Search results for: cell death
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4733

Search results for: cell death

2693 Cry, the Peacock: A Psychoanalytic Feminist Study

Authors: Taira Bano

Abstract:

Cry, the Peacock is a famous novel by Anita Desai which deals with the psychic tumult of a young and sensitive female protagonist, Maya. The novel deals with the in-depth study of the psyche of Maya who is haunted by a childhood prophecy of a fatal disaster. This persistent obsession of death either for her or her husband within four years of their marriage is the main reason for Maya’s neurosis. The novel is not only concerned with the psychological aspect of Maya but is also a strong plea for the rights of women. The novel consists of both psychological as well as feministic elements. The attitude of Maya, not to submit to the authority of her husband gives perfect description of second wave feminism. Feminism is a movement which deals with the issues of inequality between men and women. Psychoanalysis is the study of the psychology of characters. It depicts how an incident in one’s life shapes the personality of an individual. This paper will deal with the study of the novel Cry, the Peacock from psychoanalytic perspective and will try to trace out the reason for such an extreme step that Maya takes in the end of the novel- crossing all the limits of a traditional submissive wife.

Keywords: psyche, psychological, mental, feminist

Procedia PDF Downloads 522
2692 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 76
2691 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 133
2690 Road Safety in the Great Britain: An Exploratory Data Analysis

Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari

Abstract:

The Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse the Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. In this paper, we do an exploratory data analysis using STATS19 data. For the past 30 years, the UK has had a good record in reducing fatalities. The UK ranked third based on the number of road deaths per million inhabitants. There were around 165,000 accidents reported in the Great Britain in 2009 and it has been decreasing every year until 2019 which is under 120,000. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe.

Keywords: road safety, data analysis, openstreetmap, feature expanding.

Procedia PDF Downloads 144
2689 Microencapsulation for Enhancing the Survival of S. thermophilus and L. bulgaricus during Spray Drying of Sweetened Yoghurt

Authors: Dibyakanta Seth, Hari Niwas Mishra, Sankar Chandra Deka

Abstract:

Microencapsulation is an established method of protecting bacteria from the adverse conditions. An improved extrusion spraying technique was used to encapsulate mixed bacteria culture of S. thermophilus and L. bulgaricus using sodium alginate as the coating material. The effect of nozzle air pressure (200, 300, 400 and 500 kPa), sodium alginate concentration (1%, 1.5%, 2%, 2.5% and 3% w/v), different concentration of calcium chloride (0.1, 0.2, 1 M) and initial cell loads (10⁷, 10⁸, 10⁹ cfu/ml) on the viability of encapsulated bacteria were investigated. With the increase in air pressure the size of microcapsules decreased, however the effect was non-significant. There was no significant difference (p > 0.05) in the viability of encapsulated cells when the concentration of calcium chloride was increased. Increased level of sodium alginate significantly increased the survival ratio of encapsulated bacteria (P < 0.01). Encapsulation with 3% alginate was treated as optimum since a higher concentration of alginate increased the gel strength of the solution and thus was difficult to spray. Under optimal conditions 3% alginate, 10⁹ cfu/ml cell load, 20 min hardening time in 0.1 M CaCl2 and 400 kPa nozzle air pressure, the viability of bacteria cells was maximum compared to the free cells. The microcapsules made at the optimal condition when mixed with yoghurt and subjected to spray drying at 148°C, the survival ratio was 2.48×10⁻¹ for S. thermophilus and 7.26×10⁻¹ for L. bulgaricus. In contrast, the survival ratio of free cells of S. thermophilus and L. bulgaricus were 2.36×10⁻³ and 8.27×10⁻³, respectively. This study showed a decline in viable cells count of about 0.5 log over a period of 7 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. Microencapsulation provided better protection at higher acidity compared to free cells. This study demonstrated that microencapsulation of yoghurt culture in sodium alginate is an effective technique of protection against extreme drying conditions.

Keywords: extrusion, microencapsulation, spray drying, sweetened yoghurt

Procedia PDF Downloads 258
2688 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 186
2687 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience

Authors: Parisa Mansour

Abstract:

Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.

Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye

Procedia PDF Downloads 47
2686 Covid Impact and Corporate Environmental, Social, and Governance Behavior

Authors: Yawen Xia, Rubi Yang, Jing Zhao

Abstract:

We examine the environmental, social, and governance (ESG) decision-making of companies during turbulent times like COVID-19. We find that firms’ ESG reputation risk comove with their industry and local peers, suggesting that managers may follow their industry and local counterparts in engaging in irresponsible activities. Moreover, the comovement in reputation risk is attenuated during the COVID-19 pandemic. Further analyses suggest that the reduction in comovement varies by state-level partisanship and death rate during the pandemic. Comovement in reputation risk declines more significantly in the Democratic states with stringent social distancing policies and in states with higher infection severity. Our findings suggest that social distancing provisions during COVID-19 may lead to a reduction in social activities and information sharing among enterprise managers.

Keywords: ESG, Covid, peer pressure, local comovement, orporate governance

Procedia PDF Downloads 35
2685 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells

Procedia PDF Downloads 882
2684 Spawning Induction and Early Larval Development of the Giant Reef Clam Periglypta multicostata (Sowerby, 1835) under Controlled Conditions

Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes

Abstract:

Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the giant reef clam P. multicostata under controlled conditions. Bioassays were carried out with one adult batch (n= 8) with an average valvar length of 118,4 ± 5,8 mm, which were collected near of the Puerto Santa Rosa (2° 12' 30'' S, 80° 58' 28'' W), Santa Elena Province. During a short acclimation stage, the eight adults of giant reef clam P. multicostata were exposed to thermal stress. Briefly, the experimental protocol for spawning induction was based on the application of 20°C for 1 h and 30°C for 1 h on P. multicostata broodstock at least three consecutive times by one day. After spawning, collected sexual material was released for external fertilization process. After the delivery of gametes, it was achieved 3,25 × 10⁶ viable zygotes. As results, fertilized eggs had 56 µm diameter; while first and second cell divisions were observed to 2,5 h post-fertilization, with individual average length of 68 ± 5 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 73 ± 4 µm and trochophore stage at 15 h post-fertilization with individual average length of 75 ± 4 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 82 ± 6 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 148 ± 6 µm. These pioneering results worldwide can strengthen the local conservation process of the overexploited P. multicostata and to encourage its production for commercial purposes.

Keywords: Ecuador, larval development, Periglypta multicostata, spawning induction

Procedia PDF Downloads 140
2683 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel

Abstract:

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: equilibrium points, exposed, global stability, infective immigrants, Lyapunov function, recovered, reproduction number, susceptible

Procedia PDF Downloads 372
2682 Formulation of the N-Acylethanolamine, Linoleoylethanolamide into Cubosomes for Delivery across the Blood-Brain Barrier

Authors: Younus Mohammad, Anita B. Fallah, Ben J. Boyd, Shakila B. Rizwan

Abstract:

N-acylethanolamines (NAEs) are endogenous lipids, which have neuromodulatory properties. NAEs have shown neuroprotective properties in various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and ischemic stroke. However, NAEs are eliminated rapidly in vivo by enzymatic hydrolysis. We propose to encapsulate NAEs in liquid crystalline nanoparticles (cubosomes) to increase their biological half-life and explore their therapeutic potential. Recently, we have reported the co-formulation and nanostructural characterization of cubosomes containing the NAE, oleoylethanolamide and a synthetic cubosome forming lipid phytantriol. Here, we report on the formulation of cubosomes with the NAE, linoleoylethanolamide (LEA) as the core cubosome forming lipid. LEA-cubosomes were formulated in the presence of three different steric stabilisers: two brain targeting ligands, Tween 80 and Pluronic P188 and a control, Pluronic F127. Size, morphology and internal structure of formulations were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo–TEM) and small angle X–ray scattering (SAXS), respectively. Chemical stability of LEA in formulations was investigated using high-performance liquid chromatography (HPLC). Cytotoxicity of formulations towards human cerebral microvascular endothelial cell line (hCMEC/D3) was also investigated using an MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. All cubosome formulations had mean particle size of less than 250 nm and were uniformly distributed with polydispersity indices less than 0.2. Cubosomes produced had a bicontinuous cubic internal structure with an Im3m space group but different lattice parameters, indicating the different modes of interaction between the stabilisers and LEA. LEA in formulations was found to be chemically stable. At concentrations of up to 20 µg/mL LEA in the presence of all the stabilisers, greater than 80% cell viability was observed.

Keywords: blood-brain barrier, cubosomes, linoleoyl ethanolamide, N-acylethanolamines (NAEs)

Procedia PDF Downloads 204
2681 Comparative Analysis of Short and Long Term Salt Stress on the Photosynthetic Apparatus and Chloroplast Ultrastructure of Thellungiella salsuginea

Authors: Rahma Goussi, Walid Derbali, Arafet Manaa, Simone Cantamessa, Graziella Berta, Chedly Abdelly, Roberto Barbato

Abstract:

Salinity is one of the most important abiotic affecting plant growth and productivity worldwide. Photosynthesis, together with cell growth, is among the primary processes to be affected by salinity. Here, we report the effects of salinity stress on the primary processes of photosynthesis in a model halophyte Thellungiella Salsuginea. Plants were cultivated in hydroponic system with different NaCl concentrations (0, 100, 200 and 400 mM) during 2 weeks. The obtained results showed an obvious change in the photosynthetic efficiency of photosystem I (PSI) and phostosytem II (PSII), related to NaCl concentration supplemented to the medium and the stress duration considered. With moderate salinity (100 and 200 mM NaCl), no significant variation was observed in photosynthetic parameters of PSI and PSII and Chl fluorescence whatever the time of stress application. Also, the photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by salt stress. While a significant decrease was observed on quantum yields Y(I), Y(II) and electron transport rate ETR(I), ETR(II) under high salt treatment (400 mM NaCl) with prolonged period (15 days). This reduction is quantitatively compensated by a corresponding increase of energy dissipation Y(NPQ) and a progressive decrease in Fv/Fm under salt treatment. The intensity of the OJIP fluorescence transient decreased with increase in NaCl concentration, with a major effect observed during prolonged period of salt stress. Ultrastructural analysis with Light Microscopy and Transmission Electron Microscopy of T. salsuginea chloroplasts showed some cellular changes, such as the shape of the mesophyll cells and number of chloroplast/cell only under higher NaCl concentration. Salt-stress caused the swelling of thylakoids in T. Salsuginea mesophyll with more accumulation of starch as compared to control plant.

Keywords: fluorescence, halophyte, photosynthesis, salt stress

Procedia PDF Downloads 381
2680 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 159
2679 Air Pollution on Stroke in Shenzhen, China: A Time-Stratified Case Crossover Study Modified by Meteorological Variables

Authors: Lei Li, Ping Yin, Haneen Khreis

Abstract:

Stroke is the second leading cause of death and a third leading cause of death and disability worldwide in 2019. Given the significant role of environmental factors in stroke development and progression, it is essential to investigate the effect of air pollution on stroke occurrence while considering the modifying effects of meteorological variables. This study aimed to evaluate the association between short-term exposure to air pollution and the incidence of stroke subtypes in Shenzhen, China, and to explore the potential interactions of meteorological factors with air pollutants. The study analyzed data from January 1, 2006, to December 31, 2014, including 88,214 cases of ischemic stroke and 30,433 cases of hemorrhagic stroke among residents of Shenzhen. Using a time-stratified case–crossover design with conditional quasi-Poisson regression, the study estimated the percentage changes in stroke morbidity associated with short-term exposure to nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 mm in aerodynamic diameter (PM10), carbon monoxide (CO), and ozone (O₃). A five-day moving average of air pollution was applied to capture the cumulative effects of air pollution. The estimates were further stratified by sex, age, education level, and season. The additive and multiplicative interaction between air pollutants and meteorologic variables were assessed by the relative excess risk due to interaction (RERI) and adding the interactive term into the main model, respectively. The study found that NO₂ was positively associated with ischemic stroke occurrence throughout the year and in the cold season (November through April), with a stronger effect observed among men. Each 10 μg/m³ increment in the five-day moving average of NO₂ was associated with a 2.38% (95% confidence interval was 1.36% to 3.41%) increase in the risk of ischemic stroke over the whole year and a 3.36% (2.04% to 4.69%) increase in the cold season. The harmful effect of CO on ischemic stroke was observed only in the cold season, with each 1 mg/m³ increment in the five-day moving average of CO increasing the risk by 12.34% (3.85% to 21.51%). There was no statistically significant additive interaction between individual air pollutants and temperature or relative humidity, as demonstrated by the RERI. The interaction term in the model showed a multiplicative antagonistic effect between NO₂ and temperature (p-value=0.0268). For hemorrhagic stroke, no evidence of the effects of any individual air pollutants was found in the whole population. However, the RERI indicated a statistically additive and multiplicative interaction of temperature on the effects of PM10 and O₃ on hemorrhagic stroke onset. Therefore, the insignificant conclusion should be interpreted with caution. The study suggests that environmental NO₂ and CO might increase the morbidity of ischemic stroke, particularly during the cold season. These findings could help inform policy decisions aimed at reducing air pollution levels to prevent stroke and other health conditions. Additionally, the study provides valuable insights into the interaction between air pollution and meteorological variables, which underscores the need for further research into the complex relationship between environmental factors and health.

Keywords: air pollution, meteorological variables, interactive effect, seasonal pattern, stroke

Procedia PDF Downloads 97
2678 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves

Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro

Abstract:

This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.

Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.

Procedia PDF Downloads 22
2677 Neuroprotective Effect of Hypericum Perforatum against Neurotoxicity and Alzheimer's Disease (Experimental Study in Mice)

Authors: Khayra Zerrouki, Noureddine Djebli, Esra Eroglu, Afife Mat, Ozhan Gul

Abstract:

Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. Alzheimer’s disease (AD) is a complex, multifactorial, heterogeneous mental illness, which is characterized by an age-dependent loss of memory and an impairment of multiple cognitive functions, but this 10 last years it concerns the population most and most young. Hypericum perforatum has traditionally been used as an external anti-inflammatory and healing remedy for the treatment of swellings, wounds and burns, diseases of the alimentary tract and psychological disorders. It is currently of great interest due to new and important therapeutic applications. In this study, the chemical composition of methanolic extract of Hypericum perforatum (HPM) was analysed by using high performance liquid chromatography – diode array detector (HPLC-DAD). The in vitro antioxidant activity of HPM was evaluated by using several antioxidant tests. HSM exhibits inhibitory capacity against posphatidylcholine liposome peroxidation, induced with iron and ascorbic acid, scavenge DPPH and superoxide radicals and act as reductants. The cytotoxic activity of HSM was also determined by using MTT cell viability assay on HeLa and NRK-52E cell lines. The in vivo activity studies in Swiss mice were determined by using behavioral, memory tests and histological study. According to tests results HPM that may be relevant to the treatment of cognitive disorders. The results of chemical analysis showed a hight level of hyperforin and quercitin that had an important antioxidant activity proved in vitro with the DPPH, anti LPO and SOD; this antioxidant activity was confirmed in vivo after the non-toxic results by means of improvement in behavioral and memory than the reducing shrunken in pyramidal cells of mice brains.

Keywords: AlCl3, alzheimer, mice, neuroprotective, neurotoxicity, phytotherapy

Procedia PDF Downloads 502
2676 The Effects of Ellagic Acid on Rat Heart Induced Tobacco Smoke

Authors: Nalan Kaya, D. Ozlem Dabak, Gonca Ozan, Elif Erdem, Enver Ozan

Abstract:

One of the common causes of cardiovascular disease (CVD) is smoking. Moreover, tobacco smoke decreases the amount of oxygen that the blood can carry and increases the tendency for blood clots. Ellagic acid is a powerful antioxidant found especially in red fruits. It was shown to block atherosclerotic process suppressing oxidative stress and inflammation. The aim of this study was to examine the protective effects of ellagic acid against oxidative damage on heart tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. An equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Heart tissues and blood samples were taken. Histological and biochemical analyzes were performed. Vascular congestion, hyperemic areas, inflammatory cell infiltration and increased connective tissue in the perivascular area were observed in tobacco smoke and tobacco smoke + corn oil groups. Increased connective tissue in the perivascular area, hemorrhage and inflammatory cell infiltration were decreased in tobacco smoke + EA group. Group-II GSH level was not changed (significantly), CAT, SOD, GPx activities were significantly higher than group-I. Compared to group-II, group-IV GSH, SOD, CAT, GPx activities were increased, and MDA level was decreased significantly. Group-II and Group-III levels were similar. The results indicate that ellagic acid could protect the heart tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, heart, rat, tobacco smoke

Procedia PDF Downloads 229
2675 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 492
2674 Human Dental Pulp Stem Cells Attenuate Streptozotocin-Induced Parotid Gland Injury in Rats

Authors: Gehan ElAkabawy

Abstract:

Background: Diabetes mellitus causes severe deteriorations of almost all the organs and systems of the body, as well as significant damage to the oral cavity. The oral changes are mainly related to salivary glands dysfunction characterized by hyposalivation and xerostomia, which significantly reduce diabetic patients’ quality of life. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that the trophic support mediated by dental pulp stem cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of human dental pulp stem cells in diabetic-induced parotid gland damage have not been previously investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of human dental pulp stem cells (hDPSCs) on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. Methods: Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ+hDPSCs). hDPSCs or vehicle was injected into the tail vein 7 days after STZ injection. The fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA) expression in parotid tissues were assessed 28 days post-transplantation. Results: Transplantation of hDPSCs downregulated blood glucose, improved the salivary flow rate, and reduced oxidative stress. The cells migrated to, survived, and differentiated into acinar, ductal, and myoepithelial cells in the STZ-injured parotid gland. Moreover, they downregulated the expression of caspase-3 and upregulated the expression of VEGF and PCNA, likely exerting pro-angiogenetic and antiapoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide (NO) -tetrahydrobiopterin (BH4) pathway. Conclusions: Our results show that hDPSCs can migrate to and survive within the STZ-injured parotid gland, where they prevent its functional and morphological damage by restoring normal glucose levels, differentiating into parotid cell populations, and stimulating paracrine-mediated regeneration. Thus, hDPSCs may have therapeutic potential in the treatment of diabetes-induced parotid gland injury.

Keywords: dental pulp stem cells, diabetes, streptozotocin, parotid gland

Procedia PDF Downloads 201
2673 Behavioral Effects of Oxidant and Reduced Chemorepellent on Mutant and Wild-Type Tetrahymena thermophila

Authors: Ananya Govindarajan

Abstract:

Tetrahymena thermophila is a single-cell, eukaryotic organism that belongs to the Protozoa Kingdom. Tetrahymena thermophila is often used in signal transduction pathway studies because of its ability to model sensory input and the effects of environmental conditions such as chemicals and temperature. The recently discovered G37 chemorepellent receptor showed increased responsiveness to all chemorepellents. Investigating the mutant G37 Tetrahymena gene in various test solutions, including ferric chloride, ferrous sulfate, hydrogen peroxide, tetrazolium blue, potassium chloride, and dithiothreitol were performed to determine the role of oxidants and reducing agents with the mutant and wild-type cells (CU427) to assess the role of the receptor. Behavioral assays and recordings processed by ImageJ indicated that ferric chloride, hydrogen peroxide, and tetrazolium blue yielded little to no chemorepellent responses from G37 cells (<20% ARs). CU427 cells were over-responsive based on the mean percent of cells (>50% ARs). Reducing agents elicited chemorepellent responses from both G37 and CU427, in addition to potassium chloride. Cell responses were classified as over-responsive (>50% ARs). Dithiothreitol yielded unexpected results as G37 (37.0% ARs) and CU427 (38.1% ARs) had relatively similar responses and were only responsive and not over-responsive to the reducing agent test chemical solution. Ultimately, this indicates that the G37 receptor is more interactive with molecules that are reducing agents or non-oxidant compounds; G37 may be unable to sense and respond to oxidants effectively, further elucidating the pathways of the G37 strain and nature of this receptor. Results also indicate that the CSF most likely contained an oxidant, like ferric chloride. This research can be further applied to neuronal influences and how specific compounds may affect human neurons individually and their excitability as the responses model action potentials and membrane potential.

Keywords: tetrahymena thermophila, signal transduction, chemosensory, oxidant, reducing agent

Procedia PDF Downloads 136
2672 Effects of Gamma-Tocotrienol Supplementation on T-Regulatory Cells in Syngeneic Mouse Model of Breast Cancer

Authors: S. Subramaniam, J. S. A. Rao, P. Ramdas, K. R. Selvaduray, N. M. Han, M. K. Kutty, A. K. Radhakrishnan

Abstract:

Immune system is a complex system where the immune cells have the capability to respond against a wide range of immune challenges including cancer progression. However, in the event of cancer development, tumour cells trigger immunosuppressive environment via activation of myeloid-derived suppressor cells and T regulatory (Treg) cells. The Treg cells are subset of CD4+ T lymphocytes, known to have crucial roles in regulating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. Dysregulation of these mechanisms could lead to cancer progression and immune suppression. Recently, there are many studies reporting on the effects of natural bioactive compounds on immune responses against cancer. It was known that tocotrienol-rich-fraction consisting 70% tocotrienols and 30% α-tocopherol is able to exhibit immunomodulatory as well as anti-cancer properties. Hence, this study was designed to evaluate the effects of gamma-tocotrienol (G-T3) supplementation on T-reg cells in a syngeneic mouse model of breast cancer. In this study, female BALB/c mice were divided into two groups and fed with either soy oil (vehicle) or gamma-tocotrienol (G-T3) for two weeks followed by inoculation with tumour cells. All the mice continued to receive the same supplementation until day 49. The results showed a significant reduction in tumour volume and weight in G-T3 fed mice compared to vehicle-fed mice. Lung and liver histology showed reduced evidence of metastasis in tumour-bearing G-T3 fed mice. Besides that, flow cytometry analysis revealed T-helper cell population was increased, and T-regulatory cell population was suppressed following G-T3 supplementation. Moreover, immunohistochemistry analysis showed that there was a marked decrease in the expression of FOXP3 in the G-T3 fed tumour bearing mice. In conclusion, the G-T3 supplementation showed good prognosis towards breast cancer by enhancing the immune response in tumour-bearing mice. Therefore, gamma-T3 can be used as immunotherapy agent for the treatment of breast cancer.

Keywords: breast cancer, gamma tocotrienol, immune suppression, supplement

Procedia PDF Downloads 225
2671 Women Recreational Center in District Swabi Pakistan

Authors: Shehryar Afzal

Abstract:

Gender is one of the organizing principles of the society. Gender relations are based on the ideology of sexual division of labors. Consequently, women tend to have a lower level of education, vocational and professional skills then men in a conservative area. In Swabi women, overall take part in their daily work, either it is home management. I-e cooking, sewing. Their Economic roles are selling daily used commodities I-e poultry, embroidery Selling, etc. Their Social roles are participation in traditional ceremonies’ like Death, marriages, etc. The aim is to introduce the Society a new range of communal and recreational spaces acting as a community center for women and children, while developing plans for the community women and children, Providing recreational and communal activities for which the community strive and urge, having a sense of freedom and openness. Already interacting spaces are present where they have a social and communal gathering, but there is no such facilities to celebrate these activities.

Keywords: social sitting, communal spaces, tradition, freedom

Procedia PDF Downloads 233
2670 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering

Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han

Abstract:

Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.

Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate

Procedia PDF Downloads 155
2669 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception

Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde

Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.

Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine

Procedia PDF Downloads 171
2668 The Covid-19 Pandemic: Transmission, Misinformation, and Implications on Public Health

Authors: Jonathan De Rothewelle

Abstract:

A pandemic, such as that of COVID-19, can be a time of panic and stress; concerns about health supersede others such as work and leisure. With such concern comes the seeking of crucial information— information that, during a global health crisis, could mean the difference between life and death. Whether newspapers, cable news, or radio, media plays an important role in the transmission of medical information to the general public. Moreover, the news media in particular must uphold its obligation to the public to only disseminate factual, useful information. The circulation of misinformation, whether explicit or implicit, may profoundly impact global health. Using a discursive analytic framework founded in linguistics, the images and headlines of top coverage of COVID-19 from the most influential media outlets will be examined. Micro-analyses reveal what may be interpreted as evidence of sensationalism, which may be argued to a form of misinformation, and ultimately a departure from ethical media. Withdrawal from responsible reporting and publishing, expressly in times of epidemic, may cause further confusion and panic.

Keywords: public health, pandemic, public education, media

Procedia PDF Downloads 156
2667 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation

Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin

Abstract:

A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.

Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic

Procedia PDF Downloads 296
2666 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability

Authors: Daya Rani

Abstract:

Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.

Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes

Procedia PDF Downloads 32
2665 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell

Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera

Abstract:

The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.

Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment

Procedia PDF Downloads 25
2664 Relationship of Epidermal Growth Factor Receptor Gene Mutations Andserum Levels of Ligands in Non-Small Cell Lung Carcinoma Patients

Authors: Abdolamir Allameh, Seyyed Mortaza Haghgoo, Adnan Khosravi, Esmaeil Mortaz, Mihan Pourabdollah-Toutkaboni, Sharareh Seifi

Abstract:

Non-Small Cell Lung Carcinoma (NSCLC) is associated with a number of gene mutations in epidermal growth factor receptor (EGFR). The prognostic significance of mutations in exons 19 and 21, together with serum levels of EGFR, amphiregulin (AR), and Transforming Growth Factor-alpha (TGF-α) are implicated in diagnosis and treatment. The aim of this study was to examine the relationship of EGFR mutations in selected exons with the expression of relevant ligands in sera samples of NSCLC patients. For this, a group of NSCLC patients (n=98) referred to the hospital for lung surgery with a mean age of 59±10.5 were enrolled (M/F: 75/23). Blood specimen was collected from each patient. Besides, formalin fixed paraffin embedded tissues were processed for DNA extraction. Gene mutations in exons 19 and 21 were detected by direct sequencing, following DNA amplification which was done by PCR (Polymerase Chain Reaction). Also, serum levels of EGFR, AR, and TGF-α were measured by ELISA. The results of our study show that EGFR mutations were present in 37% of Iranian NSCLC patients. The most frequently identified mutations were deletions in exon 19 (72.2%) and substitutions in exon 21 (27.8%). The most frequently identified alteration, which is considered as a rare mutation, was the E872K mutation in exon 21, which was found in 90% (9 out of 10) cases. EGFR mutation detected in exon 21 was significantly (P<0.05) correlated with the levels of its ligands, EGFR and TGF-α in serum samples. Furthermore, it was found that increased serum AR (>3pg/ml) and TGF-α (>10.5 pg/ml) were associated with shorter overall survival (P<0.05). The results clearly showed a close relationship between EGFR mutations and serum EGFR and serum TGF-α. Increased serum EGFR was associated with TGF-α and AR and linked to poor prognosis of NSCLC. These findings are implicated in clinical decision-making related to EGFR-Tyrosine kinase inhibitors (TKIs).

Keywords: lung cancer, Iranian patients, epidermal growth factor, mutation, prognosis

Procedia PDF Downloads 84