Search results for: advanced electrochemical oxidation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3691

Search results for: advanced electrochemical oxidation

1681 Transforming Water-Energy-Gas Industry through Smart Metering and Blockchain Technology

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

Advanced metering technologies coupled with informatics creates an opportunity to form digital multi-utility service providers. These providers will be able to concurrently collect a customers’ medium-high resolution water, electricity and gas demand data and provide user-friendly platforms to feed this information back to customers and supply/distribution utility organisations. With the emergence of blockchain technology, a new research area has been explored which helps bring this multi-utility service provider concept to a much higher level. This study aims at introducing a breakthrough system architecture where smart metering technology in water, energy, and gas (WEG) are combined with blockchain technology to provide customer a novel real-time consumption report and decentralized resource trading platform. A pilot study on 4 properties in Australia has been undertaken to demonstrate this system, where benefits for customers and utilities are undeniable.

Keywords: blockchain, digital multi-utility, end use, demand forecasting

Procedia PDF Downloads 171
1680 Organic Carbon Pools Fractionation of Lacustrine Sediment with a Stepwise Chemical Procedure

Authors: Xiaoqing Liu, Kurt Friese, Karsten Rinke

Abstract:

Lacustrine sediment archives rich paleoenvironmental information in lake and surrounding environment. Additionally, modern sediment is used as an effective medium for the monitoring of lake. Organic carbon in sediment is a heterogeneous mixture with varying turnover times and qualities which result from the different biogeochemical processes in the deposition of organic material. Therefore, the isolation of different carbon pools is important for the research of lacustrine condition in the lake. However, the numeric available fractionation procedures can hardly yield homogeneous carbon pools on terms of stability and age. In this work, a multi-step fractionation protocol that treated sediment with hot water, HCl, H2O2 and Na2S2O8 in sequence was adopted, the treated sediment from each step were analyzed for the isotopic and structural compositions with Isotope Ratio Mass Spectrometer coupled with element analyzer (IRMS-EA) and Solid-state 13C Nuclear Magnetic Resonance (NMR), respectively. The sequential extractions with hot-water, HCl, and H2O2 yielded a more homogeneous and C3 plant-originating OC fraction, which was characterized with an atomic C/N ratio shift from 12.0 to 20.8, and 13C and 15N isotopic signatures were 0.9‰ and 1.9‰ more depleted than the original bulk sediment, respectively. Additionally, the H2O2- resistant residue was dominated with stable components, such as the lignins, waxes, cutans, tannins, steroids and aliphatic proteins and complex carbohydrates. 6M HCl in the acid hydrolysis step was much more effective than 1M HCl to isolate a sedimentary OC fraction with higher degree of homogeneity. Owing to the extremely high removal rate of organic matter, the step of a Na2S2O8 oxidation is only suggested if the isolation of the most refractory OC pool is mandatory. We conclude that this multi-step chemical fractionation procedure is effective to isolate more homogeneous OC pools in terms of stability and functional structure, and it can be used as a promising method for OC pools fractionation of sediment or soil in future lake research.

Keywords: 13C-CPMAS-NMR, 13C signature, lake sediment, OC fractionation

Procedia PDF Downloads 299
1679 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: algorithms, blind, computer vision, embedded systems, image analysis

Procedia PDF Downloads 318
1678 Highly Responsive p-NiO/n-rGO Heterojunction Based Self-Powered UV Photodetectors

Authors: P. Joshna, Souvik Kundu

Abstract:

Detection of ultraviolet (UV) radiation is very important as it has exhibited a profound influence on humankind and other existences, including military equipment. In this work, a self-powered UV photodetector was reported based on oxides heterojunctions. The thin films of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) were used for the formation of p-n heterojunction. Low-Cost and low-temperature chemical synthesis was utilized to prepare the oxides, and the spin coating technique was employed to deposit those onto indium doped tin oxide (ITO) coated glass substrates. The top electrode platinum was deposited utilizing physical vapor evaporation technique. NiO offers strong UV absorption with high hole mobility, and rGO prevents the recombination rate by separating electrons out from the photogenerated carriers. Several structural characterizations such as x-ray diffraction, atomic force microscope, scanning electron microscope were used to study the materials crystallinity, microstructures, and surface roughness. On one side, the oxides were found to be polycrystalline in nature, and no secondary phases were present. On the other side, surface roughness was found to be low with no pit holes, which depicts the formation of high-quality oxides thin films. Whereas, x-ray photoelectron spectroscopy was employed to study the chemical compositions and oxidation structures. The electrical characterizations such as current-voltage and current response were also performed on the device to determine the responsivity, detectivity, and external quantum efficiency under dark and UV illumination. This p-n heterojunction device offered faster photoresponse and high on-off ratio under 365 nm UV light illumination of zero bias. The device based on the proposed architecture shows the efficacy of the oxides heterojunction for efficient UV photodetection under zero bias, which opens up a new path towards the development of self-powered photodetector for environment and health monitoring sector.

Keywords: chemical synthesis, oxides, photodetectors, spin coating

Procedia PDF Downloads 123
1677 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 131
1676 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 323
1675 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 402
1674 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation

Authors: Mohamed Laamim, Abdelilah Rochd, Aboubakr Benazzouz, Abderrahim El Fadili

Abstract:

Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.

Keywords: smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.

Procedia PDF Downloads 140
1673 A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor

Authors: Youn-Sung Kim, Mi-Sung Kim, Jae-Kun Lee

Abstract:

This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample.

Keywords: accelerated life cycle test, motor reliability test, motor for washing machine, BLDC motor

Procedia PDF Downloads 635
1672 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining

Procedia PDF Downloads 121
1671 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 169
1670 Development of a Two-Step 'Green' Process for (-) Ambrafuran Production

Authors: Lucia Steenkamp, Chris V. D. Westhuyzen, Kgama Mathiba

Abstract:

Ambergris, and more specifically its oxidation product (–)-ambrafuran, is a scarce, valuable, and sought-after perfumery ingredient. The material is used as a fixative agent to stabilise perfumes in formulations by reducing the evaporation rate of volatile substances. Ambergris is a metabolic product of the sperm whale (Physeter macrocephatus L.), resulting from intestinal irritation. Chemically, (–)-ambrafuran is produced from the natural product sclareol in eight synthetic steps – in the process using harsh and often toxic chemicals to do so. An overall yield of no more than 76% can be achieved in some routes, but generally, this is lower. A new 'green' route has been developed in our laboratory in which sclareol, extracted from the Clary sage plant, is converted to (–)-ambrafuran in two steps with an overall yield in excess of 80%. The first step uses a microorganism, Hyphozyma roseoniger, to bioconvert sclareol to an intermediate diol using substrate concentrations up to 50g/L. The yield varies between 90 and 67% depending on the substrate concentration used. The purity of the diol product is 95%, and the diol is used without further purification in the next step. The intermediate diol is then cyclodehydrated to the final product (–)-ambrafuran using a zeolite, which is not harmful to the environment and is readily recycled. The yield of the product is 96%, and following a single recrystallization, the purity of the product is > 99.5%. A preliminary LC-MS study of the bioconversion identified several intermediates produced in the fermentation broth under oxygen-restricted conditions. Initially, a short-lived ketone is produced in equilibrium with a more stable pyranol, a key intermediate in the process. The latter is oxidised under Norrish type I cleavage conditions to yield an acetate, which is hydrolysed either chemically or under lipase action to afford the primary fermentation product, an intermediate diol. All the intermediates identified point to the likely CYP450 action as the key enzyme(s) in the mechanism. This invention is an exceptional example of how the power of biocatalysis, combined with a mild, benign chemical step, can be deployed to replace a total chemical synthesis of a specific chiral antipode of a commercially relevant material.

Keywords: ambrafuran, biocatalysis, fragrance, microorganism

Procedia PDF Downloads 226
1669 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 153
1668 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 506
1667 Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications

Authors: R. Dakir, J. Zbitou, Ahmed Mouhsen, A. Errkik, A. Tajmouati, M. Latrach

Abstract:

The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed.

Keywords: UWB, T-shaped slots, improvement, bandwidth, stub tuning

Procedia PDF Downloads 295
1666 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 301
1665 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 176
1664 Analytical Study of Applying the Account Aggregation Approach in E-Banking Services

Authors: A. Al Drees, A. Alahmari, R. Almuwayshir

Abstract:

The advanced information technology is becoming an important factor in the development of financial services industry, especially the banking industry. It has introduced new ways of delivering banking to the customer, such as Internet Banking. Banks began to look at electronic banking (e-banking) as a means to replace some of their traditional branch functions using the Internet as a new distribution channel. Some consumers have at least more than one account, and across banks, and access these accounts using e-banking services. To look at the current net worth position, customers have to login to each of their accounts and get the details and work on consolidation. This not only takes ample time but it is a repetitive activity at a specified frequency. To address this point, an account aggregation concept is added as a solution. E-banking account aggregation, as one of the e-banking types, appeared to build a stronger relationship with customers. Account Aggregation Service generally refers to a service that allows customers to manage their bank accounts maintained in different institutions through a common Internet banking operating a platform, with a high concern to security and privacy. This paper presents an overview of an e-banking account aggregation approach as a new service in the e-banking field.

Keywords: e-banking, account aggregation, security, enterprise development

Procedia PDF Downloads 327
1663 Impact of Locally Synthesized Carbon Nanotubes against Some Local Clinical Bacterial Isolates

Authors: Abdul Matin, Muazzama Akhtar, Shahid Nisar, Saddaf Mazzar, Umer Rashid

Abstract:

Antibiotic resistance is an increasing concern worldwide now a day. Neisseria gonorrhea and Staphylococcus aureus are known to cause major human sexually transmitted and respiratory diseases respectively. Nanotechnology is an emerging discipline and its application in various fields especially in medical sciences is gigantic. In the present study, we synthesized multi-walled carbon nanotubes (MWNTs) using acid oxidation method and solubilized MWNTs were with length predominantly >500 nm and diameters ranging from 40 to 50 nm. The locally synthesized MWNTs were used against gram positive and negative bacteria to determine their impact on bacterial growth. Clinical isolates of Neisseria gonorrhea (isolate: 4C-11) and Staphylococcus aureus (isolate: 38541) were obtained from local hospital and normally cultured in LB broth at 37°C. Both clinical strains can be obtained on request from University of Gujarat. Spectophometric assay was performed to determine the impact of MWNTs on bacterial growth in vitro. To determine the effect of MWTNs on test organisms, various concentration of MWNTs were used and recorded observation on various time intervals to understand the growth inhibition pattern. Our results demonstrated that MWNTs exhibited toxic effects to Staphylococcus aureus while showed very limited growth inhibition to Neisseria gonorrhea, which suggests the resistant potential of Neisseria against nanoparticles. Our results clearly demonstrate the gradual decrease in bacterial numbers with passage of time when compared with control. Maximum bacterial inhibition was observed at maximum concentration (50 µg/ml). Our future work will include further characterization and mode of action of our locally synthesized MWNTs. In conclusion, we investigated and reported for the first time the inhibitory potential of locally synthesized MWNTs on local clinical isolates of Staphylococcus aureus and Neisseria gonorrhea.

Keywords: antibacterial activity, multi walled carbon nanotubes, Neisseria gonorrhea, spectrophotometer assay, Staphylococcus aureus

Procedia PDF Downloads 314
1662 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 32
1661 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production

Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra

Abstract:

Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.

Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel

Procedia PDF Downloads 319
1660 Hyperelastic Formulation for Orthotropic Materials

Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann

Abstract:

In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.

Keywords: finite strain, hyperelastic, invariants, orthotropic

Procedia PDF Downloads 446
1659 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: breast cancer screening, radiology, thermalytix, artificial intelligence, thermography

Procedia PDF Downloads 291
1658 Classifications of Sleep Apnea (Obstructive, Central, Mixed) and Hypopnea Events Using Wavelet Packet Transform and Support Vector Machines (VSM)

Authors: Benghenia Hadj Abd El Kader

Abstract:

Sleep apnea events as obstructive, central, mixed or hypopnea are characterized by frequent breathing cessations or reduction in upper airflow during sleep. An advanced method for analyzing the patterning of biomedical signals to recognize obstructive sleep apnea and hypopnea is presented. In the aim to extract characteristic parameters, which will be used for classifying the above stated (obstructive, central, mixed) sleep apnea and hypopnea, the proposed method is based first on the analysis of polysomnography signals such as electrocardiogram signal (ECG) and electromyogram (EMG), then classification of the (obstructive, central, mixed) sleep apnea and hypopnea. The analysis is carried out using the wavelet transform technique in order to extract characteristic parameters whereas classification is carried out by applying the SVM (support vector machine) technique. The obtained results show good recognition rates using characteristic parameters.

Keywords: obstructive, central, mixed, sleep apnea, hypopnea, ECG, EMG, wavelet transform, SVM classifier

Procedia PDF Downloads 371
1657 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate

Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung

Abstract:

This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.

Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate

Procedia PDF Downloads 237
1656 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 299
1655 Producing Carbon Nanoparticles from Agricultural and Municipal Wastes

Authors: Kanik Sharma

Abstract:

In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs.

Keywords: nanomaterials, waste plastics, sugarcane bagasse, pyrolysis

Procedia PDF Downloads 228
1654 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: dynamic accessibility, hot spot, transport research, TomTom® API

Procedia PDF Downloads 388
1653 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level

Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil

Abstract:

This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.

Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing

Procedia PDF Downloads 372
1652 A Review of Encryption Algorithms Used in Cloud Computing

Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele

Abstract:

Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.

Keywords: cloud computing, data integrity, confidentiality, privacy, availability

Procedia PDF Downloads 132