Search results for: ultrasonic remote sensing
277 Sustainable Thermal Energy Storage Technologies: Enhancing Post-Harvest Drying Efficiency in Sub-Saharan Agriculture
Authors: Luís Miguel Estevão Cristóvão, Constâncio Augusto Machanguana, Fernando Chichango, Salvador Grande
Abstract:
Sub-Saharan African nations depend greatly on agriculture, a sector mainly marked by low production. Most of the farmers live in rural areas and employ basic labor-intensive technologies that lead to time inefficiencies and low overall effectiveness. Even with attempts to enhance farmers’ welfare through improved seeds and fertilizers, meaningful outcomes are yet to be achieved due to huge amounts of post-harvest losses. Such losses significantly endanger food security, economic stability, and result in unsustainable agricultural practices because more land, water, labor, energy, fertilizer, and other inputs must be used to produce more food. Drying, as a critical post-harvest process involving simultaneous heat and mass transfer, deserves attention. Among alternative green-energy sources, solar energy-based drying garners attention, particularly for small-scale farmers in remote communities. However, the intermittent nature of solar radiation poses challenges. To address this, energy storage solutions like rock-based thermal energy storage offer cost-effective solutions tailored to the needs of farmers. Methodologically, three solar dryers were constructed of metal, wood, and clay brick. Several tests were carried out with and without energy storage material. Notably, it has been demonstrated that soapstone stands out as a promising material due to its affordability and high specific energy capacity. By implementing these greener technologies, Sub-Saharan African countries could mitigate post-harvest losses, enhance food availability, improve nutrition, and promote sustainable resource utilization.Keywords: energy storage, food security, post-harvest, solar dryer
Procedia PDF Downloads 27276 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments
Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie
Abstract:
Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.Keywords: antibody engineering, biosensor, phage display, unnatural amino acids
Procedia PDF Downloads 146275 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril
Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro
Abstract:
Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics
Procedia PDF Downloads 92274 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water
Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu
Abstract:
Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.Keywords: biotoxin, photonic, ring resonator, sensor
Procedia PDF Downloads 117273 Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept
Authors: J. C. Colmenares, M. Paszkiewicz-Gawron, D. Lomot, S. R. Pradhan, A. Qayyum
Abstract:
This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized.Keywords: heterogeneous photo-catalysis, metal-free carbonaceous materials, selective redox flow sonophotocatalysis, titanium dioxide
Procedia PDF Downloads 102272 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 82271 Exploring Key Elements of Successful Distance Learning Programs: A Case Study in Palau
Authors: Maiya Smith, Tyler Thorne
Abstract:
Background: The Pacific faces multiple healthcare crises, including high rates of noncommunicable diseases, infectious disease outbreaks, and susceptibility to natural disasters. These issues are expected to worsen in the coming decades, increasing the burden on an already understaffed healthcare system. Telehealth is not new to the Pacific, but improvements in technology and accessibility have increased its utility and have already proven to reduce costs and increase access to care in remote areas. Telehealth includes distance learning; a form of education that can help alleviate many healthcare issues by providing continuing education to healthcare professionals and upskilling staff, while decreasing costs. This study examined distance learning programs at the Ministry of Health in the Pacific nation of Palau and identified key elements to their successful distance learning programs. Methods: Staff at the Belau National Hospital in Koror, Palau as well as private practitioners were interviewed to assess distance learning programs utilized. This included physicians, IT personnel, public health members, and department managers of allied health. In total, 36 people were interviewed. Standardized questions and surveys were conducted in person throughout the month of July 2019. Results: Two examples of successful distance learning programs were identified. Looking at the factors that made these programs successful, as well as consulting with staff who undertook other distance learning programs, four factors for success were determined: having a cohort, having a facilitator, dedicated study time off from work, and motivation. Discussion: In countries as geographically isolated as the Pacific, with poor access to specialists and resources, telehealth has the potential to radically change how healthcare is delivered. Palau shares similar resources and issues as other countries in the Pacific and the lessons learned from their successful programs can be adapted to help other Pacific nations develop their own distance learning programs.Keywords: distance learning, Pacific, Palau, telehealth
Procedia PDF Downloads 143270 Blockchain Is Facilitating Intercultural Entrepreneurship: Memoir of a Persian Non-Fungible Tokens Collection
Authors: Mohammad Afkhami, Saeid Reza Ameli Ranani
Abstract:
Since the bitcoin invention in 2008, blockchain technology surpassed so many innovations that the pioneer networks such as Ethereum are adaptable to host a decentral bunch of information containing pictures, audio, video, domains, etc., or even a metaverse versatile avatar. Transformation of tangible goods into virtual assets, known as AR-utility of luxury products, and the intermixture of reality and virtuality organized a worldwide, semi-regulated, and decentralized marketplace for digital goods. Non-fungible tokens (NFTs) are doing a great help to artists worldwide, sharing diverse cultural outlooks by setting up a remote cross-cultural corporation potential and, at the same time, metamorphosizing the middleman role and ceasing the necessity of having a SWIFT-connected bank account. Under critical sanctions, a group of artists in Tehran did not take for granted such an opportunity to show off their artworks undisturbed, offering an introspective attitude, exerting Iranian motifs while intermingling westernized symbols. The cryptocurrency market has already acquired allocation, and interest in the global domain, paving the way for a flourishing enthusiasm among entrepreneurs who have been preoccupied with high-tech start-ups before. In a project found by Iranian female artists, we decipher the ups and downs of the new cyberculture and the environment it provides to fairly promote the artwork and obstacles it put forward in the way of interested entrepreneurs as we get through the details of starting up an NFT collection. An in-depth interview and empirical encounters with diverse Social Network Sites (SNS) and the strategies that other successful projects deploy to sell their artworks in an international and, at the same time, an anonymous market is the main focus, which shapes the paper fieldwork perspective. In conclusion, we discuss strategies for promoting an NFT project.Keywords: NFT, metaverse, intercultural, art, illustration, start-up, entrepreneurship
Procedia PDF Downloads 103269 Ethnomedicinal Plants Used for Gastrointestinal Ailments by the People of Tribal District Kinnaur (Himachal Pradesh) India
Authors: Geeta, Richa, M. L. Sharma
Abstract:
Himachal Pradesh, a hilly State of India located in the Western Himalayas, with varied altitudinal gradients and climatic conditions, is a repository of plant diversity and the traditional knowledge associated with plants. The State is inhabited by various tribal communities who usually depend upon local plants for curing various ailments. Utilization of plant resources in their day-to-day life has been an age old practice of the people inhabiting this State. The present study pertains to the tribal district Kinnaur of Himachal Pradesh, located between 77°45’ and 79°00’35” east longitudes and between 31°05’50” and 32°05’15” north altitudes. Being a remote area with only very basic medical facilities, local people mostly use traditional herbal medicines for primary healthcare needs. Traditional healers called “Amji” are usually very secretive in revealing their medicinal knowledge to novice and pass on their knowledge to next generation orally. As a result, no written records of healing herbs are available. The aim of present study was to collect and consolidate the ethno-medicinal knowledge of local people of the district about the use of plants for treating gastrointestinal ailments. The ethnobotanical information was collected from the local practitioners, herbal healers and elderly people having rich knowledge about the medicinal herbs through semi-structured questionnaire and key informant discussions. A total 46 plant species belonging to 40 genera and 24 families have been identified which are used as cure for gastrointestinal ailments. Among the parts used for gastointestinal ailments, aerial parts (14%) were followed by the whole plant (13%), root (8%), leaves (6%), flower (5%), fruit and seed (3%) and tuber (1%). These plant species could be prioritized for conservation and subject to further studies related to phytochemical screening for their authenticity. Most of the medicinal plants of the region are collected from the wild and are often harvested for trade. Sustainable harvesting and domestication of the highly traded species from the study area is needed.Keywords: Amji, gastrointestinal, Kinnaur, medicinal plants, traditional knowledge
Procedia PDF Downloads 394268 Project Marayum: Creating a Community Built Mobile Phone Based, Online Web Dictionary for Endangered Philippine Languages
Authors: Samantha Jade Sadural, Kathleen Gay Figueroa, Noel Nicanor Sison II, Francis Miguel Quilab, Samuel Edric Solis, Kiel Gonzales, Alain Andrew Boquiren, Janelle Tan, Mario Carreon
Abstract:
Of the 185 languages in the Philippines, 28 are endangered, 11 are dying off, and 4 are extinct. Language documentation, as a prerequisite to language education, can be one of the ways languages can be preserved. Project Marayum is envisioned to be a collaboratively built, mobile phone-based, online dictionary platform for Philippine languages. Although there are many online language dictionaries available on the Internet, Project Marayum aims to give a sense of ownership to the language community's dictionary as it is built and maintained by the community for the community. From a seed dictionary, members of a language community can suggest changes, add new entries, and provide language examples. Going beyond word definitions, the platform can be used to gather sample sentences and even audio samples of word usage. These changes are reviewed by language experts of the community, sourced from the local state universities or local government units. Approved changes are then added to the dictionary and can be viewed instantly through the Marayum website. A companion mobile phone application allows users to browse the dictionary in remote areas where Internet connectivity is nonexistent. The dictionary will automatically be updated once the user regains Internet access. Project Marayum is still a work in progress. At the time of this abstract's writing, the Project has just entered its second year. Prototypes are currently being tested with the Asi language of Romblon island as its initial language testbed. In October 2020, Project Marayum will have both a webpage and mobile application with Asi, Ilocano, and Cebuano language dictionaries available for use online or for download. In addition, the Marayum platform would be then easily expandable for use of the more endangered language communities. Project Marayum is funded by the Philippines Department of Science and Technology.Keywords: collaborative language dictionary, community-centered lexicography, content management system, software engineering
Procedia PDF Downloads 164267 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback
Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland
Abstract:
In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation
Procedia PDF Downloads 120266 Portable System for the Acquisition and Processing of Electrocardiographic Signals to Obtain Different Metrics of Heart Rate Variability
Authors: Daniel F. Bohorquez, Luis M. Agudelo, Henry H. León
Abstract:
Heart rate variability (HRV) is defined as the temporary variation between heartbeats or RR intervals (distance between R waves in an electrocardiographic signal). This distance is currently a recognized biomarker. With the analysis of the distance, it is possible to assess the sympathetic and parasympathetic nervous systems. These systems are responsible for the regulation of the cardiac muscle. The analysis allows health specialists and researchers to diagnose various pathologies based on this variation. For the acquisition and analysis of HRV taken from a cardiac electrical signal, electronic equipment and analysis software that work independently are currently used. This complicates and delays the process of interpretation and diagnosis. With this delay, the health condition of patients can be put at greater risk. This can lead to an untimely treatment. This document presents a single portable device capable of acquiring electrocardiographic signals and calculating a total of 19 HRV metrics. This reduces the time required, resulting in a timelier intervention. The device has an electrocardiographic signal acquisition card attached to a microcontroller capable of transmitting the cardiac signal wirelessly to a mobile device. In addition, a mobile application was designed to analyze the cardiac waveform. The device calculates the RR and different metrics. The application allows a user to visualize in real-time the cardiac signal and the 19 metrics. The information is exported to a cloud database for remote analysis. The study was performed under controlled conditions in the simulated hospital of the Universidad de la Sabana, Colombia. A total of 60 signals were acquired and analyzed. The device was compared against two reference systems. The results show a strong level of correlation (r > 0.95, p < 0.05) between the 19 metrics compared. Therefore, the use of the portable system evaluated in clinical scenarios controlled by medical specialists and researchers is recommended for the evaluation of the condition of the cardiac system.Keywords: biological signal análisis, heart rate variability (HRV), HRV metrics, mobile app, portable device.
Procedia PDF Downloads 185265 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams
Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname
Abstract:
Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams
Procedia PDF Downloads 140264 Third Eye: A Hybrid Portrayal of Visuospatial Attention through Eye Tracking Research and Modular Arithmetic
Authors: Shareefa Abdullah Al-Maqtari, Ruzaika Omar Basaree, Rafeah Legino
Abstract:
A pictorial representation of hybrid forms in science-art collaboration has become a crucial issue in the course of exploring a new painting technique development. This is straight related to the reception of an invisible-recognition phenomenology. In hybrid pictorial representation of invisible-recognition phenomenology, the challenging issue is how to depict the pictorial features of indescribable objects from its mental source, modality and transparency. This paper proposes the hybrid technique of painting Demonstrate, Resemble, and Synthesize (DRS) through a combination of the hybrid aspect-recognition representation of understanding picture, demonstrative mod, the number theory, pattern in the modular arithmetic system, and the coherence theory of visual attention in the dynamic scenes representation. Multi-methods digital gaze data analyses, pattern-modular table operation design, and rotation parameter were used for the visualization. In the scientific processes, Eye-trackingvideo-sections based was conducted using Tobii T60 remote eye tracking hardware and TobiiStudioTM analysis software to collect and analyze the eye movements of ten participants when watching the video clip, Alexander Paulikevitch’s performance’s ‘Tajwal’. Results: we found that correlation of fixation count in section one was positively and moderately correlated with section two Person’s (r=.10, p < .05, 2-tailed) as well as in fixation duration Person’s (r=.10, p < .05, 2-tailed). However, a paired-samples t-test indicates that scores were significantly higher for the section one (M = 2.2, SD = .6) than for the section two (M = 1.93, SD = .6) t(9) = 2.44, p < .05, d = 0.87. In the visual process, the exported data of gaze number N was resembled the hybrid forms of visuospatial attention using the table-mod-analyses operation. The explored hybrid guideline was simply applicable, and it could be as alternative approach to the sustainability of contemporary visual arts.Keywords: science-art collaboration, hybrid forms, pictorial representation, visuospatial attention, modular arithmetic
Procedia PDF Downloads 364263 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 292262 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area
Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma
Abstract:
The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty
Procedia PDF Downloads 92261 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester
Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni
Abstract:
Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph
Procedia PDF Downloads 190260 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum
Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza
Abstract:
Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin
Procedia PDF Downloads 108259 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH
Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung
Abstract:
In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality
Procedia PDF Downloads 303258 Screening Ecological Risk Assessment at an Old Abandoned Mine in Northern Taiwan
Authors: Hui-Chen Tsai, Chien-Jen Ho, Bo-Wei Power Liang, Ying Shen, Yi-Hsin Lai
Abstract:
Former Taiwan Metal Mining Corporation and its associated 3 wasted flue gas tunnels, hereinafter referred to as 'TMMC', was contaminated with heavy metals, Polychlorinated biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPHs) in soil. Since the contamination had been exposed and unmanaged in the environment for more than 40 years, the extent of the contamination area is estimated to be more than 25 acres. Additionally, TMMC is located in a remote, mountainous area where almost no residents are residing in the 1-km radius area. Thus, it was deemed necessary to conduct an ecological risk assessment in order to evaluate the details of future contaminated site management plan. According to the winter and summer, ecological investigation results, one type of endangered, multiple vulnerable and near threaten plant was discovered, as well as numerous other protected species, such as Crested Serpent Eagle, Crested Goshawk, Black Kite, Brown Shrike, Taiwan Blue Magpie were observed. Ecological soil screening level (Eco-SSLs) developed by USEPA was adopted as a reference to conduct screening assessment. Since all the protected species observed surrounding TMMC site were birds, screening ecological risk assessment was conducted on birds only. The assessment was assessed mainly based on the chemical evaluation, which the contamination in different environmental media was compared directly with the ecological impact levels (EIL) of each evaluation endpoints and the respective hazard quotient (HQ) and hazard index (HI) could be obtained. The preliminary ecological risk assessment results indicated HI is greater than 1. In other words, the biological stressors (birds) were exposed to the contamination, which was already exceeded the dosage that could cause unacceptable impacts to the ecological system. This result was mainly due to the high concentration of arsenic, metal and lead; thus it was suggested the above mention contaminants should be remediated as soon as possible or proper risk management measures should be taken.Keywords: screening, ecological risk assessment, ecological impact levels, risk management
Procedia PDF Downloads 134257 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 252256 Impact of COVID-19 on Radiology Training in Australia and New Zealand
Authors: Preet Gill, Danus Ravindran
Abstract:
These The COVID-19 pandemic resulted in widespread implications for medical specialist training programs worldwide, including radiology. The objective of this study was to investigate the impact of COVID-19 on the Australian and New Zealand radiology trainee experience and well-being, as well as to compare the Australasian experience with that reported by other countries. An anonymised electronic online questionnaire was disseminated to all training members of the Royal Australian and New Zealand College of Radiologists who were radiology trainees during the 2020 – 2022 clinical years. Trainees were questioned about their experience from the beginning of the COVID-19 pandemic in Australasia (March 2020) to the time of survey completion. Participation was voluntary. Questions assessed the impact of the pandemic across multiple domains, including workload (inpatient/outpatient & individual modality volume), teaching, supervision, external learning opportunities, redeployment and trainee wellbeing. Survey responses were collated and compared with other peer reviewed publications. Answer options were primarily in categorical format (nominal and ordinal subtypes, as appropriate). An opportunity to provide free text answers to a minority of questions was provided. While our results mirror that of other countries, which demonstrated reduced case exposure and increased remote teaching and supervision, responses showed variation in the methods utilised by training sites during the height of the pandemic. A significant number of trainees were affected by examination cancellations/postponements and had subspecialty training rotations postponed. The majority of trainees felt that the pandemic had a negative effect on their training. In conclusion, the COVID-19 pandemic has had a significant impact on radiology trainees across Australia and New Zealand. The present study has highlighted the extent of these effects, with most aspects of training impacted. Opportunities exist to utilise this information to create robust workplace strategies to mitigate these negative effects should the need arise in the future.Keywords: COVID-19, radiology, training, pandemic
Procedia PDF Downloads 67255 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity
Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang
Abstract:
In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software
Procedia PDF Downloads 367254 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane
Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua
Abstract:
Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability
Procedia PDF Downloads 325253 Pedagogy of Possibility: Exploring the TVET of Southern African Workers on Foreign Vessels Mediated by Ubiquitous Google and Microsoft apps
Authors: Robin Ferguson
Abstract:
The context which this paper explores is the provision of Technical Vocational Education and Training (TVET) of southern African workers at sea on local and foreign vessels using a blended learning approach. The pedagogical challenge of providing quality education in this context is that multiple African and foreign languages and cultural norms are found amongst the all-male crew; and there are widely differing levels of education, low levels of digital literacy and limited connectivity. The methodology used is a nested case study. The study describes the mechanisms used to provide ongoing, real-time workplace TVET on two foreign vessels. Some training was done in person when the vessels came into port, however, the majority of the TVET was achieved from shore to ship using a combination of commonly available Google and Microsoft Apps and WhatsApp. Voice, video and text in multiple languages were used to accommodate different learning styles. The learning was supported by the development of learning networks using social media. This paper also reflects on the shore-based organisational change processes required to support sea learning. The conceptual framework used is the Theory of Practice Architectures (TPA) as is provides a site-ontological perspective of the sayings/thinkings, doings and relatings of this workplace training which is multiplanar as it plays out at sea and ashore, in-person and on-line. Using TPA, the overarching practice architectures and supporting structures which confound or enable these learning practices are revealed. The contribution which this paper makes is an insight into an innovative vocational pedagogy which promotes ICT-mediated learning amongst workers who suffer from low levels of literacies and limited ICT-access and who work and live in remote places. It is a pedagogy of possibility which crosses the digital divide.Keywords: theory of practice architecture, microsoft, google, whatsapp, vocational pedagogy, mariners, distributed workplaces
Procedia PDF Downloads 82252 Evaluation of Important Transcription Factors and Kinases in Regulating the Signaling Pathways of Cancer Stem Cells With Low and High Proliferation Rate Derived From Colorectal Cancer
Authors: Mohammad Hossein Habibi, Atena Sadat Hosseini
Abstract:
Colorectal cancer is the third leading cause of cancer-related death in the world. Colorectal cancer screening, early detection, and treatment programs could benefit from the most up-to-date information on the disease's burden, given the present worldwide trend of increasing colorectal cancer incidence. Tumor recurrence and resistance are exacerbated by the presence of chemotherapy-resistant cancer stem cells that can generate rapidly proliferating tumor cells. In addition, tumor cells can evolve chemoresistance through adaptation mechanisms. In this work, we used in silico analysis to select suitable GEO datasets. In this study, we compared slow-growing cancer stem cells with high-growth colorectal cancer-derived cancer stem cells. We then evaluated the signal pathways, transcription factors, and kinases associated with these two types of cancer stem cells. A total of 980 upregulated genes and 870 downregulated genes were clustered. MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Fc gamma R-mediated phagocytosis, and Steroid biosynthesis signaling pathways were observed in upregulated genes. Also, caffeine metabolism, amino sugar and nucleotide sugar metabolism, TNF signaling pathway, and cytosolic DNA-sensing pathway were involved in downregulated genes. In the next step, we evaluated the best transcription factors and kinases in two types of cancer stem cells. In this regard, NR2F2, ZEB2, HEY1, and HDGF as transcription factors and PRDM5, SMAD, CBP, and KDM2B as critical kinases in upregulated genes. On the other hand, IRF1, SPDEF, NCOA1, and STAT1 transcription factors and CTNNB1 and CDH7 kinases were regulated low expression genes. Using bioinformatics analysis in the present study, we conducted an in-depth study of colorectal cancer stem cells at low and high growth rates so that we could take further steps to detect and even target these cells. Naturally, more additional tests are needed in this direction.Keywords: colorectal cancer, bioinformatics analysis, transcription factor, kinases, cancer stem cells
Procedia PDF Downloads 126251 Broadband Optical Plasmonic Antennas Using Fano Resonance Effects
Authors: Siamak Dawazdah Emami, Amin Khodaei, Harith Bin Ahmad, Hairul A. Adbul-Rashid
Abstract:
The Fano resonance effect on plasmonic nanoparticle materials results in such materials possessing a number of unique optical properties, and the potential applicability for sensing, nonlinear devices and slow-light devices. A Fano resonance is a consequence of coherent interference between superradiant and subradiant hybridized plasmon modes. Incident light on subradiant modes will initiate excitation that results in superradiant modes, and these superradient modes possess zero or finite dipole moments alongside a comparable negligible coupling with light. This research work details the derivation of an electrodynamics coupling model for the interaction of dipolar transitions and radiation via plasmonic nanoclusters such as quadrimers, pentamers and heptamers. The directivity calculation is analyzed in order to qualify the redirection of emission. The geometry of a configured array of nanostructures strongly influenced the transmission and reflection properties, which subsequently resulted in the directivity of each antenna being related to the nanosphere size and gap distances between the nanospheres in each model’s structure. A well-separated configuration of nanospheres resulted in the structure behaving similarly to monomers, with spectra peaks of a broad superradiant mode being centered within the vicinity of 560 nm wavelength. Reducing the distance between ring nanospheres in pentamers and heptamers to 20~60 nm caused the coupling factor and charge distributions to increase and invoke a subradiant mode centered within the vicinity of 690 nm. Increasing the outside ring’s nanosphere distance from the centered nanospheres caused the coupling factor to decrease, with the coupling factor being inversely proportional to cubic of the distance between nanospheres. This phenomenon led to a dramatic decrease of the superradiant mode at a 200 nm distance between the central nanosphere and outer rings. Effects from a superradiant mode vanished beyond a 240 nm distance between central and outer ring nanospheres.Keywords: fano resonance, optical antenna, plasmonic, nano-clusters
Procedia PDF Downloads 430250 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification
Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou
Abstract:
The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms
Procedia PDF Downloads 249249 Tourism and Sustainability Example Projects in the EU
Authors: Renee Yi-Mond Yuan
Abstract:
The fast development of tourism industries around the world, has largely contributed to many cities, and countries economical and social progress. Past year Taiwan in particular was ranked among one of fastest raise growth country. Thanks to the prominent importance of this phenomenon; seasonal mobility or multipurpose trips have reached more than 1 Billion tourists crossing International borders and more than 4 billion intramural travelers that have nourished the economy and employment in the service sector in most attractive regions, representing about one tenth of World GDP amount, including trade, research, cultural or journalistic purposes. Then the increased activities are giving pressure to the consumption of energy, water, resources, and Greenhouse Gas emissions. The further concentration of tourists in most beautiful sites of the World with consistent supply and reduced pollutions and means for waste control and risks management are challenging the preservation and protection of the natural original environment, including species and their ecosystems, ethnics and their cultures or languages, protection of inherited landscapes and monuments for the future generations to come. In this article, few projects will be analyzed, methods and directions in the EU sustainable development scheme giving way to economical and social activities and preserve rural areas and remote countryside as well as smarter cities development. EU ETS forecasting escalation in the next few decades for road and air, and will reconsider investments and reliance on Biobased alternatives that may turn out solutions and contributions to sustain popularization of tourism development. Study of Examples of Stakeholders practices and Governments efforts, consumer’s attitude to bring new forms of more responsible holidays models: ecotourism, eco-certification, partnerships, investment in technologies and facilities, and possibly create greener perceptions and less impacting demands for the longer term through association, organizations and awards.Keywords: tourism, sustainability, protection, risks management, change in rural/urban environment
Procedia PDF Downloads 335248 Family Health in Families with Children with Autism
Authors: Teresa Isabel Lozano Pérez, Sandra Soca Lozano
Abstract:
In Cuba, the childcare is one of the programs prioritized by the Ministry of Public Health and the birth of a child becomes a desired and rewarding event for the family, which is prepared for the reception of a healthy child. When this does not happen and after the first months of the child's birth begin to appear developmental deviations that indicate the presence of a disorder, the event becomes a live event potentially negative and generates disruptions in the family health. A quantitative, descriptive, and cross-sectional research methodology was conducted to describe the impact on family health of diagnosis of autism in a sample of 25 families of children diagnosed with infantile autism at the University Pediatric Hospital Juan Manuel Marquez Havana, Cuba; in the period between January 2014 and May 2015. The sample was non probabilistic and intentional from the inclusion criteria selected. As instruments, we used a survey to identify the structure of the family, life events inventory and an instrument to assess the relative impact, adaptive resources of family and social support perceived (IRFA) to identify the diagnosis of autism as life event. The main results indicated that the majority of families studied were nuclear, small and medium and in the formation stage. All households surveyed identified the diagnosis of autism in a child as an event of great importance and negative significance for the family, taking in most of the families studied a high impact on the four areas of family health and impact enhancer of involvement in family health. All the studied families do not have sufficient adaptive resources to face this situation, sensing that they received social support frequently, mainly in information and emotional areas. We conclude that the diagnosis of autism one of the members of the families studied is valued as a life event highly significant with unfavorably way causing an enhancer impact of involvement in family health especially in the areas ‘health’ and ‘socio-psychological’. Among the social support networks health institutions, partners and friends are highlighted. We recommend developing intervention strategies in families of these children to support them in the process of adapting the diagnosis.Keywords: family, family health, infantile autism, life event
Procedia PDF Downloads 432