Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1144

Search results for: poisson noise

1144 An Algorithm for Removal of Noise from X-Ray Images

Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See


In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.

Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF

Procedia PDF Downloads 287
1143 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li


This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 220
1142 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad Daba, Jean-Pierre Dubois


Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process

Procedia PDF Downloads 388
1141 Noise Removal Techniques in Medical Images

Authors: Amhimmid Mohammed Saffour, Abdelkader Salama


Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.

Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB

Procedia PDF Downloads 247
1140 Characterization of the Upper Crust in Botswana Using Vp/Vs and Poisson's Ratios from Body Waves

Authors: Rapelang E. Simon, Thebeetsile A. Olebetse, Joseph R. Maritinkole, Ruth O. Moleleke


The P and S wave seismic velocity ratios (Vp/Vs) of some aftershocks are investigated using the method ofWadati diagrams. These aftershocks occurred after the 3rdApril 2017 Botswana’s Mw 6.5 earthquake and were recorded by the Network of Autonomously Recording Seismographs (NARS)-Botswana temporary network deployed from 2013 to 2018. In this paper, P and S wave data with good signal-to-noise ratiofrom twenty events of local magnitude greater or equal to 4.0are analysed with the Seisan software and used to infer properties of the upper crust in Botswana. The Vp/Vsratiosare determined from the travel-times of body waves and then converted to Poisson’s ratio, which is useful in determining the physical state of the subsurface materials. The Vp/Vs ratios of the upper crust in Botswana show regional variations from 1.70 to 1.77, with an average of 1.73. The Poisson’s ratios range from 0.24to 0.27 with an average of 0.25 and correlate well with the geological structures in Botswana.

Keywords: Botswana, earthquake, poisson's ratio, seismic velocity, Vp/Vs ratio

Procedia PDF Downloads 59
1139 The Road to Tunable Structures: Comparison of Experimentally Characterised and Numerical Modelled Auxetic Perforated Sheet Structures

Authors: Arthur Thirion


Auxetic geometries allow the generation of a negative Poisson ratio (NPR) in conventional materials. This behaviour allows materials to have certain improved mechanical properties, including impact resistance and altered synclastic behaviour. This means these structures have significant potential when it comes to applications as chronic wound dressings. To this end, 6 different "perforated sheet" structure types were 3D printed. These structures all had variations of key geometrical features included cell length and angle. These were tested in compression and tension to assess their Poisson ratio. Both a positive and negative Poisson ratio was generated by the structures depending on the loading. The a/b ratio followed by θ has been shown to impact the Poisson ratio significantly. There is still a significant discrepancy between modelled and observed behaviour.

Keywords: auxetic materials, 3D printing, negative Poisson's ratio, tunable Poisson's ratio

Procedia PDF Downloads 6
1138 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet

Authors: Amir Moslemi, Amir movafeghi, Shahab Moradi


One of the most important challenging factors in medical images is nominated as noise.Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjected to low quality due to the noise. The quality of CT images is dependent on the absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on the purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete wavelet transform(DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result in good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).

Keywords: computed tomography (CT), noise reduction, curve-let, contour-let, signal to noise peak-peak ratio (PSNR), structure similarity (Ssim), absorbed dose to patient (ADP)

Procedia PDF Downloads 356
1137 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra


This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics

Procedia PDF Downloads 389
1136 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam

Authors: Mohammad Tahmasebipour, Hosein Salarpour


Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.

Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method

Procedia PDF Downloads 386
1135 Population Size Estimation Based on the GPD

Authors: O. Anan, D. Böhning, A. Maruotti


The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.

Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count

Procedia PDF Downloads 364
1134 Hearing Conservation Aspects of Soldier’s Exposure to Harmfull Noise within Military Armored Vehicles

Authors: Fink Nir


Soldiers within armored vehicles are exposed to continuous noise reaching levels as high as 120 dB. The use of hearing protection devices (HPD) may attenuate noise by as 25 dB, but attenuated noise reaching the ear is still harmful and may result in hearing loss. Hearing conservation programs in the military suggest methods to manage the harmful effects of noise. These include noise absorption within vehicles, evaluating HPD's performance, limiting time exposure, and providing guidance.

Keywords: armored vehicle noise, hearing loss, hearing protection devices, military noise, noise attenuation

Procedia PDF Downloads 9
1133 Digital Forgery Detection by Signal Noise Inconsistency

Authors: Bo Liu, Chi-Man Pun


A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.

Keywords: forgery detection, splicing forgery, noise estimation, noise

Procedia PDF Downloads 345
1132 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement

Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota


In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.

Keywords: noise abatement, MV noise sources, noise source identification, muffler

Procedia PDF Downloads 185
1131 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang


Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 106
1130 Prediction of Conducted EMI Noise in a Converter

Authors: Jon Cobb, Nasir


Due to higher switching frequencies, the conducted Electromagnetic interference (EMI) noise is generated in a converter. It degrades the performance of a switching converter. Therefore, it is an essential requirement to mitigate EMI noise of high performance converter. Moreover, it includes two types of emission such as common mode (CM) and differential mode (DM) noise. CM noise is due to parasitic capacitance present in a converter and DM noise is caused by switching current. However, there is dire need to understand the main cause of EMI noise. Hence, we propose a novel method to predict conducted EMI noise of different converter topologies during early stage. This paper also presents the comparison of conducted electromagnetic interference (EMI) noise due to different SMPS topologies. We also make an attempt to develop an EMI noise model for a converter which allows detailed performance analysis. The proposed method is applied to different converter, as an example, and experimental results are verified the novel prediction technique.

Keywords: EMI, electromagnetic interference, SMPS, switch-mode power supply, common mode, CM, differential mode, DM, noise

Procedia PDF Downloads 305
1129 Model Averaging for Poisson Regression

Authors: Zhou Jianhong


Model averaging is a desirable approach to deal with model uncertainty, which, however, has rarely been explored for Poisson regression. In this paper, we propose a model averaging procedure based on an unbiased estimator of the expected Kullback-Leibler distance for the Poisson regression. Simulation study shows that the proposed model average estimator outperforms some other commonly used model selection and model average estimators in some situations. Our proposed methods are further applied to a real data example and the advantage of this method is demonstrated again.

Keywords: model averaging, poission regression, Kullback-Leibler distance, statistics

Procedia PDF Downloads 418
1128 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong


This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: defective autoparts products, Bayesian framework, generalized linear mixed model (GLMM), risk factors

Procedia PDF Downloads 492
1127 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong


Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 286
1126 Mapping of Traffic Noise in Riyadh City-Saudi Arabia

Authors: Khaled A. Alsaif, Mosaad A. Foda


The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.

Keywords: noise pollution, road traffic noise, LimA predictor, GPS

Procedia PDF Downloads 202
1125 Evaluation of Musical Conductor Exposure to Noise

Authors: Ahmed Saleh Summan


This article presents the results of a technical report on the evaluation of occupational noise exposures among a musical conductor in a musical rehearsal hall (party–center). A calibrated noise dosimeter was used to measure the personal exposure of a music teacher/conductor for 8 hours in two days of rehearsal involving 90 players. Results showed that noise exposure levels were much higher than the permissible levels regulated 85dBA/8hr by NIOSH. In fact, the first day of measurements recorded the highest exposure levels (91 dBA). A number of factors contributed to these results, such as players number, types of instruments used, and activities. Noise control measures were recommended to solve this situation.

Keywords: noise exposure, music conductors, occupational noise, noise in rooms

Procedia PDF Downloads 29
1124 Noise Reduction by Energising the Boundary Layer

Authors: Kiran P. Kumar, H. M. Nayana, R. Rakshitha, S. Sushmitha


Aircraft noise is a highly concerned problem in the field of the aviation industry. It is necessary to reduce the noise in order to be environment-friendly. Air-frame noise is caused because of the quick separation of the boundary layer over an aircraft body. So, we have to delay the boundary layer separation of an air-frame and engine nacelle. By following a certain procedure boundary layer separation can be reduced by converting laminar into turbulent and hence early separation can be prevented that leads to the noise reduction. This method has a tendency to reduce the noise of the aircraft hence it can prove efficient and environment-friendly than the present Aircraft.

Keywords: airframe, boundary layer, noise, reduction

Procedia PDF Downloads 369
1123 New High Order Group Iterative Schemes in the Solution of Poisson Equation

Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali


We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.

Keywords: explicit group iterative method, finite difference, fourth order compact, Poisson equation

Procedia PDF Downloads 352
1122 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study

Authors: Ana Serafimovic, Karthik Devarajan


Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.

Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence

Procedia PDF Downloads 179
1121 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method

Authors: Luh Eka Suryani, Purhadi


Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.

Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion

Procedia PDF Downloads 71
1120 The Psychological Impact of Industrial Noise on Workers

Authors: Beriache Abderazik


It is clear that the psychological effects of noise and physiological eloquent on the workers, what will inevitably affect the performance of both productivity and efficiency in all its aspects, industrial noise became among the most prominent modern professional problems, That require study and analysis in order to arrive at solutions and ways that you can reduce the effects of industrial noise. These factors, in addition to other reasons, made us try in this research to know the real impact of industrial noise on the professional satisfaction of workers. In light of this title we have identified the following general problem: - Is the professional satisfaction factor varies depending on the noise level in the work environment? For the purpose of ascertaining the veracity of the assumptions, we have a comparative study between two samples of equal workers, the first sample is working under the influence of industrial noise severe about (100 Db), and the second sample is working under the influence of industrial noise is low (about 63 Db), and applied them test the professional satisfaction. The results support the hypotheses and confirm all sincerity.

Keywords: industrial noise, job satisfaction, the psychological effects of noise, work environment

Procedia PDF Downloads 494
1119 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa


The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 269
1118 Traffic Noise Study at Intersection in Bangalore: A Case Study

Authors: Shiva Kumar G.


The present study is to know the level of noises emanated from vehicles in intersections located in urban areas using Sound Level Meter and the possibility of reducing noise levels through traffic flow optimization. The main objective is to study traffic noise level of the Intersections located at on-going metro construction activities and which are away from metro construction activities. To compare traffic noise level between stop phase, go phase and drive phase at the Intersections. To study the effect of traffic noise level of directional movement of traffic and variation in noise level during day and night times. The range of Noise level observed at intersections is between 60 to 105 decibel. The noise level of stop and drive phases were minimum and almost same where go phase had maximum noise level. By comparing noise level of directional movement of traffic, it has been noticed that Vijayanagar intersection has no significant difference in their noise level and all other intersection has a significant difference in their noise level. By comparing noise level of stop, go and drive phase it has been noticed that there was a significant difference in noise level during peak hours compared to off-peak hour. By comparing noise level between Metro and Non-Metro construction activity intersections it has been noticed that there was a significant difference in noise level. By comparing noise level during day and night times, significant differences in noise level were observed at all intersections.

Keywords: noise, metro and non-metro intersections, traffic flow optimization, stop-go and drive phase

Procedia PDF Downloads 260
1117 Modelling Railway Noise Over Large Areas, Assisted by GIS

Authors: Conrad Weber


The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.

Keywords: noise, modeling, GIS, rail

Procedia PDF Downloads 9
1116 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi


We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 239
1115 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye


Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 58