Search results for: temporary porous layer
1410 Plane of Equal Settlement above HDD’s Borehole before Operational Condition
Authors: Shokoufeh Sadeghifard
Abstract:
This study is a review of the nature of soil arching that develops in the upper layer of soil during drilling processes before pulling product pipe inside the hole. This study is based on the results of some parametric studies which are investigating the behavior of drained sandy soil above HDD borehole using Plaxis finite element solution. The influence of drilling mud injection in these series of analyses has been ignored. However, a suitable drilling mud pressure helps to achieve stable arch when the height of soil cover over the drilling borehole is not enough. In this study, the soil response to the formation of a HDD borehole is compared to arching theory developed by Terzaghi (1943). It is found that Terzaghi’s approach is capable of describing all of the behaviour seen when a stable arch forms. According to the numerical results, a suitable safe depth of 4D, D is borehole diameter, is suggested for typical range of HDD borehole in sandy soil.Keywords: HDD, Plaxis, finite element, arching, settlement, drilling
Procedia PDF Downloads 3551409 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode
Authors: Sh. Heidari, A. J. Andrews, A. Oberoi
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon
Procedia PDF Downloads 5001408 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles
Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat
Abstract:
The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.Keywords: demulsifier, dehydration, silicon dioxide, nanoparticle
Procedia PDF Downloads 4021407 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells
Authors: Mariyappan Shanmugam, Bin Yu
Abstract:
Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier
Procedia PDF Downloads 3301406 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures
Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov
Abstract:
At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells
Procedia PDF Downloads 2121405 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory
Authors: Xiaochen Mu
Abstract:
Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.Keywords: data protection, property rights, intellectual property, Big data
Procedia PDF Downloads 391404 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models
Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach
Abstract:
In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model
Procedia PDF Downloads 1851403 Associated Problems with the Open Dump Site and Its Possible Solutions
Authors: Pangkaj Kumar Mahanta, Md. Rafizul Islam
Abstract:
The rapid growth of the population causes a substantial amount of increase in household waste all over the world. Waste management is becoming one of the most challenging phenomena in the present day. The most environmentally friendly final disposal process of waste is sanitary landfilling, which is practiced in most developing countries. However, in Southeast Asia, most of the final disposal point is an open dump site. Due to the ignominy of proper management of waste and monitoring, the surrounding environment gets polluted more by the open dump site in comparison with a sanitary landfill. Khulna is 3rd largest metropolitan city in Bangladesh, having a population of around 1.5 million and producing approximately 450 tons per day of Municipal Solid Waste. The Municipal solid waste of Khulna city is disposed of in Rajbandh open dump site. The surrounding air is being polluted by the gas produced in the open dump site. Also, the open dump site produces leachate, which contains various heavy metals like Cadmium (Cd), Chromium (Cr), Lead (Pb), Manganese (Mn), Mercury (Hg), Strontium (Sr), etc. Leachate pollutes the soil as well as the groundwater of the open dump site and also the surrounding area through seepage. Moreover, during the rainy season, the surface water is polluted by leachate runoff. Also, the plastic waste flowing out from the open dump site through various drivers pollutes the nearby environment. The health risk assessment associated with heavy metals was carried out by computing the chronic daily intake (CDI), hazard quotient (HQ), and hazard index (HI) via different exposure pathways following the USEPA guidelines. For ecological risk, potential contamination index (Cp), Contamination factor (CF), contamination load index (PLI), numerical integrated contamination factor (NICF), enrichment factor (EF), ecological risk index (ER), and potential ecological risk index (PERI) were computed. The health risk and ecological risk assessment results reveal that some heavy metals possess strong health and ecological risk. In addition, the child faces higher harmful health risks from several heavy metals than the adult for all the exposure pathways and media. The conversion of an open dump site into a sanitary landfill and a proper management system can reduce the problems associated with an open dump site. In the sanitary landfill, the produced gas will be managed properly to save the surrounding atmosphere from being polluted. The seepage of leachate can be minimized by installing a compacted clay layer (CCL) as a baseline and leachate collection in a sanitary landfill to save the underlying soil layer and surrounding water bodies from leachate. Another important component of a sanitary landfill is the conversion of plastic waste to energy will minimize the plastic pollution in the landfill area and also the surrounding soil and water bodies. Also, in the sanitary landfill, the bio-waste can be used to make compost to reduce the volume of bio-waste and proper utilization of the landfill area.Keywords: ecological risk, health risk, open dump site, sanitary landfill
Procedia PDF Downloads 1931402 An Algorithm for Removal of Noise from X-Ray Images
Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See
Abstract:
In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF
Procedia PDF Downloads 3831401 Petrology, Geochemistry and Formation Conditions of Metaophiolites of the Loki Crystalline Massif (the Caucasus)
Authors: Irakli Gamkrelidze, David Shengelia, Tamara Tsutsunava, Giorgi Chichinadze, Giorgi Beridze, Ketevan Tedliashvili, Tamara Tsamalashvili
Abstract:
The Loki crystalline massif crops out in the Caucasian region and the geological retrospective represent the northern marginal part of the Baiburt-Sevanian terrain (island arc), bordering with the Paleotethys oceanic basin in the north. The pre-Alpine basement of the massif is built up of Lower-Middle Paleozoic metamorphic complex (metasedimentary and metabasite rocks), Upper Devonian quartz-diorites and Late Variscan granites. Earlier metamorphic complex was considered as an indivisible set including suites with different degree of metamorphism. Systematic geologic, petrologic and geochemical investigations of the massif’s rocks suggest the different conception on composition, structure and formation conditions of the massif. In particular, there are two main rock types in the Loki massif: the oldest autochthonous series of gneissic quartz-diorites and cutting them granites. The massif is flanked on its western side by a volcano-sedimentary sequence, metamorphosed to low-T facies. Petrologic, metamorphic and structural differences in this sequence prove the existence of a number of discrete units (overthrust sheets). One of them, the metabasic sheet represents the fragment of ophiolite complex. It comprises transition types of the second and third layers of the Paleooceanic crust: the upper noncumulated part of the third layer gabbro component and the following lowest part of the parallel diabase dykes of the second layer. The ophiolites are represented by metagabbros, metagabbro-diabases, metadiabases and amphibolite schists. According to the content of petrogenic components and additive elements in metabasites is stated that the protolith of metabasites belongs to petrochemical type of tholeiitic series of basalts. The parental magma of metaophiolites is of E-MORB composition, and by petrochemical parameters, it is very close to the composition of intraplate basalts. The dykes of hypabissal leucocratic siliceous and medium magmatic rocks associated with the metaophiolite sheet form the separate complex. They are granitoids with the extremely low content of CaO and quartz-diorite porphyries. According to various petrochemical parameters, these rocks have mixed characteristics. Their formation took place in spreading conditions or in the areas of manifestation of plumes most likely of island arc type. The metamorphism degree of the metaophiolites corresponds to a very low stage of green schist facies. The rocks of the metaophiolite complex are obducted from the Paleotethys Ocean. Geological and paleomagnetic data show that the primary location of the ocean is supposed to be to the north of the Loki crystalline massif.Keywords: the Caucasus, crystalline massif, ophiolites, tectonic sheet
Procedia PDF Downloads 2741400 Behavior of Square Reinforced-Concrete Columns Strenghtened with Carbon Fiber Reinforced Polymers (CFRP) under Concentric Loading
Authors: Dana Abed, Mu`Tasim Abdel-Jaber, Nasim Shatarat
Abstract:
This study aims at investigating the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymer (CFRP) wrapped square reinforced concrete short columns. Three sets of columns were built for this purpose: 200x200x1200 mm; 250x250x1500 mm and 300x300x1800 mm. Each set includes a control column and a strengthened column with one layer of CFRP sheets. All columns were tested under the effect of pure axial compression load. The results of the study show that using CFRP sheets resulted in capacity enhancement of 37%, 32% and 27% for the 200×200, 250×250, and 300×300 mm, respectively. The results of the experimental program demonstrated that the percentage of improvement in strength decreased by increasing the cross-sectional size of the column.Keywords: CFRP, columns, concentric loading, cross-sectional
Procedia PDF Downloads 2871399 Biodistribution Study of 68GA-PDTMP as a New Bone Pet Imaging Agent
Authors: N. Tadayon, H. Yousefnia, S. Zolghadri, A. Ramazani, A. R. Jalilian
Abstract:
In this study, 68Ga-PDTMP was prepared as a new agent for bone imaging. 68Ga was obtained from SnO2 based generator. A certain volume of the PDTMP solution was added to the vial containing 68GaCl3 and the pH of the mixture was adjusted to 4 using HEPES. Radiochemical purity of the radiolabelled complex was checked by thin layer chromatography. Biodistribution of this new agent was assessed in rats after intravenously injection of the complex. For this purpose, the rats were killed at specified times after injection and the weight and activity of each organ was measured. Injected dose per gram was calculated by dividing the activity of each organ to the total injected activity and the mass of each organ. As expected the most of the activity was accumulated in the bone tissue. The radiolabelled compound was extracted from blood very fast. This new bone-seeking complex can be considered as a good candidate of PET-based radiopharmaceutical for imaging of bone metastases.Keywords: biodistribution, Ga-68, imaging, PDTMP
Procedia PDF Downloads 3581398 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow
Authors: Sudipto Sarkar, Anamika Paul
Abstract:
Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio
Procedia PDF Downloads 1111397 Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique
Authors: Azim Hilmy Mohamad Yusof, Muhamad Iqbal Mubarak Faharul Azman, Nur Azwin Ismail, Noer El Hidayah Ismail
Abstract:
Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone.Keywords: 2-D resistivity imaging, microcline granite, salt water intrusion, water infiltration
Procedia PDF Downloads 3421396 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.Keywords: soil organic carbon, soil inorganic carbon, carbon sequestration, open burning, sugarcane
Procedia PDF Downloads 3061395 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy
Authors: Aneek Kuila, Yaron Paz
Abstract:
MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis
Procedia PDF Downloads 591394 Big Brain: A Single Database System for a Federated Data Warehouse Architecture
Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf
Abstract:
Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)
Procedia PDF Downloads 2361393 Formation of Protective Silicide-Aluminide Coating on Gamma-TiAl Advanced Material
Authors: S. Nouri
Abstract:
In this study, the Si-aluminide coating was prepared on gamma-TiAl [Ti-45Al-2Nb-2Mn-1B (at. %)] via liquid-phase slurry procedure. The high temperature oxidation resistance of this diffusion coating was evaluated at 1100 °C for 400 hours. The results of the isothermal oxidation showed that the formation of Si-aluminide coating can remarkably improve the high temperature oxidation of bare gamma-TiAl alloy. The identification of oxide scale microstructure showed that the formation of protective Al2O3+SiO2 mixed oxide scale along with a continuous, compact and uniform layer of Ti5Si3 beneath the surface oxide scale can act as an oxygen diffusion barrier during the high temperature oxidation. The other possible mechanisms related to the formation of Si-aluminide coating and oxide scales were also discussed.Keywords: Gamma-TiAl alloy, high temperature oxidation, Si-aluminide coating, slurry procedure
Procedia PDF Downloads 1781392 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2741391 [Keynote Talk]: Formal Specification and Description Language and Message Sequence Chart to Model and Validate Session Initiation Protocol Services
Authors: Sa’ed Abed, Mohammad H. Al Shayeji, Ovais Ahmed, Sahel Alouneh
Abstract:
Session Initiation Protocol (SIP) is a signaling layer protocol for building, adjusting and ending sessions among participants including Internet conferences, telephone calls and multimedia distribution. SIP facilitates user movement by proxying and forwarding requests to the present location of the user. In this paper, we provide a formal Specification and Description Language (SDL) and Message Sequence Chart (MSC) to model and define the Internet Engineering Task Force (IETF) SIP protocol and its sample services resulted from informal SIP specification. We create an “Abstract User Interface” using case analysis so that can be applied to identify SIP services more explicitly. The issued sample SIP features are then used as case scenarios; they are revised in MSCs format and validated to their corresponding SDL models.Keywords: modeling, MSC, SDL, SIP, validating
Procedia PDF Downloads 2101390 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 281389 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions
Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban
Abstract:
The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.Keywords: ulexite, sodium dihydrogen phosphate, leaching kinetics, boron
Procedia PDF Downloads 3071388 Bioactive Rare Acetogenins from the Red Alga Laurencia obtusa
Authors: Mohamed A. Ghandourah, Walied M. Alarif, Nahed O. Bawakid
Abstract:
Halogenated cyclic enynes and terpenoids are commonly identified among secondary metabolites of the genus Laurencia. Laurencian acetogenins are entirly C15 non-terpenoid haloethers with different carbocyclic nuclei; a specimen of the Red Sea red alga L. obtusa was investigated for its acetogenin content. The dichloromethane extract of the air-dried red algal material was fractionated on aluminum oxide column preparative thin-layer chromatography. Three new rare C12 acetogenin derivatives (1-3) were isolated from the organic extract obtained from Laurencia obtusa, collected from the territorial Red Sea water of Saudi Arabia. The structures of the isolated metabolites were established by means of spectroscopical data analyses. Examining the isolated compounds in activated human peripheral blood mononuclear cells (PBMC) revealed potent Anti-inflammatory activity as evidenced by inhibition of NFκB and release of other inflammatory mediators like TNF-α, IL-1β and IL-6.Keywords: Red Sea, red algae, fatty acids, spectroscopy, anti-inflammatory
Procedia PDF Downloads 1491387 Effect of Temperature on the Structural and Optical Properties of ZnS Thin Films Obtained by Chemical Bath Deposition in Acidic Medium
Authors: Hamid Merzouk, Dajhida Talantikite, Amel Tounsi
Abstract:
Thin films of ZnS have been deposited by chemical route into acidic medium. The deposition time fixed at 5 hours, and the bath temperature varied from 80° C to 95°C with an interval of 5°C. The X-ray diffraction (XRD), UV/ visible spectrophotometry, Fourier Transform Infrared spectroscopy (FTIR) have been used to study the effect of temperature on the structural and optical properties of ZnS thin films. The XRD spectrum of the ZnS layer obtained shows an increase of peaks intensity of ZnS with increasing bath temperature. The study of optical properties exhibit good transmittance (60–80% in the visible region), and the band gap energy of the ZnS thin film decrease from 3.71 eV to 3.64 eV while the refractive index (n) increase with increasing temperature bath. The FTIR analyze confirm our studies and show characteristics bands of vibration of Zn-S.Keywords: ZnS thin films, XRD spectra, optical gap, XRD
Procedia PDF Downloads 1551386 A Study on the Etching Characteristics of High aspect ratio Oxide Etching Using C4F6 Plasma in Inductively Coupled Plasma with Low Frequency Bias
Authors: ByungJun Woo
Abstract:
In this study, high-aspect-ratio (HAR) oxide etching characteristics in inductively coupled plasma were investigated using low frequency (2 MHz) bias power with C4F6 gas. An experiment was conducted using CF4/C4F6/He as the mixed gas. A 100 nm (etch area)/500 nm (mask area) line patterns were used, and the etch cross-section and etch selectivity of the amorphous carbon layer thin film were derived using a scanning electron microscope. Ion density was extracted using a double Langmuir probe, and CFx and F neutral species were observed via optical emission spectroscopy. Based on these results, the possibility for HAR oxide etching using C4F6 gas chemistry was suggested in this work. These etching results also indicate that the use of C4F6 gas can significantly contribute to the development of next-generation HAR oxide etching.Keywords: plasma, etching, C4F6, high aspect ratio, inductively coupled plasma
Procedia PDF Downloads 731385 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.Keywords: operating temperature, polystyrene insulation, thermal conductivity, cooling load
Procedia PDF Downloads 3771384 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 1441383 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 3461382 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland
Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski
Abstract:
Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics
Procedia PDF Downloads 4011381 Integrating Human Preferences into the Automated Decisions of Unmanned Aerial Vehicles
Authors: Arwa Khannoussi, Alexandru-Liviu Olteanu, Pritesh Narayan, Catherine Dezan, Jean-Philippe Diguet, Patrick Meyer, Jacques Petit-Frere
Abstract:
Due to the nature of autonomous Unmanned Aerial Vehicles (UAV) missions, it is important that the decisions of a UAV stay consistent with the priorities of an operator, while at the same time allowing them to be easily audited and explained. We propose a multi-layer decision engine that integrates the operator (human) preferences by using the Multi-Criteria Decision Aiding (MCDA) methods. A software implementation of a UAV simulator and of the decision engine is presented to highlight the advantage of using such techniques on high-level decisions. We demonstrate that, with such a preference-based decision engine, the decisions of the UAV are compatible with the priorities of the operator, which in turn increases her/his confidence in its autonomous behavior.Keywords: autonomous UAV, multi-criteria decision aiding, multi-layers decision engine, operator's preferences, traceable decisions, UAV simulation
Procedia PDF Downloads 255