Search results for: Mariyappan Shanmugam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Search results for: Mariyappan Shanmugam

12 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells

Authors: Mariyappan Shanmugam, Bin Yu

Abstract:

Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier

Procedia PDF Downloads 299
11 Influence of Nano Copper Slag in Strength Behavior of Lime Stabilized Soil

Authors: V. K. Stalin, M. Kirithika, K. Shanmugam, K. Tharini

Abstract:

Nanotechnology has been widely used in many applications such as medical, electronics, robotics and also in geotechnical engineering area through stabilization of bore holes, grouting etc. In this paper, an attempt is made for understanding the influence of nano copper slag (1%, 2% & 3%) on the index, compaction and UCC strength properties of natural soil (CH type) with and without lime stabilization for immediate and 7 days curing period. Results indicated that upto 1% of Nano copper slag, there is an increment in UC strength of virgin soil and lime stabilised soil. Beyond 1% nano copper slag, there is a steep reduction in UC strength and increase of plasticity both in lime stabilised soil and virgin soil. The effect of lime is found to show more influence on large surface area of nano copper slag in natural soil. For both immediate and curing effect, with 1% of Nano copper slag, the maximum unconfined compressive strength was 38% and 106% higher than that of the virgin soil strength.

Keywords: lime, nano copper slag, SEM, XRD, stabilisation

Procedia PDF Downloads 371
10 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 66
9 Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy

Authors: Ajay Krishnamurthy, Mariyappan Mahesh Kumar, Sellamuthu Periyar Selvam

Abstract:

Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical.

Keywords: DPPH, fourier-transform infrared spectroscopy (FTIR), Hylocereus undatus, Garcinia indica

Procedia PDF Downloads 146
8 Elementary Education Outcome Efficiency in Indian States

Authors: Jyotsna Rosario, K. R. Shanmugam

Abstract:

Since elementary education is a merit good, considerable public resources are allocated to universalise it. However, elementary education outcomes vary across the Indian States. Evidences indicate that while some states are lagging in elementary education outcome primarily due to lack of resources and poor schooling infrastructure, others are lagging despite resource abundance and well-developed schooling infrastructure. Addressing the issue of efficiency, the study employs Stochastic Frontier Analysis for panel data of 27 Indian states from 2012-13 to 2017-18 to estimate the technical efficiency of State governments in generating enrolment. The mean efficiency of states was estimated to be 58%. Punjab, Meghalaya, and West Bengal were found to be the most efficient states. Whereas Jammu and Kashmir, Nagaland, Madhya Pradesh, and Odisha are one of the most inefficient states. This study emphasizes the efficient utilisation of public resources and helps in the identification of best practices.

Keywords: technical efficiency, public expenditure, elementary education outcome, stochastic frontier analysis

Procedia PDF Downloads 139
7 Privacy-Preserving Model for Social Network Sites to Prevent Unwanted Information Diffusion

Authors: Sanaz Kavianpour, Zuraini Ismail, Bharanidharan Shanmugam

Abstract:

Social Network Sites (SNSs) can be served as an invaluable platform to transfer the information across a large number of individuals. A substantial component of communicating and managing information is to identify which individual will influence others in propagating information and also whether dissemination of information in the absence of social signals about that information will be occurred or not. Classifying the final audience of social data is difficult as controlling the social contexts which transfers among individuals are not completely possible. Hence, undesirable information diffusion to an unauthorized individual on SNSs can threaten individuals’ privacy. This paper highlights the information diffusion in SNSs and moreover it emphasizes the most significant privacy issues to individuals of SNSs. The goal of this paper is to propose a privacy-preserving model that has urgent regards with individuals’ data in order to control availability of data and improve privacy by providing access to the data for an appropriate third parties without compromising the advantages of information sharing through SNSs.

Keywords: anonymization algorithm, classification algorithm, information diffusion, privacy, social network sites

Procedia PDF Downloads 285
6 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System

Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam

Abstract:

Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.

Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)

Procedia PDF Downloads 317
5 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite

Authors: Nandhini Ravi, Muthukumaran Shanmugam

Abstract:

Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.

Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite

Procedia PDF Downloads 124
4 Hybrid Reusable Launch Vehicle for Space Application A Naval Approach

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

In order to reduce the cost of launching satellite and payloads to the orbit this project envisages some immense combined technology. This new technology in space odyssey contains literally four concepts. The first mode in this innovation is flight mission characteristics which, says how the mission will induct. The conventional technique of magnetic levitation will help us to produce the initial thrust. The name states reusable launch vehicle shows its viability of reuseness. The flight consists miniature rocket which produces the required thrust and the two JATO (jet assisted takeoff) boosters which gives the initial boost for the vehicle. The vehicle ostensibly looks like an airplane design and will be located on the super conducting rail track. When the high power electric current given to the rail track, the vehicle starts floating as per the principle of magnetic levitation. If the flight reaches the particular takeoff distance the two boosters gets starts and will give the 48KN thrust each. Obviously it`ll follow the vertical path up to the atmosphere end/start to space. As soon as it gets its speed the two boosters will cutoff. Once it reaches the space the inbuilt spacecraft keep the satellite in the desired orbit. When the work finishes, the apogee motors gives the initial kick to the vehicle to come in to the earth’s atmosphere with 22N thrust and automatically comes to the ground by following the free fall, the help of gravitational force. After the flying region it makes the spiral flight mode then gets landing where the super conducting levitated rail track located. It will catch up the vehicle and keep it by changing the poles of magnets and varying the current. Initial cost for making this vehicle might be high but for the frequent usage this will reduce the launch cost exactly half than the now-a-days technology. The incorporation of such a mechanism gives `hybrid` and the reusability gives `reusable launch vehicle` and ultimately Hybrid reusable launch vehicle.

Keywords: the two JATO (jet assisted takeoff) boosters, magnetic levitation, 48KN thrust each, 22N thrust and automatically comes to the ground

Procedia PDF Downloads 395
3 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems

Procedia PDF Downloads 62
2 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 58
1 Nuclear Powered UAV for Surveillances and Aerial Photography

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

Now-a-days for surveillances unmanned aerial vehicle plays a vital role. Not only for surveillances, aerial photography disaster management and the notice of earth behavior UAV1s envisages meticulously. To reduce the maintenance and fuel nuclear powered Vehicles are greater support. The design consideration is much important for the UAV manufacturing industry and Research and development agency. Eventually design is looking like a pentagon shaped fuselage and black rubber coated paint in order to escape from the enemy radar and other targets. The pentagon shape fuselage has large space to keep the mini nuclear reactor inside and the material is carbon – carbon fiber specially designed by the software called cosmol and hyper mesh 14.2. So the weight consideration will produce the positive result for productivity. The walls of the fuselage are coated with lead and protective shield. A double layer of W/Bi sheet is proposed for radiation protection at the energy range of 70 Kev to 90 Kev. The designed W/bi sheet, only 0.14 mm thick and is 36% light. The properties of the fillers were determined from zeta potential and particle size measurements. The Exposes of the radiation can be attenuated by 3 ways such as minimizing exposure time, Maximizing distance from the radiation source and shielding the whole vehicle. The inside reactor will be switched ON when the UAV starts its cruise. The moderators and the control rods can be inserted by automation technique by newly developed software. The heat generated by the reactor will be used to run the turbine which is fixed inside the UAV called mini turbine with natural rubber composite Shaft radiation shield. Cooling system will be in two mode such as liquid and air cooled. Liquid coolant for the heat regeneration is ordinary water, liquid sodium, helium and the walls are made up of regenerative and radiation protective material. The other components like camera and arms bay will be located at the bottom of the UAV high are specially made products in order to escape from the radiation. They are coated with lead Pb and natural rubber composite material. This technique provides the long rang and endurance for eternal flight mission until we need any changeability of parts or product. This UAV has the special advantage of ` land on String` means it`ll land at electric line to charge the automated electronics. Then the fuel is enriched uranium (< 5% U - 235) contains hundreds of fuel pins. This technique provides eternal duty for surveillances and aerial photography. The landing of the vehicle is ease of operation likewise the takeoff is also easier than any other mechanism which present in nowadays. This UAV gives great immense and immaculate technology for surveillance and target detecting and smashing the target.

Keywords: mini turbine, liquid coolant for the heat regeneration, in order to escape from the radiation, eternal flight mission, it`ll land at electric line

Procedia PDF Downloads 374