, genetic diversity, simple sequence repeat (SSR)

Procedia PDF Downloads 269
1688 Medical Neural Classifier Based on Improved Genetic Algorithm

Authors: Fadzil Ahmad, Noor Ashidi Mat Isa

Abstract:

This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.

Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy

Procedia PDF Downloads 474
1687 ACTN3 R577X Polymorphism in Romany Children from Eastern Slovakia

Authors: Jarmila Bernasovska, Pavel Ružbarský, Ivan Bernasovsky, Regina Lohajová Behulová

Abstract:

The paper presents the results of the application of molecular genetics methods in sport research, with special emphasis on the most advanced methods and trends in diagnosing of motoric predispositions for the sake of identifying talented children. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. Genetics is important in determining the capacity of an individual and for professional sport level. Genetic information can be used for individual genetic predispositions in early childhood. The phenotypes are influenced by a combination of genetic and environmental factors. The aim of the presented study was to examine physical condition, coordination skills, motoric docility and to determine the frequency of ACTN3 (R577X) gene in Romany children from Eastern Slovakia and compared their motoric performance with non-Romany children. This paper is not looking just for a performance, but also its association to genetic predispositions in relation to ACTN3 gene and its R577X polymorphism. Genotype data were obtained from 175 Romany children from 6 to 15 years old and 218 non-Romany children at the same age from Eastern Slovakia. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor Gene 6000 Corbett and LightCycler 480 Roche). Romany children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in children was different from controls. The frequency of XX genotype was 11,45% which is comparable to a frequency of an Indian population. Data were analysed with the ANOVA statistical programme and parametric and nonparametric tests. This work was supported by grants APVV-0716-10, ITMS 26220120023 and ITMS 26220120041.

Keywords: ACTN3 gene, R577X polymorphism, Romany children, sport performance, Slovakia

Procedia PDF Downloads 457
1686 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration

Procedia PDF Downloads 216
1685 The Contribution of the PCR-Enzymatic Digestion in the Positive Diagnosis of Proximal Spinal Muscular Atrophy in the Moroccan Population

Authors: H. Merhni, A. Sbiti, I. Ratbi, A. Sefiani

Abstract:

The proximal spinal muscular atrophy (SMA) is a group of neuromuscular disorders characterized by progressive muscle weakness due to the degeneration and loss of anterior motor neurons of the spinal cord. Depending on the age of onset of symptoms and their evolution, four types of SMA, varying in severity, result in a mutations of the SMN gene (survival of Motor neuron). We have analyzed the DNA of 295 patients referred to our genetic counseling; since January 1996 until October 2014; for suspected SMA. The homozygous deletion of exon 7 of the SMN gene was found in 133 patients; of which, 40.6% were born to consanguineous parents. In countries like Morocco, where the frequency of heterozygotes for SMA is high, genetic testing should be offered as first-line and, after careful clinical assessment, especially in newborns and infants with congenital hypotonia unexplained and prognosis compromise. The molecular diagnosis of SMA allows a quick and certainly diagnosis, provide adequate genetic counseling for families at risk and suggest, for couples who want prenatal diagnosis. The analysis of the SMN gene is a perfect example of genetic testing with an excellent cost/benefit ratio that can be of great interest in public health, especially in low-income countries. We emphasize in this work for the benefit of the generalization of molecular diagnosis of SMA by the technique of PCR-enzymatic digestion in other centers in Morocco.

Keywords: Exon7, PCR-digestion, SMA, SMN gene

Procedia PDF Downloads 242
1684 Genetic Association and Functional Significance of Matrix Metalloproteinase-14 Promoter Variants rs1004030 and rs1003349 in Gallbladder Cancer Pathogenesis

Authors: J. Vinay , Kusumbati Besra, Niharika Pattnaik, Shivaram Prasad Singh, Manjusha Dixit

Abstract:

Gallbladder cancer (GBC) is rare but highly malignant cancer; its prevalence is more in certain geographical regions and ethnic groups, which include the Northern and Eastern states of India. Previous studies in India have reported genetic predisposition as one of the risk factors in GBC pathogenesis. Although the matrix metalloproteinase-14 (MMP14) is a well-known modulator of the tumor microenvironment and tumorigenesis and TCGA data also suggests its upregulation yet, its role in the genetic predisposition for GBC is completely unknown. We elucidated the role of MMP14 promoter variants as genetic risk factors and their implications in expression modulation. We screened MMP14 promoter variants association with GBC using Sanger’s sequencing in approximately 300 GBC and 300 control subjects and 26 GBC tissue samples of Indian ethnicity. The immunohistochemistry was used to check the MMP14 protein expression in GBC tissue samples. The role of promoter variants on expression levels was elucidated using a luciferase reporter assay. The variants rs1004030 (p-value = 0.0001) and rs1003349 (p-value = 0.0008) were significantly associated with gallbladder cancer. The luciferase assay in two different cell lines, HEK-293 (p = 0.0006) and TGBC1TKB (p = 0.0036) showed a significant increase in relative luciferase activity in the presence of risk alleles for both the single nucleotide polymorphisms (SNPs). Similarly, genotype-phenotype correlation in patients samples confirmed that the presence of risk alleles at rs1004030 and rs1003349 increased MMP14 expression. Overall, this study unravels the genetic association of MMP14 promoter variants with gallbladder cancer, which may contribute to pathogenesis by increasing its expression.

Keywords: gallbladder cancer, matrix metalloproteinase-14, single nucleotide polymorphism, case control study, genetic association study

Procedia PDF Downloads 179
1683 The Impact of P108L Genetic Variant on Calcium Release and Malignant Hyperthermia Susceptibility

Authors: Mohammed Althobiti, Patrick Booms, Dorota Fiszer, Philip Hopkins

Abstract:

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle. MH results from anaesthetics induced breakdown of calcium homeostasis. RYR1 and CACN1AS mutations represent the aetiology in ~70% of the MH population. Previous studies indicate that up to 25% of MH patients carry no variants in these genes. Therefore, the aim of this study is to investigate the relationships between MH susceptibility and genes encoding skeletal muscle Ca2+ channels as well as accessory proteins. The JSRP, encoding JP-45, was previously sequenced and novel genetic variants were identified. The variant p.P108L (c.323C > T) was identified in exon 4 and encodes a change from a proline at amino acid 108 to leucine residue. The variant P108L was detected in two patients out of 50 with 4% frequency in the sample population. The alignment of DNA sequences in different species indicates highly conserved proline sequences involved in the substitution of the P108L variant. In this study, the variant P108L co-segregates with the SNP p.V92A (c.275T > C) at the same exon, both variants being inherited in the same two patients only. This indicates that the two variants may represent a haplotype. Therefore, a set of single nucleotide polymorphisms and statistical analysis will be used to investigate the effects of haplotypes on MH susceptibility. Furthermore, investigating the effect of the P108L variant in combination with RYR1 mutations or other genetic variants in other genes as a combination of two or more genetic variants, haplotypes may then provide stronger genetic evidence indicating that JSRP1 is associated with MH susceptibility. In conclusion, these preliminary results lend a potential modifier role of the variant P108L in JSRP1 in MH susceptibility and further investigations are suggested to confirm these results.

Keywords: JSRP1, malignant hyperthermia, RyR1, skeletal muscle

Procedia PDF Downloads 335
1682 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm

Authors: Ali Nourollah, Mohsen Movahedinejad

Abstract:

In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.

Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.

Procedia PDF Downloads 533
1681 The Determinant Factors of Technology Adoption for Improving Firm’s Performance; Toward a Conceptual Model

Authors: Zainal Arifin, Avanti Fontana

Abstract:

Considering that TOE framework is the most useful instrument for studying technology adoption in firm context, this paper will analyze the influence of technological, organizational and environmental (TOE) factors to the Dynamic capabilities (DCs) associated with technology adoption strategy for improving the firm’s performance. Focusing on the determinant factors of technology adoption at the firm level, the study will contribute to the broader study of resource base view (RBV) and dynamic capability (DC). There is no study connecting directly the TOE factors to the DCs, this paper proposes technology adoption as a functional competence/capability which mediates a relationship between technology adoptions with firm’s performance. The study wants to show a conceptual model of the indirect effects of DCs at the firm level, which can be key predictors of firm performance in dynamic business environment. The results of this research is mostly relevant to top corporate executives (BOD) or top management team (TMT) who seek to provide some supporting ‘hardware’ content and condition such as technological factors, organizational factors, environmental factors, and to improve firm's ‘software ‘ ability such as adaptive capability, absorptive capability and innovative capability, in order to achieve a successful technology adoption in organization. There are also mediating factors which are elaborated at this paper; timing and external network. A further research for showing its empirical results is highly recommended.

Keywords: technology adoption, TOE framework, dynamic capability, resources based view

Procedia PDF Downloads 332
1680 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 472
1679 Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex

Authors: A. Rattanapittayapron, O. Vanijajiva

Abstract:

Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.

Keywords: Canna indica, antioxidant activity, genetic diversity, SRAP, iPBS

Procedia PDF Downloads 310
1678 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
1677 Phenological and Molecular Genetic Diversity Analysis among Saudi durum Wheat Landraces

Authors: Naser B. Almari, Salem S. Alghamdi, Muhammad Afzal, Mohamed Helmy El Shal

Abstract:

Wheat landraces are a rich genetic resource for boosting agronomic qualities in breeding programs while also providing diversity and unique adaptation to local environmental conditions. These genotypes have grown increasingly important in the face of recent climate change challenges. This research aimed to look at the genetic diversity of Saudi Durum wheat landraces using morpho-phenological and molecular data. The principal components analysis (PCA) analysis recorded 78.47 % variance and 1.064 eigenvalues for the first six PCs of the total, respectively. The significant characters contributed more to the diversity are the length of owns at the tip relative to the length of the ear, culm: glaucosity of the neck, flag leaf: glaucosity of the sheath, flag leaf: anthocyanin coloration of auricles, plant: frequency of plants with recurved flag leaves, ear: length, and ear: shape in profile in the PC1. The significant wheat genotypes contributed more in the PC1 (8, 14, 497, 650, 569, 590, 594, 598, 600, 601, and 604). The cluster analysis recorded an 85.42 cophenetic correlation among the 22 wheat genotypes and grouped the genotypes into two main groups. Group, I contain 8 genotypes, however, the 2nd group contains 12 wheat genotypes, while two genotypes (13 and 497) are standing alone in the dendrogram and unable to make a group with any one of the genotypes. The second group was subdivided into two subgroups. The genotypes (14, 602, and 600) were present in the second sub-group. The genotypes were grouped into two main groups. The first group contains 17 genotypes, while the second group contains 3 (8, 977, and 594) wheat genotypes. The genotype (602) was standing alone and unable to make a group with any wheat genotype. The genotypes 650 and 13 also stand alone in the first group. Using the Mantel test, the data recorded a significant (R2 = 0.0006) correlation (phenotypic and genetic) among 22 wheat durum genotypes.

Keywords: durum wheat, PCA, cluster analysis, SRAP, genetic diversity

Procedia PDF Downloads 115
1676 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 253
1675 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 455
1674 Hybrid Genetic Approach for Solving Economic Dispatch Problems with Valve-Point Effect

Authors: Mohamed I. Mahrous, Mohamed G. Ashmawy

Abstract:

Hybrid genetic algorithm (HGA) is proposed in this paper to determine the economic scheduling of electric power generation over a fixed time period under various system and operational constraints. The proposed technique can outperform conventional genetic algorithms (CGAs) in the sense that HGA make it possible to improve both the quality of the solution and reduce the computing expenses. In contrast, any carefully designed GA is only able to balance the exploration and the exploitation of the search effort, which means that an increase in the accuracy of a solution can only occure at the sacrifice of convergent speed, and vice visa. It is unlikely that both of them can be improved simultaneously. The proposed hybrid scheme is developed in such a way that a simple GA is acting as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method (pattern search technique) is next employed to do the fine tuning. The aim of the strategy is to achieve the cost reduction within a reasonable computing time. The effectiveness of the proposed hybrid technique is verified on two real public electricity supply systems with 13 and 40 generator units respectively. The simulation results obtained with the HGA for the two real systems are very encouraging with regard to the computational expenses and the cost reduction of power generation.

Keywords: genetic algorithms, economic dispatch, pattern search

Procedia PDF Downloads 444
1673 Variants of Fat Mass Obesity Associated rs 9939609 Associated with Obesity and Eating Behavior in Adolescent of Minangkabau Ethnic

Authors: Susmiati, Ingrid S. Surono, Jamsari, Nur Indrawati Lipoeto

Abstract:

There are two contradicting opinions on the relationship between fat mass obesity associated (FTO) rs 9939609 variants and obesity on various ethnics and races. The first opinion agrees that there is an association between the two variables, yet another one disagree. Minangkabau ethnic had a different dietary pattern with other ethnics in Indonesia. They had higher fat and low fiber intakes compared to the other ethnics groups. There is little research in genetic factors that influence eating behavior (food preference or food selection). The objective of this study was to investigate the association between FTO rs 9939609 variants with obesity and eating behavior in adolescent girls of Minangkabau Ethnic. The research design was case control study. A total of 275 adolescent girls aged 12-15 years old (130 obese and 145 normal) were randomly chosen from four districts at West Sumatera (Padang, Padang Pariaman, Padang Panjang and Tanah Datar). Genetic variants of FTO rs 9939609 were analyzed with Tetra-primer Amplification Refractory Mutation System-Polimerase Chain Reaction (AMRS PCR), eating behavior were gathered using eating habits questionnaire, and Body Mass Index (BMI) was calculated according to BMI Z-score (WHO). The result showed that genetic variants of FTO rs 9939609 (TT, TA and AA genotype) had associated with obesity (p = 0,013), whereas subject with An Allele was significantly associated with obesity (odds ratio 1,62 [95% confidential interval, 1,00-2,60]). Subjects with An Allele carrier reported a higher consumption of fried food (p < 0.05) as compared to TT genotypes carriers. There is no association between genetic variants and meal frequency, fruit and fiber intakes p > 0.05. The genetic variants of FTO rs 9939609 are associated with obesity and eating behavior in adolescent of Minangkabau Ethics.

Keywords: FTO rs9939609, obesity, eating behavior, adolescents

Procedia PDF Downloads 173
1672 Maximum Power Point Tracking Using FLC Tuned with GA

Authors: Mohamed Amine Haraoubia, Abdelaziz Hamzaoui, Najib Essounbouli

Abstract:

The pursuit of the MPPT has led to the development of many kinds of controllers, one of which is the Fuzzy Logic Controller, which has proven its worth. To further tune this controller this paper will discuss and analyze the use of Genetic Algorithms to tune the Fuzzy Logic Controller. It will provide an introduction to both systems, and test their compatibility and performance.

Keywords: fuzzy logic controller, fuzzy logic, genetic algorithm, maximum power point, maximum power point tracking

Procedia PDF Downloads 373
1671 Integrating Process Planning, WMS Dispatching, and WPPW Weighted Due Date Assignment Using a Genetic Algorithm

Authors: Halil Ibrahim Demir, Tarık Cakar, Ibrahim Cil, Muharrem Dugenci, Caner Erden

Abstract:

Conventionally, process planning, scheduling, and due-date assignment functions are performed separately and sequentially. The interdependence of these functions requires integration. Although integrated process planning and scheduling, and scheduling with due date assignment problems are popular research topics, only a few works address the integration of these three functions. This work focuses on the integration of process planning, WMS scheduling, and WPPW due date assignment. Another novelty of this work is the use of a weighted due date assignment. In the literature, due dates are generally assigned without considering the importance of customers. However, in this study, more important customers get closer due dates. Typically, only tardiness is punished, but the JIT philosophy punishes both earliness and tardiness. In this study, all weighted earliness, tardiness, and due date related costs are penalized. As no customer desires distant due dates, such distant due dates should be penalized. In this study, various levels of integration of these three functions are tested and genetic search and random search are compared both with each other and with ordinary solutions. Higher integration levels are superior, while search is always useful. Genetic searches outperformed random searches.

Keywords: process planning, weighted scheduling, weighted due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 394
1670 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 563
1669 Performance Analysis of Proprietary and Non-Proprietary Tools for Regression Testing Using Genetic Algorithm

Authors: K. Hema Shankari, R. Thirumalaiselvi, N. V. Balasubramanian

Abstract:

The present paper addresses to the research in the area of regression testing with emphasis on automated tools as well as prioritization of test cases. The uniqueness of regression testing and its cyclic nature is pointed out. The difference in approach between industry, with business model as basis, and academia, with focus on data mining, is highlighted. Test Metrics are discussed as a prelude to our formula for prioritization; a case study is further discussed to illustrate this methodology. An industrial case study is also described in the paper, where the number of test cases is so large that they have to be grouped as Test Suites. In such situations, a genetic algorithm proposed by us can be used to reconfigure these Test Suites in each cycle of regression testing. The comparison is made between a proprietary tool and an open source tool using the above-mentioned metrics. Our approach is clarified through several tables.

Keywords: APFD metric, genetic algorithm, regression testing, RFT tool, test case prioritization, selenium tool

Procedia PDF Downloads 436
1668 The Prevalence of X-Chromosome Aneuploidy in Recurrent Pregnancy Loss

Authors: Rim Frikha, Nouha Bouayed, Afifa Sellami, Nozha Chakroun, Salima Douad, Leila Keskes, Tarek Rebai

Abstract:

Recurrent pregnancy loss (RPL), classically defined as the occurrence of two or more failed pregnancies, is a serious reproductive problem, in which, chromosomal rearrangements in either carrier are a major cause; mainly the chromosome aneuploidy. This study was conducted to determine the frequency and contribution of X-chromosome aneuploidy in recurrent pregnancy loss. A retrospective study was carried out among 100 couples with more than 2 miscarriages, referred to our genetic counseling. In all the cases the detailed reproductive histories were taken. Chromosomal analysis was performed using RHG banding in peripheral blood. Of a total of 100 couples; 3 patients with a detected X-chromosome aneuploidy were identified with an overall frequency of 3%. Chromosome abnormalities are as below: a Turner syndrome with 45, X/46, XX mosaicism, a 47, XXX, and a Klinefelter syndrome with 46, XY/47, XXY. These data show a high incidence of X-chromosome aneuploidy; mainly with mosaicism; in RPL. Thus, couples with such chromosomal abnormality should be referred to a clinical geneticist with whom the option of pre-implantation genetic diagnosis in subsequent pregnancy should be discussed.

Keywords: aneuploidy, genetic testing, recurrent pregnancy loss, X-chromosome

Procedia PDF Downloads 360
1667 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Yassir AbdelRazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: ant colony, construction site layout, optimization, genetic algorithms

Procedia PDF Downloads 383
1666 A Hybrid ICA-GA Algorithm for Solving Multiobjective Optimization of Production Planning Problems

Authors: Omar Ramzi Jasim, Jalal Sultan Ashour

Abstract:

Production Planning or Master Production Schedule (MPS) is a key interface between marketing and manufacturing, since it links customer service directly to efficient use of production resources. Mismanagement of the MPS is considered as one of fundamental problems in operation and it can potentially lead to poor customer satisfaction. In this paper, a hybrid evolutionary algorithm (ICA-GA) is presented, which integrates the merits of both imperialist competitive algorithm (ICA) and genetic algorithm (GA) for solving multi-objective MPS problems. In the presented algorithm, the colonies in each empire has be represented a small population and communicate with each other using genetic operators. By testing on 5 production scenarios, the numerical results of ICA-GA algorithm show the efficiency and capabilities of the hybrid algorithm in finding the optimum solutions. The ICA-GA solutions yield the lower inventory level and keep customer satisfaction high and the required overtime is also lower, compared with results of GA and SA in all production scenarios.

Keywords: master production scheduling, genetic algorithm, imperialist competitive algorithm, hybrid algorithm

Procedia PDF Downloads 470