Search results for: temporary water treatment plant
15608 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India
Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia
Abstract:
Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore
Procedia PDF Downloads 12715607 Conservative Treatment Versus Percutaneous Wire Fixation in treatment of Distal Radial Fracture in Elderly
Authors: Abdelfatah Elsenosy, Mahmoud Ebrahim
Abstract:
Background: Distal radius fractures are commonly encountered in orthopedic practice, especially in elderly patients. A number of clinical papers have supported the idea that anatomic restoration of the distal end of the radius is essential to gain superior results. Aim and objectives: The aim of the study is to systematically review the literature for the management of distal end radius in elderly persons (conservative treatment versus percutaneous wire fixation) as regards radiological and functional outcomes. Subjects and methods: Studies were identified from the Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 2019 using combinations of the following search terms: distal radius fracture, conservative treatment, non-operative treatment, and nonsurgical treatment, surgical treatment, operative, elderly, and older. Reference lists of relevant studies were manually searched. Results: There was no statistical significance difference between CI and PKF groups’ frequency of complication in all of the selected studies. Based on the results, we recommend more analysis regarding every parameter of the radiographic and functional results and specific complications related to each fixation need to be accomplished, which requires more Randomized controlled trials (RCTs) with high quality. Conclusion: Surgical treatment seems to be more effective distal radius fracture compared with conservative treatment when the radiographic outcomes were analyzed, and no significant differences were detected in the functional outcomes and complication rate.Keywords: radius, fracture, surgical, RCTs, conservative, radiographic, outcomes, orthopedic
Procedia PDF Downloads 14615606 Impact of Disposed Drinking Water Sachets in Damaturu Town, Yobe State, Nigeria
Authors: Meeta Ratawa Tiwary
Abstract:
Damaturu is the capital of Yobe State in northeastern Nigeria where civic amenities and facilities are not adequate even after 24 years of its existence. The volatile security and political situations are most significant causes for the same. The basic facility for the citizens in terms of drinking water and electricity are not available. For the drinking water, they have to rely on personal bore holes or the filtered borehole waters available in packaged sachets in the market. The present study is concerned with the environmental impact of indiscriminate disposal of drinking synthetic polythene water sachets in Damaturu. The sachet water is popularly called as ‘pure water’, but its purity is questionable. Increased production and consumption of sachet water has led to indiscriminate dumping and disposal of empty sachets leading to a serious environmental threat. The evidence of this is seen in the amount of disposed sachets littering the streets and also the drainages blocked by ‘blocks’ of water sachet waste. Sachet water gained much popularity in Nigeria because the product is convenient for use, affordable and economically viable. The present study aims to find out the solution to this environmental problem. The field-based study has found some significant factors that cause environmental and socio-economic effect due to this. Some recommendations have been made based on research findings regarding sustainable waste management, recycling and re-use of the non-biodegradable products in society.Keywords: civic amenities, non-biodegradable, pure water, sustainable environment, waste disposal
Procedia PDF Downloads 42115605 Two Weeks of Multi-Modal Inpatient Treatment: Patients Suffering from Chronic Musculoskeletal Pain for over 12 Months
Authors: D. Schafer, H. Booke, R. Nordmeier
Abstract:
Patients suffering from chronic musculoskeletal pain ( > 12 months) are a challenging clientele for pain specialists. A multimodal approach, characterized by a two weeks inpatient treatment, often is the ultimate therapeutic attempt. The lasting effects of such a multimodal approach were analyzed, especially since two weeks of inpatient therapy, although very intense, often seem too short to make a difference in patients suffering from chronic pain for years. The study includes 32 consecutive patients suffering from chronic pain over years who underwent a two weeks multimodal inpatient treatment of pain. Twelve months after discharge, each patient was interviewed to objectify any lasting effects. Pain was measured on admission and 12 months after discharge using the numeric rating scale (NRS). For statistics, a paired students' t-test was used. Significance was defined as p < 0.05. The average intensity of pain on admission was 8,6 on the NRS. Twelve months after discharge, the intensity of pain was still reduced by an average of 48% (average NRS 4,4), p < 0.05. Despite this significant improvement in pain severity, two thirds (66%) of the patients still judge their treatment as not sufficient. In conclusion, inpatient treatment of chronic pain has a long-lasting effect on the intensity of pain in patients suffering from chronic musculoskeletal pain for more than 12 months.Keywords: chronic pain, inpatient treatment, multimodal pain treatment, musculoskeletal pain
Procedia PDF Downloads 16515604 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)
Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda
Abstract:
The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity
Procedia PDF Downloads 42415603 Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant
Authors: S. Mokhtar, R. Ibrahim, K. Abdan, A. Rashidi
Abstract:
The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations.Keywords: biocomposite, natural reinforce fiber, smart farming, vertical farming
Procedia PDF Downloads 16515602 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems
Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas
Abstract:
Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting
Procedia PDF Downloads 11615601 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran
Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami
Abstract:
In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.Keywords: wildfire, vegetation, plant species, forest
Procedia PDF Downloads 4415600 Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria
Authors: Ejoh Nonso Francis
Abstract:
: Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond.Keywords: irrigation scheduling, sustainable agriculture, soil moisture sensors, weather data, water use efficiency, crop productivity, nigeria, onitsha, anambra state, technology-based irrigation scheduling, water resources, environmental degradation, crop water requirements, overwatering, water waste, farming systems, scalability
Procedia PDF Downloads 7715599 Visualization of Interaction between Pochonia Chlamydosporia and Meloidogyne Incognita and Their Impact on Tomato Crop
Authors: Saifullah K., Muhammad Naziruddin Saifullah, Muhammad N.
Abstract:
The bio control potential and mechanism of P. chlamydosporia against Meloidogyne incognita was evaluated in the present study. Under invitro conditions, P. chlamydosporia was tested for parasitism of eggs and females of M. incognita. The results indicated that this fungus parasitized 87% eggs and 82% females. Culture filtrate (CF) of P. chlamydosporia was tested for its larvicide activity against M. incognita 2nd stage juvenile. The maximum mortality was 97.3% at 100% concentration of the culture filtrate while minimum mortality was 7.3% in 25% concentration after 24 hrs. The result of the pot experiment proved that P. chlamydosporia has reduced the incidence of RKN and improved all tested agronomic growth parameters. The treatment with inoculated M. incognita alone reduced plant height, fresh shoot, and fresh root weight by 44.7%, 29.8%, and 32.8% respectively over uninoculated healthy control. Histopathological studies on the interaction of Pochonia chlamydosporia and Meloidogyne incognita on tomato roots revealed anatomical changes among treatments. Less number of galls with small in size and scarcer abnormalities in the vascular cylinder was observed in plants inoculated with P. chlamydosporia and M. incognita than the plants treated with nematode only. The fungus was seen in in the intercellular spaces of cortical and epidermal cells while the vascular bundles of the plant remain intact, inoculated only with P. chlamydosporia. In the infected roots, many mature females were seen which feed on giant cells. The findings also revealed that control healthy plants were not affected and no histological changes were noted.Keywords: histopathology, Pochonia chlamydosporia, Meloidogyne incognita, tomato
Procedia PDF Downloads 10415598 Numerical Analysis of Water Hammer in a Viscoelastic Pipe System Considering Fluid Structure Interaction
Authors: N. Tavakoli Shirazi
Abstract:
This study investigates the effects of pipe-wall viscoelasticity on water hammer pressures. Tests have been conducted in a reservoir-pipe-valve system configured of a main viscoelastic pipeline and two short steel pipes placed upstream and downstream of the main pipe. Rapid closure of a manually operated valve at the downstream end generates water hammer. Experimental measurements at several positions along the pipeline have been collected from the papers. Computer simulations of the experiment have been performed and the results of runs with various options affecting the water hammer are provided and discussed. It is shown that the incorporation of viscoelastic pipe wall mechanical behavior in the hydraulic transient model contributes to a favorable fitting between numerical results and observed data.Keywords: pipe system, PVC pipe, viscoelasticity, water hammer
Procedia PDF Downloads 46615597 Psychological Interventions as an Effective Treatment of Depression: A Critical Appraisal of the Literature
Authors: Brid Joy
Abstract:
This paper discusses some major psychological interventions and critiques their effectiveness in relation to the treatment of depression. Links are made between this evidence and the social work profession. This paper reviewed the relevant literature and evidence to ascertain the effectiveness of psychological interventions in the treatment of depression. Evidence suggests that psychological interventions are effective in the treatment of depression. However, a gulf between theory and practice remains and the difficulties in implementing evidence-based practice have been documented within this paper.Keywords: psychological interventions, social work, depression, evidence based practice
Procedia PDF Downloads 26915596 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model
Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari
Abstract:
The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.Keywords: Tigris River, climate change, water resources, SWAT
Procedia PDF Downloads 20415595 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture
Authors: Zakia Hbellaq
Abstract:
The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants
Procedia PDF Downloads 16015594 Approach for Evaluating Wastewater Reuse Options in Agriculture
Authors: Manal Elgallal, Louise Fletcher, Barbara Evans
Abstract:
Water scarcity is a growing concern in many arid and semi-arid countries. The increase of water scarcity threatens economic development and sustainability of human livelihoods as well as environment especially in developing countries. Globally, agriculture is the largest water consumption sector, accounting for approximately 70% of all freshwater extraction. Growing competition between the agricultural and higher economic value in urban and industrial uses of high-quality freshwater supplies, especially in regions where water scarcity major problems, will increase the pressure on this precious resource. In this circumstance, wastewater may provide reliable source of water for agriculture and enable freshwater to be exchanged for more economically valuable purposes. Concern regarding the risks from microbial and toxic components to human health and environment quality is a serious obstacle for wastewater reuse particularly in agriculture. Although powerful approaches and tools for microbial risk assessment and management for safe use of wastewater are now available, few studies have attempted to provide any mechanism to quantitatively assess and manage the environmental risks resulting from reusing wastewater. In seeking pragmatic solutions to sustainable wastewater reuse, there remains a lack of research incorporating both health and environmental risk assessment and management with economic analysis in order to quantitatively combine cost, benefits and risks to rank alternative reuse options. This study seeks to enhance effective reuse of wastewater for irrigation in arid and semi-arid areas, the outcome of the study is an evaluation approach that can be used to assess different reuse strategies and to determine the suitable scale at which treatment alternatives and interventions are possible, feasible and cost effective in order to optimise the trade-offs between risks to protect public health and the environment and preserving the substantial benefits.Keywords: environmental risks, management, life cycle costs, waste water irrigation
Procedia PDF Downloads 26215593 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick
Authors: Dalia Bednarska, Marcin Koniorczyk
Abstract:
This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient
Procedia PDF Downloads 40415592 The Role of Formal and Informal Institutions in Water Governance in the Central Rift Valley of Ethiopia
Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos
Abstract:
Institutions can play a key role in coordinating how natural resources are effectively used without over-exploitation. Institutions are the laws, policies, and organizational arrangements that permit, forbid or regulate human action. The aim of this study was to look into the roles of formal and informal institutions, as well as their interactions, in water resource governance in Ethiopia's Central Rift Valley (CRV), where water scarcity is a concern. Key informant interviews, group discussions, in depth-interview, and secondary data sources were used to generate relevant data. The study revealed that formal and informal institutions were involved in water resource governance in the study area. However, the influence of informal institutions on formal institutions or vice versa is trivial to change the action of water users. Lack of clear roles and responsibilities of actors, weak capacity and lack of meaningful decentralization and participation of key actors in policy development, lack of synergy and incongruence between formal and informal institutions, and absence of enforcement mechanisms including incentives are attributed to inefficient use of water resources in the CRV. Enhancing the interplay of formal and informal institutions in the water resource policy development and meaningful decentralization and key stakeholders' engagement is recommended for sustainable water use.Keywords: institutions, governance, institutional interplay, water users
Procedia PDF Downloads 17815591 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery
Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr
Abstract:
The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.Keywords: bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability
Procedia PDF Downloads 27915590 Utilization of Watermelon Rind Extract as Green Anti-Scalent for Cooling Water Systems
Authors: Elsayed G. Zaki, Nora A. Hamad, Hadeel G. El-Shorbagy
Abstract:
The effect of watermelon rind extract as green inhibitors for the formation of calcium sulphate scale have been investigated using conductivity measurements concurrently with the scanning electron microscopy (SEM), and optical microscopic examinations. Mineral scales were deposited from the brine solution by cathodic polarization of the steel surface. The results show up that the anti-scaling property of the extracts could be attributed to the presence of citrulline. In solution, citrulline retards calcium sulphate precipitation via formation of a complex with the calcium cations. Thin, smooth and non adherent film formed over the steel surface, under cathodic polarization, by the deposition of the calcium- citrulline complex. The stability of the aqueous extracts with time was also investigated.Keywords: anti-scaling, scale inhibitor, green extracts, water treatment
Procedia PDF Downloads 27415589 Electrical Power Distribution Reliability Improvement by Retrofitting 4.16 kV Vacuum Contactor in Badak LNG Plant
Authors: David Hasurungan
Abstract:
This paper objective is to assess the power distribution reliability improvement by retrofitting obsolete vacuum contactor. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. To support plant operational, Badak LNG is equipped with 4.16 kV switchgear for supplying the storage and loading facilities, utilities facilities, and train facilities. However, there is a problem in two switch gears of sixteen switch gears. The problem is the obsolescence issue in its vacuum contactor. Not only that, but the same switchgear also has suffered from electrical fault due to contact fingering misalignment. In order to improve the reliability in switchgear, the vacuum contactor retrofit project is done. The retrofit will introduce new vacuum contactor design. The comparison between existing design and the new design is presented in this paper. Meanwhile, The reliability assessment and calculation are performed using software Reliasoft 7.Keywords: reliability, obsolescence, retrofit, vacuum contactor
Procedia PDF Downloads 29115588 Molecular Dynamic Simulation of CO2 Absorption into Mixed Aqueous Solutions MDEA/PZ
Authors: N. Harun, E. E. Masiren, W. H. W. Ibrahim, F. Adam
Abstract:
Amine absorption process is an approach for mitigation of CO2 from flue gas that produces from power plant. This process is the most common system used in chemical and oil industries for gas purification to remove acid gases. On the challenges of this process is high energy requirement for solvent regeneration to release CO2. In the past few years, mixed alkanolamines have received increasing attention. In most cases, the mixtures contain N-methyldiethanolamine (MDEA) as the base amine with the addition of one or two more reactive amines such as PZ. The reason for the application of such blend amine is to take advantage of high reaction rate of CO2 with the activator combined with the advantages of the low heat of regeneration of MDEA. Several experimental and simulation studies have been undertaken to understand this process using blend MDEA/PZ solvent. Despite those studies, the mechanism of CO2 absorption into the aqueous MDEA is not well understood and available knowledge within the open literature is limited. The aim of this study is to investigate the intermolecular interaction of the blend MDEA/PZ using Molecular Dynamics (MD) simulation. MD simulation was run under condition 313K and 1 atm using NVE ensemble at 200ps and NVT ensemble at 1ns. The results were interpreted in term of Radial Distribution Function (RDF) analysis through two system of interest i.e binary and tertiary. The binary system will explain the interaction between amine and water molecule while tertiary system used to determine the interaction between the amine and CO2 molecule. For the binary system, it was observed that the –OH group of MDEA is more attracted to water molecule compared to –NH group of MDEA. The –OH group of MDEA can form the hydrogen bond with water that will assist the solubility of MDEA in water. The intermolecular interaction probability of –OH and –NH group of MDEA with CO2 in blended MDEA/PZ is higher than using single MDEA. This findings show that PZ molecule act as an activator to promote the intermolecular interaction between MDEA and CO2.Thus, blend of MDEA with PZ is expecting to increase the absorption rate of CO2 and reduce the heat regeneration requirement.Keywords: amine absorption process, blend MDEA/PZ, CO2 capture, molecular dynamic simulation, radial distribution function
Procedia PDF Downloads 29515587 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites
Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy
Abstract:
In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites.Keywords: beryl, graphene, heat treatment, mechanical properties
Procedia PDF Downloads 14415586 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products
Authors: Marina Arino Martin, John McEvoy, Eakalak Khan
Abstract:
Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.Keywords: biodegradation, bacterial degraders, endoxifen, wastewater
Procedia PDF Downloads 21515585 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health
Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo
Abstract:
The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.Keywords: chromatography, DNA damage, environmental risk, water pollution
Procedia PDF Downloads 23015584 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites
Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea
Abstract:
In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.Keywords: chemical treatment, hybrid composite, jute, thermal
Procedia PDF Downloads 30815583 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China
Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai
Abstract:
Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment
Procedia PDF Downloads 11515582 Heavy Metal Pollution Status in the Water of River Benue along Ibi, Taraba State, Nigeria
Authors: I. O. Oyatayo, K. T. Oyatayo, B. Mamman
Abstract:
This study was aimed at the assessment of heavy metal pollution of the water in river Benue along Ibi, Taraba State, Nigeria. Water samples were collected at ten sampling points over a distance of 100 meters each. The following water quality parameters were determined: TDS, copper, zinc, chromium, iron, mercury, nickel, and manganese, and the results were compared with the Nigerian Standard for Drinking Water Quality (NSDWQ) and WHO maximum permitted limits. The water quality analysis was conducted using the atomic absorption spectrophotometer (Model: 01-0960-00) at 510 nm. The mean value concentrations of copper, zinc, chromium, nickel, mercury, and mercury are within the permissible limits, while that of iron is above the limit. The summary of ANOVA single-factor statistics with a specified rejection level at α 0.05 is insignificant. The study concludes that the quality of water from river Benue along Ibi is deteriorating and unfit for human consumption. It was recommended that residents of the study area should be enlightened on the effects of indiscriminate dumping of waste and the proper handling and application of fertilizer and herbicides, as some of these end up in the river via surface runoff.Keywords: heavy, metal, pollution, river, Ibi
Procedia PDF Downloads 4915581 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 11515580 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles
Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan
Abstract:
Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity
Procedia PDF Downloads 6915579 Treatment Outcome of Cutaneous Leishmaniasis and Its Associated Factors among Admitted Patients in All Africa Leprosy Rehabilitation and Training Center Hospital, Ethiopia
Authors: Kebede Mairie, Getahun Belete, Mitike Abeba
Abstract:
Background: Leishmania aethiopica is a peculiar parasite causing cutaneous leishmaniasis in Ethiopia and its mainstay treatment is Sodium Stibogluconate. However, its treatment outcome in Ethiopia is not well documented. Objectives: To determine the treatment outcome of admitted cutaneous leishmaniasis patients and its associated factors in Addis Ababa, Ethiopia. Methods: A retrospective study was conducted from 1st November 2021 to 30th March 2022. Medical records of all cutaneous leishmaniasis-diagnosed and admitted patients who received parenteral sodium stibogluconate at All Africa Leprosy Rehabilitation and Training Center (ALERT) hospital, the main Leishmania treatment center in Ethiopia from July 2011 to September 2021 were reviewed. Results: A total of 827 charts of admitted cases from July 2011 to September 2021 were retrieved, but 667 (80.65%) were reviewed. Improvement in the treatment outcome was recorded in 93.36 % in the first course of SSG treatment and 96.23%, 94.62%, and 96.97% subsequently in the second, third and fourth treatment courses, respectively. Female gender and diffuse cutaneous leishmaniasis were the two predictive determinants in the treatment of cutaneous leishmaniasis. Conclusion: The study shows that parenteral sodium stibogluconate therapy treats hospitalized cutaneous leishmaniasis patients well, with female gender and diffuse cutaneous leishmaniasis having poor outcomes suggesting the need for a different approach for diffuse cutaneous leishmaniasis patients.Keywords: cutaneous leishmaniasis, leishmania aethiopica, sodium stibogluconate, diffuse cutaneous leishmaniasis, pentostam
Procedia PDF Downloads 77