Search results for: chemosensory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: chemosensory

5 Functional Characteristics of Chemosensory Proteins in the Sawyer Beetle Monochamus alternatus Hope

Authors: Saqib Ali, Man-Qun Wang

Abstract:

The Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae), is a major pest of pines and it is also the key vector of the exotic pinewood nematode in China. In the present study, we cloned, expressed, and purified a chemosensory protein (CSP) in M. alternatus. We surveyed its expression in various developmental stages of male and female adult tissues and determined its binding affinities for different pine volatiles using a competitive binding fluorescence assay. A CSP known as CSP5 in M. alternatus was obtained from an antennal cDNA library and expressed in Escherichia coli. Quantitative reverse transcription polymerase chain reaction results indicated that the CSP5 gene was mainly expressed in male and female antennae. Competitive binding assays were performed to test the binding affinity of recombinant CSP5 to 13 odour molecules of pine volatiles. The results showed that CSP5 showed very strong binding abilities to myrcene, (+)-β-pinene, and (−)-isolongifolene, whereas the volatiles 2-methoxy-4-vinylphenol, p-cymene, and (+)-limonene oxide have relatively weak binding affinity at pH 5.0. Three volatiles myrcene, (+)-β-pinene, and (−)-isolongifolene may play crucial roles in CSP5 binding with ligands, but this needs further study for confirmation. The sensitivity of insect to host plant volatiles can effectively be used to control and monitor the population through mass trapping as part of integrated pest management programs.

Keywords: olfactory-specific protein, volatiles, competitive binding assay, expression characteristics, qPCR

Procedia PDF Downloads 99
4 Behavioral Effects of Oxidant and Reduced Chemorepellent on Mutant and Wild-Type Tetrahymena thermophila

Authors: Ananya Govindarajan

Abstract:

Tetrahymena thermophila is a single-cell, eukaryotic organism that belongs to the Protozoa Kingdom. Tetrahymena thermophila is often used in signal transduction pathway studies because of its ability to model sensory input and the effects of environmental conditions such as chemicals and temperature. The recently discovered G37 chemorepellent receptor showed increased responsiveness to all chemorepellents. Investigating the mutant G37 Tetrahymena gene in various test solutions, including ferric chloride, ferrous sulfate, hydrogen peroxide, tetrazolium blue, potassium chloride, and dithiothreitol were performed to determine the role of oxidants and reducing agents with the mutant and wild-type cells (CU427) to assess the role of the receptor. Behavioral assays and recordings processed by ImageJ indicated that ferric chloride, hydrogen peroxide, and tetrazolium blue yielded little to no chemorepellent responses from G37 cells (<20% ARs). CU427 cells were over-responsive based on the mean percent of cells (>50% ARs). Reducing agents elicited chemorepellent responses from both G37 and CU427, in addition to potassium chloride. Cell responses were classified as over-responsive (>50% ARs). Dithiothreitol yielded unexpected results as G37 (37.0% ARs) and CU427 (38.1% ARs) had relatively similar responses and were only responsive and not over-responsive to the reducing agent test chemical solution. Ultimately, this indicates that the G37 receptor is more interactive with molecules that are reducing agents or non-oxidant compounds; G37 may be unable to sense and respond to oxidants effectively, further elucidating the pathways of the G37 strain and nature of this receptor. Results also indicate that the CSF most likely contained an oxidant, like ferric chloride. This research can be further applied to neuronal influences and how specific compounds may affect human neurons individually and their excitability as the responses model action potentials and membrane potential.

Keywords: tetrahymena thermophila, signal transduction, chemosensory, oxidant, reducing agent

Procedia PDF Downloads 97
3 Sweet to Bitter Perception Parageusia: Case of Posterior Inferior Cerebellar Artery Territory Diaschisis

Authors: I. S. Gandhi, D. N. Patel, M. Johnson, A. R. Hirsch

Abstract:

Although distortion of taste perception following a cerebrovascular event may seem to be a frivolous consequence of a classic stroke presentation, altered taste perception places patients at an increased risk for malnutrition, weight loss, and depression, all of which negatively impact the quality of life. Impaired taste perception can result from a wide variety of cerebrovascular lesions to various locations, including pons, insular cortices, and ventral posteromedial nucleus of the thalamus. Wallenberg syndrome, also known as a lateral medullary syndrome, has been described to impact taste; however, specific sweet to bitter taste dysgeusia from a territory infarction is an infrequent event; as such, a case is presented. One year prior to presentation, this 64-year-old right-handed woman, suffered a right posterior inferior cerebellar artery aneurysm rupture with resultant infarction, culminating in a ventriculoperitoneal shunt placement. One and half months after this event, she noticed the gradual onset of lack of ability to taste sweet, to eventually all sweet food tasting bitter. Since the onset of her chemosensory problems, the patient has lost 60-pounds. Upon gustatory testing, the patient's taste threshold showed ageusia to sucrose and hydrochloric acid, while normogeusia to sodium chloride, urea, and phenylthiocarbamide. The gustatory cortex is made in part by the right insular cortex as well as the right anterior operculum, which are primarily involved in the sensory taste modalities. In this model, sweet is localized in the posterior-most along with the rostral aspect of the right insular cortex, notably adjacent to the region responsible for bitter taste. The sweet to bitter dysgeusia in our patient suggests the presence of a lesion in this localization. Although the primary lesion in this patient was located in the right medulla of the brainstem, neurodegeneration in the rostal and posterior-most aspect, of the right insular cortex may have occurred due to diaschisis. Diaschisis has been described as neurophysiological changes that occur in remote regions to a focal brain lesion. Although hydrocephalus and vasospasm due to aneurysmal rupture may explain the distal foci of impairment, the gradual onset of dysgeusia is more indicative of diaschisis. The perception of sweet, now tasting bitter, suggests that in the absence of sweet taste reception, the intrinsic bitter taste of food is now being stimulated rather than sweet. In the evaluation and treatment of taste parageusia secondary to cerebrovascular injury, prophylactic neuroprotective measures may be worthwhile. Further investigation is warranted.

Keywords: diaschisis, dysgeusia, stroke, taste

Procedia PDF Downloads 142
2 Chemical vs Visual Perception in Food Choice Ability of Octopus vulgaris (Cuvier, 1797)

Authors: Al Sayed Al Soudy, Valeria Maselli, Gianluca Polese, Anna Di Cosmo

Abstract:

Cephalopods are considered as a model organism with a rich behavioral repertoire. Sophisticated behaviors were widely studied and described in different species such as Octopus vulgaris, who has evolved the largest and more complex nervous system among invertebrates. In O. vulgaris, cognitive abilities in problem-solving tasks and learning abilities are associated with long-term memory and spatial memory, mediated by highly developed sensory organs. They are equipped with sophisticated eyes, able to discriminate colors even with a single photoreceptor type, vestibular system, ‘lateral line analogue’, primitive ‘hearing’ system and olfactory organs. They can recognize chemical cues either through direct contact with odors sources using suckers or by distance through the olfactory organs. Cephalopods are able to detect widespread waterborne molecules by the olfactory organs. However, many volatile odorant molecules are insoluble or have a very low solubility in water, and must be perceived by direct contact. O. vulgaris, equipped with many chemosensory neurons located in their suckers, exhibits a peculiar behavior that can be provocatively described as 'smell by touch'. The aim of this study is to establish the priority given to chemical vs. visual perception in food choice. Materials and methods: Three different types of food (anchovies, clams, and mussels) were used, and all sessions were recorded with a digital camera. During the acclimatization period, Octopuses were exposed to the three types of food to test their natural food preferences. Later, to verify if food preference is maintained, food was provided in transparent screw-jars with pierced lids to allow both visual and chemical recognition of the food inside. Subsequently, we tested alternatively octopuses with food in sealed transparent screw-jars and food in blind screw-jars with pierced lids. As a control, we used blind sealed jars with the same lid color to verify a random choice among food types. Results and discussion: During the acclimatization period, O. vulgaris shows a higher preference for anchovies (60%) followed by clams (30%), then mussels (10%). After acclimatization, using the transparent and pierced screw jars octopus’s food choices resulted in 50-50 between anchovies and clams, avoiding mussels. Later, guided by just visual sense, with transparent but not pierced jars, their food preferences resulted in 100% anchovies. With pierced but not transparent jars their food preference resulted in 100% anchovies as first food choice, the clams as a second food choice result (33.3%). With no possibility to select food, neither by vision nor by chemoreception, the results were 20% anchovies, 20% clams, and 60% mussels. We conclude that O. vulgaris uses both chemical and visual senses in an integrative way in food choice, but if we exclude one of them, it appears clear that its food preference relies on chemical sense more than on visual perception.

Keywords: food choice, Octopus vulgaris, olfaction, sensory organs, visual sense

Procedia PDF Downloads 185
1 Identification of Odorant Receptors through the Antennal Transcriptome of the Grapevine Pest, Lobesia botrana (Lepidoptera: Tortricidae)

Authors: Ricardo Godoy, Herbert Venthur, Hector Jimenez, Andres Quiroz, Ana Mutis

Abstract:

In agriculture, grape production has great economic importance at global level, considering that in 2013 it reached 7.4 million hectares (ha) covered by plantations of this fruit worldwide. Chile is the number one exporter in the world with 800,000 tons. However, these values have been threatened by the attack of the grapevine moth, Lobesia botrana (Denis & Schiffermuller) (Lepidoptera: Tortricidae), since its detection in 2008. Nowadays, the use of semiochemicals, in particular the major component of the sex pheromone, (E,Z)-7.9-dodecadienil acetate, are part of mating disruption methods to control L. botrana. How insect pests can recognize these molecules, is being part of huge efforts to deorphanize their olfactory mechanism at molecular level. Thus, an interesting group of proteins has been identified in the antennae of insects, where odorant-binding proteins (OBPs) are known by transporting molecules to odorant receptors (ORs) and a co-receptor (ORCO) causing a behavioral change in the insect. Other proteins such as chemosensory proteins (CSPs), ionotropic receptors (IRs), odorant degrading enzymes (ODEs) and sensory neuron membrane proteins (SNMPs) seem to be involved, but few studies have been performed so far. The above has led to an increasing interest in insect communication at a molecular level, which has contributed to both a better understanding of the olfaction process and the design of new pest management strategies. To date, it has been reported that the ORs can detect one or a small group of odorants in a specific way. Therefore, the objective of this study is the identification of genes that encode these ORs using the antennal transcriptome of L. botrana. Total RNA was extracted for females and males of L. botrana, and the antennal transcriptome sequenced by Next Generation Sequencing service using an Illumina HiSeq2500 platform with 50 million reads per sample. Unigenes were assembled using Trinity v2.4.0 package and transcript abundance was obtained using edgeR. Genes were identified using BLASTN and BLASTX locally installed in a Unix system and based on our own Tortricidae database. Those Unigenes related to ORs were characterized using ORFfinder and protein Blastp server. Finally, a phylogenetic analysis was performed with the candidate amino acid sequences for LbotORs including amino acid sequences of other moths ORs, such as Bombyx mori, Cydia pomonella, among others. Our findings suggest 61 genes encoding ORs and one gene encoding an ORCO in both sexes, where the greatest difference was found in the OR6 because of the transcript abundance according to the value of FPKM in females and males was 1.48 versus 324.00. In addition, according to phylogenetic analysis OR6 is closely related to OR1 in Cydia pomonella and OR6, OR7 in Epiphyas postvittana, which have been described as pheromonal receptors (PRs). These results represent the first evidence of ORs present in the antennae of L. botrana and a suitable starting point for further functional studies with selected ORs, such as OR6, which is potentially related to pheromonal recognition.

Keywords: antennal transcriptome, lobesia botrana, odorant receptors (ORs), phylogenetic analysis

Procedia PDF Downloads 164