Search results for: human concept learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17906

Search results for: human concept learning

16106 A Web Service-Based Framework for Mining E-Learning Data

Authors: Felermino D. M. A. Ali, S. C. Ng

Abstract:

E-learning is an evolutionary form of distance learning and has become better over time as new technologies emerged. Today, efforts are still being made to embrace E-learning systems with emerging technologies in order to make them better. Among these advancements, Educational Data Mining (EDM) is one that is gaining a huge and increasing popularity due to its wide application for improving the teaching-learning process in online practices. However, even though EDM promises to bring many benefits to educational industry in general and E-learning environments in particular, its principal drawback is the lack of easy to use tools. The current EDM tools usually require users to have some additional technical expertise to effectively perform EDM tasks. Thus, in response to these limitations, this study intends to design and implement an EDM application framework which aims at automating and simplify the development of EDM in E-learning environment. The application framework introduces a Service-Oriented Architecture (SOA) that hides the complexity of technical details and enables users to perform EDM in an automated fashion. The framework was designed based on abstraction, extensibility, and interoperability principles. The framework implementation was made up of three major modules. The first module provides an abstraction for data gathering, which was done by extending Moodle LMS (Learning Management System) source code. The second module provides data mining methods and techniques as services; it was done by converting Weka API into a set of Web services. The third module acts as an intermediary between the first two modules, it contains a user-friendly interface that allows dynamically locating data provider services, and running knowledge discovery tasks on data mining services. An experiment was conducted to evaluate the overhead of the proposed framework through a combination of simulation and implementation. The experiments have shown that the overhead introduced by the SOA mechanism is relatively small, therefore, it has been concluded that a service-oriented architecture can be effectively used to facilitate educational data mining in E-learning environments.

Keywords: educational data mining, e-learning, distributed data mining, moodle, service-oriented architecture, Weka

Procedia PDF Downloads 238
16105 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities

Authors: Chen Wang, Gerard Rowe

Abstract:

The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.

Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education

Procedia PDF Downloads 112
16104 Content Based Instruction: An Interdisciplinary Approach in Promoting English Language Competence

Authors: Sanjeeb Kumar Mohanty

Abstract:

Content Based Instruction (CBI) in English Language Teaching (ELT) basically helps English as Second Language (ESL) learners of English. At the same time, it fosters multidisciplinary style of learning by promoting collaborative learning style. It is an approach to teaching ESL that attempts to combine language with interdisciplinary learning for bettering language proficiency and facilitating content learning. Hence, the basic purpose of CBI is that language should be taught in conjunction with academic subject matter. It helps in establishing the content as well as developing language competency. This study aims at supporting the potential values of interdisciplinary approach in promoting English Language Learning (ELL) by teaching writing skills to a small group of learners and discussing the findings with the teachers from various disciplines in a workshop. The teachers who are oriented, they use the same approach in their classes collaboratively. The inputs from the learners as well as the teachers hopefully raise positive consciousness with regard to the vast benefits that Content Based Instruction can offer in advancing the language competence of the learners.

Keywords: content based instruction, interdisciplinary approach, writing skills, collaborative approach

Procedia PDF Downloads 280
16103 General Architecture for Automation of Machine Learning Practices

Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain

Abstract:

Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.

Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler

Procedia PDF Downloads 61
16102 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment

Authors: Vasiliki Stratidou

Abstract:

Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.

Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games

Procedia PDF Downloads 246
16101 Teacher-Student Relationship and Achievement in Chinese: Potential Mediating Effects of Motivation

Authors: Yuan Liu, Hongyun Liu

Abstract:

Teacher-student relationship plays an important role on facilitating students’ learning behavior, school engagement, and academic outcomes. It is believed that good relationship will enhance the human agency—the intrinsic motivation—mainly through the strengthening of autonomic support, feeling of relatedness, and the individual’s competence to increase the academic outcomes. This is in line with self-determination theory (SDT), which generally views that the intrinsic motivation imbedded with human basic needs is one of the most important factors that would lead to better school engagement, academic outcomes, and well-being. Based on SDT, the present study explored the relation of among teacher-student relationship (teacher’s encouragement, respect), students’ motivation (extrinsic and intrinsic), and achievement outcomes. The study was based on a large scale academic assessment and questionnaire survey conducted by the Center for Assessment and Improvement of Basic Education Quality in Mainland China (2013) on Grade 8 students. The results indicated that intrinsic motivation mediated the relation between teacher-student relationship and academic achievement outcomes.

Keywords: teacher-student relationship, intrinsic motivation, academic achievement, mediation

Procedia PDF Downloads 435
16100 The Game of Dominoes as Teaching-Learning Method of Basic Concepts of Differential Calculus

Authors: Luis Miguel Méndez Díaz

Abstract:

In this article, a mathematics teaching-learning strategy will be presented, specifically differential calculus in one variable, in a fun and competitive space in which the action on the part of the student is manifested and not only the repetition of information on the part of the teacher. Said action refers to motivating, problematizing, summarizing, and coordinating a game of dominoes whose thematic cards are designed around the basic and main contents of differential calculus. The strategies for teaching this area are diverse and precisely the game of dominoes is one of the most used strategies in the practice of mathematics because it stimulates logical reasoning and mental abilities. The objective on this investigation is to identify the way in which the game of dominoes affects the learning and understanding of fundamentals concepts of differential calculus in one variable through experimentation carried out on students of the first semester of the School of Engineering and Sciences of the Technological Institute of Monterrey Campus Querétaro. Finally, the results of this study will be presented and the use of this strategy in other topics around mathematics will be recommended to facilitate logical and meaningful learning in students.

Keywords: collaborative learning, logical-mathematical intelligence, mathematical games, multiple intelligences

Procedia PDF Downloads 86
16099 The Concept of Development: A Normative Restructured Model in the Light of Indian Political Thought and Classical Liberalism

Authors: Sarthak S. Salunke

Abstract:

Development, as a notion, is seen in perspective of western philosophical conceptions, and the western developed nations have become a yardstick for setting up development goals for developing and underdeveloped nations around the world. This blanket term of development becomes superficial and materialistic in context of the vast geopolitical, territorial, cultural and behavioral diversities existing in countries of the Africa and the Asia, and tends to undermine the atomistic aspect of development. Indian political theories, which are often seen as religious philosophies, have inherent structure of development of human being as an individual and as a part of the society, and, in result, development of the State. These theories, primarily individualistic in nature, have a combination of altruism and rationalism which guides human beings towards constructing a collectively developed and morally sustainable society. This research focuses on the application of this Indian thought in combination of classical liberal thought to tackle the issues of development in diverse societies. The proposed restructured model of development is based on molecular individualism, instead of atomic individual approach of liberalists, which lets development modelers to target meaningful clusters for designating goals for development based on the particular needs based on geopolitical, cultural and ethical requirements, and making it meaningful in conjunction with global development to establish a harmony between western and eastern worlds.

Keywords: Indian political thought, development, liberalism, molecular individualism

Procedia PDF Downloads 188
16098 Adolescents Psychological Well Being in Relation to Bullying/CB Victimization: The Mediating Effect of Resilience and Self-Concept

Authors: Dorit Olenik-Shemesh, Tali Heiman

Abstract:

Aggressive peer behaviors, particularly bullying and cyberbullying (CB) victimization during adolescence, are strongly and consistently linked to decreased levels of subjective well-being, potentially hindering a healthy and consistent developmental process. These negative effects might be expressed in emotional, physical, and behavioral difficulties. Adolescents victims of bullying/CB present more depressive moods, more loneliness, and more suicidal thoughts, while adolescents who had never been victims of bullying and CB acts present higher levels of well-being. These difficulties in their lives may be both a consequence of and a partial explanation for bullying/CB victimization. Interpersonal behavior styles and psychosocial factors may interact to create a vicious cycle in which adolescents place themselves at risk, which might explain the reduced well-being reported among victims. Yet, to the best of our knowledge, almost no study has examined the effect of two key variables in adolescents' lives, resilience and self-concept, in the relationship between bullying/CB victimization and low levels of psychological well-being among adolescents. Resilience is defined as the individual's capacity of maintaining stable functioning and make adjustments in the face of adversity; a capacity that promotes efficiently coping with environmental stressors and protects from psycho-social difficulties when facing various challenges. Self-concept relates to the way we perceive ourselves, influenced by many forces, including our interactions with the surroundings; a collection of beliefs about oneself. Accordingly, the current study has examined the possible mediating effect of these two main positive personal variables, resilience, and self-concept, through a mediation model analysis. 507 middle school students aged 11–16 (53% boys, 47% girls) completed questionnaires regarding bullying and CB behaviors, psychological well-being, resilience, and self-concept. A mediation model analysis was performed, whereas the hypothesized mediation model was accepted in full. More specifically, it was found that both self-concept and resilience mediated the relationship between bullying/CB victimization and a sense of well-being. High levels of both variables might buffer against a potential decrease in well-being associated with youth bullying/CB victimization. No gender differences were found, except a small stronger effect of resilience on well-being for boys. The study results suggest focusing on specific personal positive variables when developing youth intervention programs, creating an infrastructure for new programs that address increasing resilience and self-concept in schools and family-school contexts. Such revamped programs could diminish bullying/CB acts and the harmful negative implications for youth well-being. Future studies that will incorporate longitudinal data may further deepen the understanding of these examined relationships.

Keywords: adolescents, well being, bullying/CB victimization, resilience, self-concept

Procedia PDF Downloads 15
16097 Assessing the Role of Human Mobility on Malaria Transmission in South Sudan

Authors: A. Y. Mukhtar, J. B. Munyakazi, R. Ouifki

Abstract:

Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan.

Keywords: basic reproduction number, malaria, maximum likelihood, movement, stochastic model

Procedia PDF Downloads 137
16096 Analyzing the Plausible Alternatives in Contracting the Societal Fissure Caused by Digital Divide in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

'Digital Divide' is a concept that has existed in this paradigm ever since the discovery of the first-generation technologies. Before the turn of the century, it was basically used to describe the gap between those with telephone communication access and those without it. At present, it is plainly descriptive in itself to illustrate the cavity among those with Internet access and those without. Though the concept of digital divide has been merely lying in sight for as long as time itself, the friction it caused has not yet been fully realized to solve major crisis situations. Unlike well-developed countries, Sri Lanka is still in the verge of moving farther away from a developing country in the race towards reaching a developed state. Access to technological resources varies from region to region, even within the island itself, with one region having a considerable percentage of its community exposed to the Internet and its related technologies, and the other unaware of such. Thus, this paper intends to analyze the roots for the still-extant gap instigated based on the concept of ‘Digital Divide’ and explores the plausible potentials that could be brought about by narrowing this prevailing percentage among the population, specifically entrenching the advantages reaped towards an economic augmentation and culture or lifestyle revolution on the path towards development.

Keywords: communication, digital divide, society, Sri Lanka

Procedia PDF Downloads 234
16095 A Primer to the Learning Readiness Assessment to Raise the Sharing of E-Health Knowledge amongst Libyan Nurses

Authors: Mohamed Elhadi M. Sharif, Mona Masood

Abstract:

The usage of e-health facilities is seen to be the first priority by the Libyan government. As such, this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using e-health services in nursing education.

Keywords: Libyan nurses, e-learning readiness, e-health, nursing education

Procedia PDF Downloads 498
16094 Demystifying Mathematics: Handling Learning Disabilities in Mathematics Among Low Achievers in Kenyan Schools

Authors: Gladys Gakenia Njoroge

Abstract:

Mathematics is a compulsory subject in both primary and secondary schools in Kenya. However, learners’ poor performance in the subject in Kenya national examinations year in year out remains a serious concern for teachers of Mathematics, parents, curriculum developers, and the general public. This is particularly worrying because of the importance attached to the subject in national development hence the need to find out what could be affecting learning of Mathematics in Kenyan schools. The research on which this paper is based sought to examine the factors that influence performance in Mathematics in Kenyan schools; identify the characteristics of Mathematics learning disabilities; determine how the learners with such learning disabilities can be assessed and identified and interventions for these difficulties implemented. A case study was undertaken on class six learners in a primary school in Nairobi County. The tools used for the research were: classroom observations and an Individualized Education Program (IEP) developed by the teachers with the help of the researcher. This paper therefore highlights the findings from the research, discusses the implications of the findings and suggests the way forward as far as teaching, learning and assessment of Mathematics in Kenyan schools is concerned. Perhaps with the application of the right interventions, poor performance in Mathematics in the national examinations in Kenya will be a thing of the past.

Keywords: demystifying mathematics, individualized education program, learning difficulties, assessment

Procedia PDF Downloads 98
16093 Reclaiming and Reconstructing the History of the Universal Declaration of Human Rights

Authors: Hamid Vahidkia

Abstract:

The origins of the Universal Declaration of Human Rights (UDHR) are not widely understood, leading to misconceptions that need to be examined. Recent research disputes the idea that the UDHR was exclusively backed and endorsed by Western countries and even raised doubts about powerful nations backing the creation of global human rights norms. This article examines four political misconceptions regarding the Universal Declaration, with each one having some truth to it but also being misleading. The significance of small states in promoting human rights norms has been underestimated, just as the importance of large states has been exaggerated in history. The Universal Declaration was created through negotiations with the involvement of numerous states. All states have a stake in small states reclaiming their portion of history due to the legitimacy it gained from the political process that formed it.

Keywords: declaration. law, rights, humanity, UDHR

Procedia PDF Downloads 44
16092 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 680
16091 Using Machine Learning Techniques to Extract Useful Information from Dark Data

Authors: Nigar Hussain

Abstract:

It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.

Keywords: big data, dark data, machine learning, heatmap, random forest

Procedia PDF Downloads 35
16090 Comparative Analysis of Motor Insurance Claims using Machine Learning

Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah

Abstract:

From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.

Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability

Procedia PDF Downloads 4
16089 Students’ Experiential Knowledge Production in the Teaching-Learning Process of Universities

Authors: Didiosky Benítez-Erice, Frederik Questier, Dalgys Pérez-Luján

Abstract:

This paper aims to present two models around the production of students’ experiential knowledge in the teaching-learning process of higher education: the teacher-centered production model and the student-centered production model. From a range of knowledge management and experiential learning theories, the paper elaborates into the nature of students’ experiential knowledge and proposes further adjustments of existing second-generation knowledge management theories taking into account the particularities of higher education. Despite its theoretical nature the paper can be relevant for future studies that stress student-driven improvement and innovation at higher education institutions.

Keywords: experiential knowledge, higher education, knowledge management, teaching-learning process

Procedia PDF Downloads 449
16088 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 355
16087 The Development of Ability in Reading Comprehension Based on Metacognitive Strategies for Mattayom 3 Students

Authors: Kanlaya Ratanasuphakarn, Suttipong Boonphadung

Abstract:

The research on the development of ability in reading comprehension based on metacognitive strategies aimed to (1) improve the students’development of ability in reading comprehension based on metacognitive strategies, (2) evaluate the students’ satisfaction on using metacognitive strategies in learning as a tool developing the ability in reading comprehension. Forty-eight of Mattayom 3 students who have enrolled in the subject of research for learning development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for reading comprehension, pre-posttest and satisfaction questionnaire that were approved as content validity and reliability (IOC=.66-1.00,0.967). The research found that the development of ability in reading comprehension of the research samples before using metacognitive strategies in learning activities was in the normal high level. Additionally, the research discovered that the students’ satisfaction of the research cohort after applying model in learning activities appeared to be high level of satisfaction on using metacognitive strategies in learning as a tool for the development of ability in reading comprehension.

Keywords: development of ability, metacognitive strategies, satisfaction, reading comprehension

Procedia PDF Downloads 310
16086 Optical Whitening of Textiles: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

This study examines the results of optical whitening process of different textiles such as cotton, wool and polyester. The optical whitening agents used are commercially available products, and the optical whitening agents were applied to the textiles with manufacturers’ suggested methods. The aim of this study is to illustrate the proper application methods of optical whitening agent to different textiles and hence to provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, optical whitening agent, wool, cotton, polyester

Procedia PDF Downloads 429
16085 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 163
16084 An Exploratory Study in Nursing Education: Factors Influencing Nursing Students’ Acceptance of Mobile Learning

Authors: R. Abdulrahman, A. Eardley, A. Soliman

Abstract:

The proliferation in the development of mobile learning (m-learning) has played a vital role in the rapidly growing electronic learning market. This relatively new technology can help to encourage the development of in learning and to aid knowledge transfer a number of areas, by familiarizing students with innovative information and communications technologies (ICT). M-learning plays a substantial role in the deployment of learning methods for nursing students by using the Internet and portable devices to access learning resources ‘anytime and anywhere’. However, acceptance of m-learning by students is critical to the successful use of m-learning systems. Thus, there is a need to study the factors that influence student’s intention to use m-learning. This paper addresses this issue. It outlines the outcomes of a study that evaluates the unified theory of acceptance and use of technology (UTAUT) model as applied to the subject of user acceptance in relation to m-learning activity in nurse education. The model integrates the significant components across eight prominent user acceptance models. Therefore, a standard measure is introduced with core determinants of user behavioural intention. The research model extends the UTAUT in the context of m-learning acceptance by modifying and adding individual innovativeness (II) and quality of service (QoS) to the original structure of UTAUT. The paper goes on to add the factors of previous experience (of using mobile devices in similar applications) and the nursing students’ readiness (to use the technology) to influence their behavioural intentions to use m-learning. This study uses a technique called ‘convenience sampling’ which involves student volunteers as participants in order to collect numerical data. A quantitative method of data collection was selected and involves an online survey using a questionnaire form. This form contains 33 questions to measure the six constructs, using a 5-point Likert scale. A total of 42 respondents participated, all from the Nursing Institute at the Armed Forces Hospital in Saudi Arabia. The gathered data were then tested using a research model that employs the structural equation modelling (SEM), including confirmatory factor analysis (CFA). The results of the CFA show that the UTAUT model has the ability to predict student behavioural intention and to adapt m-learning activity to the specific learning activities. It also demonstrates satisfactory, dependable and valid scales of the model constructs. This suggests further analysis to confirm the model as a valuable instrument in order to evaluate the user acceptance of m-learning activity.

Keywords: mobile learning, nursing institute students’ acceptance of m-learning activity in Saudi Arabia, unified theory of acceptance and use of technology model (UTAUT), structural equation modelling (SEM)

Procedia PDF Downloads 191
16083 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial

Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester

Abstract:

First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.

Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution

Procedia PDF Downloads 377
16082 Maximum Initial Input Allowed to Iterative Learning Control Set-up Using Singular Values

Authors: Naser Alajmi, Ali Alobaidly, Mubarak Alhajri, Salem Salamah, Muhammad Alsubaie

Abstract:

Iterative Learning Control (ILC) known to be a controlling tool to overcome periodic disturbances for repetitive systems. This technique is required to let the error signal tends to zero as the number of operation increases. The learning process that lies within this context is strongly dependent on the initial input which if selected properly tends to let the learning process be more effective compared to the case where a system starts from blind. ILC uses previous recorded execution data to update the following execution/trial input such that a reference trajectory is followed to a high accuracy. Error convergence in ILC is generally highly dependent on the input applied to a plant for trial $1$, thus a good choice of initial starting input signal would make learning faster and as a consequence the error tends to zero faster as well. In the work presented within, an upper limit based on the Singular Values Principle (SV) is derived for the initial input signal applied at trial $1$ such that the system follow the reference in less number of trials without responding aggressively or exceeding the working envelope where a system is required to move within in a robot arm, for example. Simulation results presented illustrate the theory introduced within this paper.

Keywords: initial input, iterative learning control, maximum input, singular values

Procedia PDF Downloads 247
16081 Relationship between the Level of Perceived Self-Efficacy of Children with Learning Disability and Their Mother’s Perception about the Efficacy of Their Child, and Children’s Academic Achievement

Authors: Payal Maheshwari, Maheaswari Brindavan

Abstract:

The present study aimed at studying the level of perceived self-efficacy of children with learning disability and their mother’s perception about the efficacy of the child and the relationship between the two. The study further aimed at finding out the relationship between the level of perceived self-efficacy of children with learning disability and their academic achievement and their mother’s perception about the Efficacy of the child and child’s Academic Achievement. The sample comprised of 80 respondents (40 children with learning disability and their mothers). Children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai and their mothers were selected. Purposive or judgmental and snowball sampling technique was used to select the sample for the present study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability and their mother’s. A self-constructed Mother’s Perceived Efficacy of their Child Assessment Scale was used to measure mothers perceived level of efficacy of their child with learning disability. Self-constructed Child’s Perceived Self-Efficacy Assessment Scale was used to measure the level of child’s perceived self-efficacy. Academic scores of the child were collected from the child’s parents or teachers and were converted into percentage. The data were analyzed quantitatively using frequencies, mean and standard deviation. Correlations were computed to ascertain the relationships between the different variables. The findings revealed that majority of the mother’s perceived efficacy about their child with learning disability was above average as well as majority of the children with learning disability also perceived themselves as having above average level of self-efficacy. Further in the domains of self-regulated learning and emotional self-efficacy majority of the mothers perceived their child as having average or below average efficacy, 50% of the children also perceived their self-efficacy in the two domains at average or below average level. A significant (r=.322, p < .05) weak correlation (Spearman’s rho) was found between mother’s perceived efficacy about their child, and child’s perceived self-efficacy and a significant (r=.377, p < .01) weak correlation (Pearson Correlation) was also found between mother’s perceived efficacy about their child and child’s academic achievement. Significant weak positive correlation was found between child’s perceived self-efficacy and academic achievement (r=.332, p < .05). Based on the findings, the study discussed the need for intervention program for children in non-academic skills like self-regulation and emotional competence.

Keywords: learning disability, perceived self efficacy, academic achievement, mothers, children

Procedia PDF Downloads 327
16080 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 51
16079 To Prepare a Remedial Teaching Programme for Dyslexic Students of English and Marathi Medium Schools and Study Its Effect on Their Learning Outcome

Authors: Khan Zeenat, S. B. Dandegaonkar

Abstract:

Dyslexia is a neurological disorder which affects the reading and writing ability of children. A sample of 72 dyslexic children (36 from English medium and 36 from Marathi medium schools) of class V from English and Marathi medium schools were selected. The Experimental method was used to study the effect of Remedial Teaching Programme on the Learning outcome of Dyslexic students. The findings showed that there is a Positive effect of remedial teaching programme on the Learning outcome of English and Marathi medium students.

Keywords: remedial teaching, Dyslexic students, learning outcome, neurological

Procedia PDF Downloads 524
16078 Human Resource Management in the Innovation Activity in the Republic of Kazakhstan

Authors: A. T. Omarova, G. N. Nakipova

Abstract:

This article discusses the principles of object-oriented human capital development using the technology program. Also the article includes priorities of the strategy of industrial-innovative development of Kazakhstan in conditions of integration activity into the world community. The article shows the tasks of human resource management in the implementation of industrial and innovation development, particularities of Kazakhstan's theory of management staff, as well as due to the specificity of the Kazakhstan authorities. In the article, we have considered the factors which are affecting the people in the organization and also have considered mechanisms of HRM within organization in the conditions of innovative development in Kazakhstan.

Keywords: programming, management of human resources, innovation, investment, innovation process, HRD model, innovative development, integration, management, transformation, economic potential, competitiveness

Procedia PDF Downloads 405
16077 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 40