Search results for: Motamed Cina
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10

Search results for: Motamed Cina

10 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 291
9 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 370
8 Inclusive Education in South African Universities: Pre-Service Teachers’ Experiences

Authors: Cina Mosito, Toyin Mary Adewumi, Charlene Nissen

Abstract:

One of the goals of inclusive education is to provide learners with suitable learning environments and prospects to best attain their potential. This study sought to determine the experiences of studying inclusive education on pre-service teachers’ teaching within the South African education context. A purposeful sample comprising 6 pre-service teachers was selected from a university of technology located in the Western Cape South Africa. Data were collected using open-ended questionnaires, which were exploratory in nature and analyzed thematically. The findings supported significant proportions of experiences as self-reported by pre-service teachers. The pre-service teachers’ experiences of studying inclusive education included inclusive education as an “eye-opener” to the fact that learners experiencing various barriers to learning can be accommodated in the regular classrooms, exposure to some aspects of inclusive education, such as diversity, learners’ rights, and curriculum differentiation. It was also revealed that studying inclusive education made pre-service teachers love and enjoy teaching more. The study shows that awareness of inclusive education has influenced pre-service teachers in South African schools.

Keywords: experience, inclusive education, pre-service teacher, South Africa

Procedia PDF Downloads 171
7 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa

Authors: Toyin Mary Adewumi, Cina Mosito

Abstract:

Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.

Keywords: good practice, learner, special education needs, inclusion, support

Procedia PDF Downloads 102
6 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 303
5 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 261
4 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil

Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.

Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test

Procedia PDF Downloads 47
3 Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test

Authors: Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement.

Keywords: foundation settlement, ground water table, liquefaction, hake table test

Procedia PDF Downloads 76
2 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 87
1 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests

Authors: Md. Kausar Alam, Ramin Motamed

Abstract:

The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.

Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction

Procedia PDF Downloads 70