Search results for: machine learning techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14196

Search results for: machine learning techniques

12456 Effect of Self-Compassion Techniques for Individuals with Depression: A Pilot Study

Authors: Piyanud Chompookard

Abstract:

This research aims to study the effect of self-compassion techniques for individuals with depression (A pilot study). A quasi-experimental research with pretest-posttest is used to design this work. The research includes 30 participants, divided into the experimental group (ten samples) and the control group (twenty samples). The experimental group received a self-compassion techniques with an appropriate treatment for a total six times. The control group received an appropriate treatment. The measurement of this study using the Hamilton Rating Scale for Depression (Thai version). There are significant differences in levels of depression after received a self-compassion techniques with an appropriate treatment (p<.01). And there are significant differences in levels of depression between the experimental group and the control group (p<.01).

Keywords: depression, self compassion techniques, psychotherapy, pilot study

Procedia PDF Downloads 141
12455 Integrating Service Learning into a Business Analytics Course: A Comparative Investigation

Authors: Gokhan Egilmez, Erika Hatfield, Julie Turner

Abstract:

In this study, we investigated the impacts of service-learning integration on an undergraduate level business analytics course from multiple perspectives, including academic proficiency, community awareness, engagement, social responsibility, and reflection. We assessed the impact of the service-learning experience by using a survey developed primarily based on the literature review and secondarily on an ad hoc group of researchers. Then, we implemented the survey in two sections, where one of the sections was a control group. We compared the results of the empirical survey visually and statistically.

Keywords: business analytics, service learning, experiential education, statistical analysis, survey research

Procedia PDF Downloads 111
12454 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
12453 Augmented Reality and Its Impact on Education

Authors: Aliakbar Alijarahi, Ali Khaleghi, Azadehe Afrasiyabi

Abstract:

One of the emerging technologies in the field of education that can be effectively profitable, called augmented reality, where the combination of real world and virtual images in real time produces new concepts that can facilitate learning. The paper, providing an introduction to the general concept of augmented reality, aims at surveying its capabitities in different areas, with an emphasis on Education, It seems quite necessary to have comparative study on virtual/e-learning and augmented reality and conclude their differences in education methods. As an review article, the paper is composed, instead of producing new concepts, to sum-up and analayze accomplished works related to the subject.

Keywords: augmented reality, education, virtual learning, e-learning

Procedia PDF Downloads 341
12452 Field Trips inside Digital Game Environments

Authors: Amani Alsaqqaf, Frederick W. B. Li

Abstract:

Field trips are essential methods of learning in different subjects, and in recent times, there has been a reduction in the number of field trips (FTs) across all learning levels around the world. Virtual field trips (VFTs) in game environments provide FT experience based on the experiential learning theory (ELT). A conceptual framework for designing virtual field trip games (VFTGs) is developed with an aim to support game designers and educators to produce an effective FT experience where technology would enhance education. The conceptual framework quantifies ELT as an internal economy to link learning elements to game mechanics such as feedback loops which leads to facilitating VFTGs design and implementation. This study assesses the conceptual framework for designing VFTGs by investigating the possibility of applying immersive VFTGs in a secondary classroom and compare them with traditional learning that uses video clips and PowerPoint slides from the viewpoint of students’ perceived motivation, presence, and learning. The assessment is achieved by evaluating the learning performance and learner experience of a prototype VFT game, Island of Volcanoes. A quasi-experiment was conducted with 60 secondary school students. The findings of this study are that the VFTG enhanced learning performance to a better level than did the traditional way of learning, and in addition, it provided motivation and a general feeling of presence in the VFTG environment.

Keywords: conceptual framework, game-based learning, game design, virtual field trip game

Procedia PDF Downloads 235
12451 The Effect of an e-Learning Program of Basic Cardiopulmonary Resuscitation for Students of an Emergency Medical Technician Program

Authors: Itsaree Padphai, Jiranan Pakpeian, Suksun Niponchai

Abstract:

This study is a descriptive research which aims to: 1) Compare the difference of knowledge before and after using the e-Learning program entitled “Basic Cardiopulmonary Resuscitation for Students in an Emergency Medical Technician Diploma Program”, and 2) Assess the students’ satisfaction after using the said program. This research is a kind of teaching and learning management supplemented with the e-Learning system; therefore, the purposively selected samples are 44 first-year and class-16 students of an emergency medical technician diploma program who attend the class in a second semester of academic year 2012 in Sirindhorn College of Public Health, Khon Kaen province. The research tools include 1) the questionnaire for general information of the respondents, 2) the knowledge tests before and after using the e-Learning program, and 3) an assessment of satisfaction in using the e-Learning program. The statistics used in data analysis percentage, include mean, standard deviation, and inferential statistics: paired t-test. 1. The general information of the respondents was mostly 37 females representing 84.09 percent. The average age was 19.5 years (standard deviation was 0.81), the maximum age was 21 years, and the minimum age was 19 years respectively. Students (35 subjects) admitted that they preferred the methods of teaching and learning by using the e-Learning systems. This was totally 79.95 percent. 2. A comparison on the difference of knowledge before and after using the e-Learning program showed that the mean before an application was 6.64 (standard deviation was 1.94) and after was 18.84 (standard deviation 1.03), which was higher than the knowledge of students before using the e-Learning program with the statistical significance (P value < 0.001). 3. For the satisfaction after using the e-Learning program, it was found that students’ satisfaction was at a very good level with the mean of 4.93 (standard deviation was 0.11).

Keywords: e-Learning, cardiopulmonary resuscitation, diploma program, Khon Kaen Province

Procedia PDF Downloads 399
12450 WhatsApp as Part of a Blended Learning Model to Help Programming Novices

Authors: Tlou J. Ramabu

Abstract:

Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented.

Keywords: blended learning, higher education, WhatsApp, programming, novices, lecturers

Procedia PDF Downloads 172
12449 6G: Emerging Architectures, Technologies and Challenges

Authors: Abdulrahman Yarali

Abstract:

The advancement of technology never stops because the demands for improved internet and communication connectivity are increasing. Just as 5G networks are rolling out, the world has begun to talk about the sixth-generation networks (6G). The semantics of 6G are more or less the same as 5G networks because they strive to boost speeds, machine-to-machine (M2M) communication, and latency reduction. However, some of the distinctive focuses of 6G include the optimization of networks of machines through super speeds and innovative features. This paper discusses many aspects of the technologies, architectures, challenges, and opportunities of 6G wireless communication systems.

Keywords: 6G, characteristics, infrastructures, technologies, AI, ML, IoT, applications

Procedia PDF Downloads 25
12448 Using Support Vector Machines for Measuring Democracy

Authors: Tommy Krieger, Klaus Gruendler

Abstract:

We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.

Keywords: democracy, democracy index, machine learning, support vector machines

Procedia PDF Downloads 378
12447 Coping Techniques, Repertoire, and Flexibility in Parental Adjustment to Pediatric Cancer

Authors: Michael Dolgin, Oz Hamtzani, Talma Kushnir

Abstract:

A literature review has shown that while parents of children with cancer experience increased levels of psychological distress associated with their child's medical condition, considerable variability in parental adjustment is evident. Of the factors that may account for this variability, little attention has been devoted to the simultaneous interaction of three coping constructs and their role in parental adjustment: (1) Coping techniques employed, (2) Repertoire of coping techniques, and (3) Flexibility in applying coping techniques. While these constructs have been studied individually in relation to adjustment in general, studies to date have not included them together within a single conceptual model and research design and evaluated them in a clinical population. The objective of the current study was to determine how these three coping technique constructs interact to impact parental adjustment to pediatric cancer. A cross-sectional sample of 145 parents of children in active cancer treatment completed standardized measures of coping techniques, repertoire, flexibility, and parental distress. A hierarchical multiple regression analysis demonstrated that 37% of the variance in parental distress was predicted by the use of avoidance-focused coping techniques [F(1,118)=69.843, p<.001], with an additional 3% predicted by coping repertoire [F(2,117)=7.63, p=.00] for a total of 40% variance explained. Coping flexibility was found to mediate the relationship between coping repertoire and parental distress. These findings suggest that coping techniques employed by parents (problem/emotion-focused vs. avoidance-focused), as well as coping repertoire, significantly impact parental adjustment. Flexibility in applying coping techniques within one’s coping repertoire further contributes to parental adjustment. Implications for further study and clinical intervention will be presented.

Keywords: coping techniques, repertoire, flexibility, adjustment

Procedia PDF Downloads 42
12446 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique

Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah

Abstract:

An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.

Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic

Procedia PDF Downloads 487
12445 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 322
12444 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
12443 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 487
12442 Teaching for Change: Instructional Support in a Bilingual Setting

Authors: S. J. Hachar

Abstract:

The goal of this paper is to provide educators an overview of international practices supporting young learners, arming us with adequate information to lead effective change. We will report on research and observations of Service Learning Projects conducted by one South Texas University. The intent of the paper is also to provide readers an overview of service learning in the preparation of teacher candidates pursuing a Bachelor of Science in Elementary Education. The objective of noting the efficiency and effectiveness of programs leading to literacy and oral fluency in a native language and second language will be discussed. This paper also highlights experiential learning for academic credit that combines community service with student learning. Six weeks of visits to a variety of community sites, making personal observations with faculty members, conducting extensive interviews with parents and key personnel at all sites will be discussed. The culminating Service Learning Expo will be reported as well.

Keywords: elementary education, junior achievement, service learning

Procedia PDF Downloads 322
12441 The Perception and Use of Vocabulary Learning Strategies Among Non-English Major at Ho Chi Minh City University of Technology (Hutech)

Authors: T. T. K. Nguyen, T. H. Doan

Abstract:

The study investigates students’ perceptions and students’ use of vocabulary learning strategies (VLS) among non-English majors at Ho Chi Minh City University of Technology (HUTECH). Three main issues addressed are (1) to determine students’ perception in terms of their awareness and the level of the importance of vocabulary learning strategies; (2) students’ use in terms of frequency and preference; (3) the correlation between students’ perception in terms of the level of the importance of vocabulary learning strategies and their use in terms of frequency. The mixed method is applied in this investigation; additionally, questionnaires focus on social groups, memory groups, cognitive groups, and metacognitive groups with 350 sophomores from four different majors, and 10 sophomores are invited to structured interviews. The results showed that the vocabulary learning strategies of the current study were well aware. All those strategies were perceived as important in learning vocabulary, and four groups of vocabulary were used frequently. Students’ responses in terms of preference also confirmed students’ use in terms of frequency. On the other hand, students’ perception correlated with students’ use in only the cognitive group of vocabulary learning strategies, but not the three others.

Keywords: vocabulary learning strategies, students' perceptions, students' use, mixed methods, non-English majors

Procedia PDF Downloads 44
12440 Creating a Safe Learning Environment Based on the Experiences and Perceptions of a Millennial Generation

Authors: E. Kempen, M. J. Labuschagne, M. P. Jama

Abstract:

There is evidence that any learning experience should happen in a safe learning environment as students then will interact, experiment, and construct new knowledge. However, little is known about the specific elements required to create a safe learning environment for the millennial generation, especially in optometry education. This study aimed to identify the specific elements that will contribute to a safe learning environment for the millennial generation of optometry students. Methods: An intrinsic qualitative case study was undertaken with undergraduate students from the Department of Optometry at the University of the Free State, South Africa. An open-ended questionnaire survey was completed after the application of nine different teaching-learning methods based on the experiential learning cycle. A total number of 307 questionnaires were analyzed. Two focus group interviews were also conducted to provide additional data to supplement the data and ensure the triangulation of data. Results: Important elements based on the opinions, feelings, and perceptions of student respondents were analyzed. Students feel safe in an environment with which they are familiar, and when they are familiar with each other, the educators, and the surroundings. Small-group learning also creates a safe and familiar environment. Both these elements create an environment where they feel safe to ask questions. Students value an environment where they are able to learn without influencing their marks or disadvantaging the patients. They enjoy learning from their peers, but also need personal contact with educators. Elements such as consistency and an achievable objective also were also analyzed. Conclusion: The findings suggest that to respond to the real need of this generation of students, insight must be gained in students’ perceptions to identify their needs and the learning environment to optimize learning pedagogies. With the implementation of these personalized elements, optometry students will be able to take responsibility and accountability for their learning.

Keywords: experiences and perceptions, safe learning environment, millennial generation, recommendation for optometry education

Procedia PDF Downloads 137
12439 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts

Authors: Samad Sajjadi

Abstract:

Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.

Keywords: machine translations, accuracy, human translation, efficiency

Procedia PDF Downloads 78
12438 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 43
12437 Teachers' Learning Community and Their Self Efficacy

Authors: Noha Desouky Aly, Maged Makram Habib

Abstract:

Given the imperative role educational institutions have in the creation of a motivational learning community that develops and engages their students, the influence of evoking the same environment for their teachers needs to be examined. Teachers and their role lie at the core of the efficiency of the learning experience. One exigent aspect in the process of providing professional development to teachers is to involve them in this process, and the best manner would be through creating a learning community in which they are directly engaged and responsible for their own learning. An educational institution that thinks first of its teachers learning and growth would achieve its goals in providing an effective education for its students. The purpose of this research paper is to examine the effect of engaging teachers in a learning community in which they are responsible for their own learning through conducting and providing the material required for the training on their self efficacy, engagement, and perceived autonomy. The sample includes twenty instructors at the German University in Cairo teaching Academic skills at the Department of English and Scientific Methods. The courses taught at the department include Academic skills, writing argumentative essays, critical thinking, communication and presentation skills, and research paper writing. Procedures for the duration of eight weeks will entail pre-post measures to include The Teachers Self Efficacy Scale and an interview. During the weekly departmental meeting, teachers are to share resources and experiences or research and present a topic of their choice that contributes to their professional development. Results are yet to be found.

Keywords: learning community, self- efficacy, teachers, learning experience

Procedia PDF Downloads 491
12436 MOOCs (E-Learning) Project Personnel Competency Analysis

Authors: Shang-Hua Wu, Rong-Chi Chang, Horng–Twu Liaw

Abstract:

Nowadays, competencies of e-learning project personnel are very important in assisting them in offering courses, serving students in an effective way, leveraging advantages, strengthen their relationships with potential students, etc. among e-learning platforms, MOOCs has recently attracted increasing focuses in distance education since it can be conducted for a large numbers of virtual learners. Nonetheless, since MOOCs is a relatively new e-learning platform, top concerns have been paid to what competencies are important for e-learning personnel to consider. Taking this need, this research aimed to carry out an in-depth exploration of competency requirements of MOOCs (e-learning) project personnel in Taiwan vocational schools. Data were collected through thorough literature reviews and discussions and competency analysis was carried out using Delphi technique questionnaires. The results show that that MOOCs (e-learning) project personnel’ professional competency lie in three main dimensions, among which ‘demand analysis competency’ (i.e., containing 10 major competences and 48 subordinate capabilities) is the most important competency, followed by ‘project management competency’ (i.e., comprising 6 major competences and 31 secondary capabilities), and finally ‘digital content production competency’ (i.e., including 12 major competences and 79 secondary capabilities). As such, in Taiwan context with different organizational scales and market sizes, the e-learning competency items and unique experience/ achievements throughout the promotion process obtained in this research will provide useful references for academic institutions in promoting e-learning.

Keywords: competency analysis, Delphi technique questionnaire, e-learning, massive open online courses

Procedia PDF Downloads 285
12435 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 17
12434 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner

Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa

Abstract:

This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.

Keywords: artificial teacher, e-learning, self-study system, simple EEG

Procedia PDF Downloads 144
12433 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 194
12432 Remote Learning During Pandemic: Malaysian Classroom

Authors: Hema Vanita Kesevan

Abstract:

The global spread of Covid-19 virus in early 2020 has led to major changes in many walks of life, including the education system. Traditional face to face lessons that were carried out for years has been replaced by online learning. Although online learning has been used before the pandemic, it has not been the only source of teaching and learning. This drastic change has brought significant impact to the process of teaching and learning in many classrooms around the world. Likewise, in country like Malaysia that that has been promoting online learning but has not utilize it fully due to many restrictions in terms of technology, accessibility, and online literacy, the sudden change to full online platform learning in all educational sector has definitely caused Issues in terms of its adaptation and usage. Although many studies have been conducted to explore the efficiency and impact of online learning during the pandemic, studies focusing on the same are limited in Malaysian classroom context, especially in English language classrooms. Thus, this study seeks to explore on the efficacy and effectiveness of online learning tools in ESL classroom contexts during the pandemic. The aim of this study is to understand the educator's and student's perceptions on the implementation of online learning tools in the teaching and learning process and the types of online learning tools that were used to assist the teaching and learning process during the pandemic. Particularly, this study focused to explore the types of online learning tools used in Malaysian schools and university during the online teaching and learning process and further explores how the various types of tools used impacted the students' participation in the lessons conducted. The participants of this study are secondary school students, teachers, and university students. Data will be collected in terms of survey questionnaire and interviews. The survey data intends to obtain information on the types of online learning used in ESL teaching and learning practices during the pandemic, how the various types of online tools influence students' participation during lessons. The interview data from the teachers serves to provide information about the selection of online learning tools, challenges of using it to conduct online lessons, and other arising issues. A mixed method design will be used to analysed the data obtained. The questionnaire will be analysed quantitatively using descriptive analysis meanwhile, the interview data will be analysed qualitatively.

Keywords: Covid 19, online learning tools, ESL classroom, effectiveness, efficacy

Procedia PDF Downloads 236
12431 Effectiveness of Blended Learning in Public School During Covid-19: A Way Forward

Authors: Sumaira Taj

Abstract:

Blended learning is emerged as a prerequisite approach for teaching in all schools after the outbreak of the COVID-19 pandemic. However, how much public elementary and secondary schools in Pakistan are ready for adapting this approach and what should be done to prepare schools and students for blended learning are the questions that this paper attempts to answer. Mixed-method research methodology was used to collect data from 40 teachers, 500 students, and 10 mothers. Descriptive statistics was used to analyze quantitative data. As for as readiness is concerned, schools lack resources for blended/ virtual/ online classes from infra-structure to skills, parents’ literacy level hindered students’ learning process and teachers’ skills presented challenges in a smooth and swift shift of the schools from face-to-face learning to blended learning. It is recommended to establish a conducive environment in schools by providing all required resources and skills. Special trainings should be organized for low literacy level parents. Multiple ways should be adopted to benefit all students.

Keywords: blended learning, challenges in online classes, education in covid-19, public schools in pakistan

Procedia PDF Downloads 166
12430 Research on Integrating Adult Learning and Practice into Long-Term Care Education

Authors: Liu Yi Hui, Chun-Liang Lai, Jhang Yu Cih, He You Jing, Chiu Fan-Yun, Lin Yu Fang

Abstract:

For universities offering long-term care education, the inclusion of adulting learning and practices in professional courses as appropriate based on holistic design and evaluation could improve talent empowerment by leveraging social capital. Moreover, it could make the courses and materials used in long-term care education responsive to real-life needs. A mixed research method was used in the research design. A quantitative study was also conducted using a questionnaire survey, and the data were analyzed by SPSS 22.0 Chinese version. The qualitative data included students’ learning files (learning reflection notes, course reports, and experience records).

Keywords: adult learning, community empowerment, social capital, mixed research

Procedia PDF Downloads 154
12429 An Investigation of Project-Based Learning: A Case Study of Tourism Students

Authors: Benjaporn Yaemjamuang

Abstract:

The purposes of this study were to investigate the success of project-based learning and to evaluate the performance and level of satisfaction of tourism students who participated in the study. This paper drew upon a data collection from a senior tourism students survey conducted in Rajamangala University during summer 2013. The purposive sampling was utilized to obtain the sample which included 45 tourism students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 53.33 percent from pretest to posttest. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the role of teacher and students, 2) the research activities of the project-based learning, 3) the learning methods of the project-based learning. Moreover, the mean score of all categories was 3.98 with a standard deviation of 0.88 which indicated that the average level of satisfaction was high.

Keywords: performance, project-based learning, satisfaction, tourism

Procedia PDF Downloads 291
12428 Using Technology to Enhance the Student Assessment Experience

Authors: Asim Qayyum, David Smith

Abstract:

The use of information tools is a common activity for students of any educational stage when they encounter online learning activities. Finding the relevant information for particular learning tasks is the topic of this paper as it investigates the use of information tools for a group of student participants. The paper describes and discusses the results with particular implications for use in higher education, and the findings suggest that improvement in assessment design and subsequent student learning may be achieved by structuring the purposefulness of information tools usage and online reading behaviors of university students.

Keywords: information tools, assessment, online learning, student assessment experience

Procedia PDF Downloads 560
12427 Low Enrollment in Civil Engineering Departments: Challenges and Opportunities

Authors: Alaa Yehia, Ayatollah Yehia, Sherif Yehia

Abstract:

There is a recurring issue of low enrollments across many civil engineering departments in postsecondary institutions. While there have been moments where enrollments begin to increase, civil engineering departments find themselves facing low enrollments at around 60% over the last five years across the Middle East. There are many reasons that could be attributed to this decline, such as low entry-level salaries, over-saturation of civil engineering graduates in the job market, and a lack of construction projects due to the impending or current recession. However, this recurring problem alludes to an intrinsic issue of the curriculum. The societal shift to the usage of high technology such as machine learning (ML) and artificial intelligence (AI) demands individuals who are proficient at utilizing it. Therefore, existing curriculums must adapt to this change in order to provide an education that is suitable for potential and current students. In this paper, In order to provide potential solutions for this issue, the analysis considers two possible implementations of high technology into the civil engineering curriculum. The first approach is to implement a course that introduces applications of high technology in Civil Engineering contexts. While the other approach is to intertwine applications of high technology throughout the degree. Both approaches, however, should meet requirements of accreditation agencies. In addition to the proposed improvement in civil engineering curriculum, a different pedagogical practice must be adapted as well. The passive learning approach might not be appropriate for Gen Z students; current students, now more than ever, need to be introduced to engineering topics and practice following different learning methods to ensure they will have the necessary skills for the job market. Different learning methods that incorporate high technology applications, like AI, must be integrated throughout the curriculum to make the civil engineering degree more attractive to prospective students. Moreover, the paper provides insight on the importance and approach of adapting the Civil Engineering curriculum to address the current low enrollment crisis that civil engineering departments globally, but specifically in the Middle East, are facing.

Keywords: artificial intelligence (AI), civil engineering curriculum, high technology, low enrollment, pedagogy

Procedia PDF Downloads 166