Search results for: crop disease detection
6174 Apolipoprotein E Gene Polymorphism and Its Association with Cardiovascular Heart Disease Risk Factors in Type 2 Diabetes Mellitus
Authors: Amani Ashari, Julia Omar, Arif Hashim, Shahrul Hamid
Abstract:
Apolipoprotein E (APOE) gene polymorphism has influence on serum lipids which relates to cardiovascular risk. The purpose of this study was to determine the frequency distribution of APOE alleles among Malaysian Type 2 Diabetes Mellitus (DM) patients with and without coronary artery disease (CAD) and their association with serum lipid profiles. A total of 115 patients were recruited in which 78 patients had Type 2 DM without CAD and 37 patients had Type 2 DM with CAD. The APOE polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The APOE ɛ3 allele was the most common one in both groups. There was no significant association between the APOE genotypes and the CAD status in Type 2 DM using Pearson χ2 test. Further analysis indicated there were no significant differences in all lipid parameters between E2, E3 and E4 subgroups in both groups. The study showed that the E4 allele carriers of Type 2 DM with CAD patients had higher LDL-C level and lower HDL-C level compared to the other allele carriers. However, analyses showed these levels were not statistically different. The study also showed that the Type 2 DM with CAD group with E2 allele had higher triglyceride (TG). In conclusion, further study with larger sample size is needed to confirm role of E4 as a marker of CAD among Type 2 DM patients in Malaysian population.Keywords: Apolipoprotein E, diabetes mellitus, cardiovascular disease, lipids
Procedia PDF Downloads 2936173 Designing a Cyclic Redundancy Checker-8 for 32 Bit Input Using VHDL
Authors: Ankit Shai
Abstract:
CRC or Cyclic Redundancy Check is one of the most common, and one of the most powerful error-detecting codes implemented on modern computers. Most of the modern communication protocols use some error detection algorithms in digital networks and storage devices to detect accidental changes to raw data between transmission and reception. Cyclic Redundancy Check, or CRC, is the most popular one among these error detection codes. CRC properties are defined by the generator polynomial length and coefficients. The aim of this project is to implement an efficient FPGA based CRC-8 that accepts a 32 bit input, taking into consideration optimal chip area and high performance, using VHDL. The proposed architecture is implemented on Xilinx ISE Simulator. It is designed while keeping in mind the hardware design, complexity and cost factor.Keywords: cyclic redundancy checker, CRC-8, 32-bit input, FPGA, VHDL, ModelSim, Xilinx
Procedia PDF Downloads 2926172 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1026171 Advanced Driver Assistance System: Veibra
Authors: C. Fernanda da S. Sampaio, M. Gabriela Sadith Perez Paredes, V. Antonio de O. Martins
Abstract:
Today the transport sector is undergoing a revolution, with the rise of Advanced Driver Assistance Systems (ADAS), industry and society itself will undergo a major transformation. However, the technological development of these applications is a challenge that requires new techniques and great machine learning and artificial intelligence. The study proposes to develop a vehicular perception system called Veibra, which consists of two front cameras for day/night viewing and an embedded device capable of working with Yolov2 image processing algorithms with low computational cost. The strategic version for the market is to assist the driver on the road with the detection of day/night objects, such as road signs, pedestrians, and animals that will be viewed through the screen of the phone or tablet through an application. The system has the ability to perform real-time driver detection and recognition to identify muscle movements and pupils to determine if the driver is tired or inattentive, analyzing the student's characteristic change and following the subtle movements of the whole face and issuing alerts through beta waves to ensure the concentration and attention of the driver. The system will also be able to perform tracking and monitoring through GSM (Global System for Mobile Communications) technology and the cameras installed in the vehicle.Keywords: advanced driver assistance systems, tracking, traffic signal detection, vehicle perception system
Procedia PDF Downloads 1556170 Qualitative Detection of HCV and GBV-C Co-infection in Cirrhotic Patients Using a SYBR Green Multiplex Real Time RT-PCR Technique
Authors: Shahzamani Kiana, Esmaeil Lashgarian Hamed, Merat Shahin
Abstract:
HCV and GBV-C belong to the Flaviviridae family of viruses and GBV-C is the closest virus to HCV genetically. Accumulative research is in progress all over the world to clarify clinical aspects of GBV-C. Possibility of interaction between HCV and GBV-C and also its consequence with other liver diseases are the most important clinical aspects which encourage researchers to develop a technique for simultaneous detection of these viruses. In this study a SYBR Green multiplex real time RT-PCR technique as a new economical and sensitive method was optimized for simultaneous detection of HCV/GBV-C in HCV positive plasma samples. After designing and selection of two pairs of specific primers for HCV and GBV-C, SYBR Green Real time RT-PCR technique optimization was performed separately for each virus. Establishment of multiplex PCR was the next step. Finally our technique was performed on positive and negative plasma samples. 89 cirrhotic HCV positive plasma samples (29 of genotype 3 a and 27 of genotype 1a) were collected from patients before receiving treatment. 14% of genotype 3a and 17.1% of genotype 1a showed HCV/GBV-C co-infection. As a result, 13.48% of 89 samples had HCV/GBV-C co-infection that was compatible with other results from all over the world. Data showed no apparent influence of HGV co-infection on the either clinical or virological aspect of HCV infection. Furthermore, with application of multiplex Real time RT-PCR technique, more time and cost could be saved in clinical-research settings.Keywords: HCV, GBV-C, cirrhotic patients, multiplex real time RT- PCR
Procedia PDF Downloads 2956169 Conduction System Disease and Atrioventricular Block in Victims of COVID-19
Authors: Shirin Sarejloo
Abstract:
Background: Electrophysiological-related manifestation of COVID-19 is a matter of debate in the literature nowadays. A wide spectrum of arrhythmias was observed among patients who have been infected with COVID-19. Objectives: This study discussed the prevalence of arrhythmias and conduction system disease in patients with COVID-19. Method: In this retrospective study, demographic and electrocardiographic data of 432 expired COVID-19 patients who had been admitted to Faghihi Hospital of Shiraz University of Medical Sciences from August2020 until December 2020 were reviewed. Results: Atrioventricular nodal block (AVB) was found in 40(9.3%) patients. Furthermore, 28(6.5%) of them suffered from the first degree of AVB, and 12(2.8%) suffered from complete heart block (CHB). Among 189 cases (59.0%), ST-T changes agreed with myocardial infarction or localized myocarditis. Findings of myocardial injury, including fragmented QRS and prolonged QTc were observed among 91 (21.1%) and 28 (6.5%), respectively. In victims of COVID-19, conduction disease was not related to any comorbidities. Fragmented QRS, axis deviation, presence of S1Q3T3, and poor R wave progression were significantly related to conduction system abnormalities in victims of COVID-19 (P-value > 0.05). Conclusion: Our findings can serve in future studies that aim to develop a risk stratification method for susceptible COVID-19 patients. The myocardial injury appears to role significantly in COVID-19 morbidity and mortality. Consequently, we recommend health policymakers consider separate catheterization laboratories that provide service only to COVID-19 patients.Keywords: COVID-19, conduction system, ECG, atrioventricular block
Procedia PDF Downloads 876168 Laser Therapy in Patients with Rheumatoid Arthritis: A Clinical Trial
Authors: Joao Paulo Matheus, Renan Fangel
Abstract:
Rheumatoid arthritis is a chronic, inflammatory, systemic and progressive disease that affects the synovial joints bilaterally, causing definitive orthopedic damage. It has a higher prevalence in postmenopausal female patients. It is a disabling disease that causes joint deformities that may compromise the functionality of the affected segment. The aim of this study was to evaluate the influence of low-intensity therapeutic laser on the perception of pain and quality of life in patients with rheumatoid arthritis. This is a randomized clinical study involving 6 women with a mean age of 56.8+6.3 years. Exclusion criteria: patients with acute pain, chronic infectious disease, underlying acute or chronic underlying disease. An AsGaAl laser with 808nm wavelength, 100mW power, beam output area of 0.028cm2, power density of 3.57W/cm2 was used. The laser was applied at pre-defined points in the interphalangeal and metacarpophalangeal joints, totaling 24 points, 2 times a week, for 4 weeks, totaling 8 sessions. The Pain Inventory (IBD) and Visual Analogue Scale (VAS) were used for the analysis of pain and for the WHOQOL-bref quality of life assessment. There was no statistical difference between the onset (5.67±2.66) and the final (4.67±3.78) of treatments (p=0.70). There was also no statistical difference between the beginning (5.67±2.66) and the final (4.67±3.78) of the treatments in the VAS analysis (p=0.68). The overall mean quality of life obtained by the questionnaire at the start of treatment was 42.3±7.6, while at the end of treatment it was 58.5±7.6 (p=0.01) and the domains of the questionnaire with significant differences were: psychological domain 42.9±6.8 and 66.7±12.9 (p=0.004), social domain 39.9±5.7 and 68.1±6.3 (p=0,0005) and environmental domain 36.3±7.3 and 56.3±12.5 (p=0.003). It can be concluded that the low-intensity therapeutic laser did not produce significant changes in the painful period of rheumatoid arthritis patients. However, there was an improvement in patients' quality of life in the psychological, social and environmental aspects.Keywords: laser therapy, pain, quality of life, rheumatoid arthritis
Procedia PDF Downloads 2506167 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3146166 Diarrheal Management Practices in Children Under Five Years and Its Associated Factors Attending Health Clinic in Kalimantan Timur Indonesia
Authors: Tri Murti, Muhammad Hanafiah Juni, Hejar Abdul Rahman, Salmiah Binti Said
Abstract:
The diarrhoeal disease continues to be a leading cause of childhood mortality in countries such as Indonesia, where it is estimated to be responsible for 300,000 deaths annually in children under the age of years. Morbidity survey the Ministry of Health of Indonesia from 2000 to 2010 showed incidence diarrhoea remains a leading cause of infant mortality. Causes of death from diarrhoea is related to poor governance both at home and in health facilities. Despite the improvement of health facilities and government effort to reduce the occurrence of diarrhoea among children and death from diarrhoea, the incidence of diarrhoea among children area still high.Keywords: management diarrheal disease, practices mother, treatment, diarrhoea among children
Procedia PDF Downloads 4146165 Influence of Spirituality on Health Outcomes and General Well-Being in Patients with End-Stage Renal Disease
Authors: Ali A Alshraifeen, Josie Evans, Kathleen Stoddart
Abstract:
End-stage renal disease (ESRD) introduces physical, psychological, social, emotional and spiritual challenges into patients’ lives. Spirituality has been found to contribute to improved health outcomes, mainly in the areas of quality of life (QOL) and well-being. No studies exist to explore the influence of spirituality on the health outcomes and general well-being in patients with end-stage renal disease receiving hemodialysis (HD) treatment in Scotland. This study was conducted to explore spirituality in the daily lives of among these patients and how it may influence their QOL and general well-being. The study employed a qualitative method. Data were collected using semi-structured interviews with a sample of 21 patients. A thematic approach using Framework Analysis informed the qualitative data analysis. Participants were recruited from 11 dialysis units across four Health Boards in Scotland. The participants were regular patients attending the dialysis units three times per week. Four main themes emerged from the qualitative interviews: ‘Emotional and Psychological Turmoil’, ‘Life is Restricted’, ‘Spirituality’ and ‘Other Coping Strategies’. The findings suggest that patients’ QOL might be affected because of the physical challenges such as unremitting fatigue, disease unpredictability and being tied down to a dialysis machine, or the emotional and psychological challenges imposed by the disease into their lives such as wholesale changes, dialysis as a forced choice and having a sense of indebtedness. The findings also revealed that spirituality was an important coping strategy for the majority of participants who took part in the qualitative component (n=16). Different meanings of spirituality were identified including connection with God or Supernatural Being, connection with the self, others and nature/environment. Spirituality encouraged participants to accept their disease and offered them a sense of protection, instilled hope in them and helped them to maintain a positive attitude to carry on with their daily lives, which may have had a positive influence on their health outcomes and general well-being. The findings also revealed that humor was another coping strategy that helped to diffuse stress and anxiety for some participants and encouraged them to carry on with their lives. The findings from this study provide a significant contribution to a very limited body of work. The study contributes to our understanding of spirituality and how people receiving dialysis treatment use it to manage their daily lives. Spirituality is of particular interest due to its connection with health outcomes in patients with chronic illnesses. The link between spirituality and many chronic illnesses has gained some recognition, yet the identification of its influence on the health outcomes and well-being in patients with ESRD is still evolving. There is a need to understand patients’ experiences and examine the factors that influence their QOL and well-being to ensure that the services available are adequately tailored to them. Hence, further research is required to obtain a better understanding of the influence of spirituality on the health outcomes and general well-being of patients with ESRD.Keywords: end-stage renal disease, general well-being, quality of life, spirituality
Procedia PDF Downloads 2266164 Unsupervised Neural Architecture for Saliency Detection
Authors: Natalia Efremova, Sergey Tarasenko
Abstract:
We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment
Procedia PDF Downloads 3486163 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits
Authors: Maletsema Alina Mofokeng, Nemera Shargie
Abstract:
Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.Keywords: accessions, genetic diversity, nutritional quality, sorghum
Procedia PDF Downloads 2636162 Pros and Cons of Different Types of Irrigation Systems for Date Palm Production in Sebha, Libya
Authors: Ahmad Aridah, Maria Fay Rola-Rubzen, Zora Singh
Abstract:
This study investigated the effectiveness of various types of irrigation systems in regards to the impact that these have on the productivity of date palms in the semi-arid and arid region of Sebha, Southwest Libya. The date palm is an economically important crop in Libya and contributes to the agriculture industry, foreign exchange earnings, farmers’ income, and employment in the country. The date palm industry relies on large amounts of water for growing the crop. Farmers in Southwest Libya use a variety of irrigation systems, but the quality and quantity of water varies between systems and this affects the productivity and income of farmers. Using survey data from 210 farmers, this study estimated and assessed the pros and cons of different types of irrigation systems for date palm production under various irrigation systems currently used in Sebha, Libya. The number of years farmers have used irrigation, the area, irrigation water consumption, time of irrigation, number of farm workers (including family labour) and inputs used were measured for surface, sprinkler and drip irrigation methods. Findings from this research provide new insights into the advantages and disadvantages of the various irrigation systems, problems encountered by farmers and the factors that affect the quality and quantity of the irrigation system. The paper discussed proposed solutions to deal with the problems including timing of irrigation, canal maintenance, repair of wells and water control.Keywords: Libya, factors, irrigation method, date palm
Procedia PDF Downloads 3516161 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1066160 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI
Procedia PDF Downloads 1536159 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 846158 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 556157 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection
Authors: Mark Osborn
Abstract:
Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution
Procedia PDF Downloads 1846156 Diversity, Phyto Beneficial Activities and Agrobiotechnolody of Plant Growth Promoting Bacillus and Paenibacillus
Authors: Cheba Ben Amar
Abstract:
Bacillus and Paenibacillus are Gram-positive aerobic endospore-forming bacteria (AEFB) and most abundant in the rhizosphere, they mediated plant growth promotion and disease protection by several complex and interrelated processes involving direct and indirect mechanisms that include nitrogen fixation, phosphate solubilization, siderophores production, phytohormones production and plant diseases control. In addition to their multiple PGPR properties, high secretory capacity, spore forming ability and spore resistance to unfavorable conditions enabling their extended commercial applications for long shelf-life. Due to these unique advantages, Bacillus species were the most an ideal candidate for developing efficient PGPR products such as biopesticides, fungicides and fertilizers. This review list all studied and reported plant growth promoting Bacillus species and strains, discuss their capacities to enhance plant growth and protection with special focusing on the most frequent species Bacillus subtilis, B. pumilus ,B. megaterium, B. amyloliquefaciens , B. licheniformis and B. sphaericus, furthermore we recapitulate the beneficial activities and mechanisms of several species and strains of the genus Paenibacillus involved in plant growth stimulation and plant disease control.Keywords: bacillus, paenibacillus, PGPR, beneficial activities, mechanisms, growth promotion, disease control, agrobiotechnology
Procedia PDF Downloads 4006155 Rejuvenation of Peanut Seedling from Collar Rot Disease by Azotobacter sp. RA2
Authors: Ravi R. Patel, Vasudev R. Thakkar
Abstract:
Use of plant growth-promoting rhizobacteria (PGPR) to increase the production and decrees disease occurrence is a recent method in agriculture. An RA2 rhizospheric culture was isolated from peanut rhizosphere from Junagadh region of Gujarat, India and showed different direct and indirect plant growth promoting activity like indole acetic acid, gibberellic acid, siderophore, hydrogen cyanide, Ammonia and (1-Aminocyclopropane-1-Carboxylate) deaminase production, N2 fixation, phosphate and potassium solubilization in vitro. RA2 was able to protect peanut germinating seedling from A. niger infection and reduce collar rot disease incidence 60-35% to 72-41% and increase germination percentage from 70-82% to 75-97% in two varieties GG20 and GG2 of peanut. RA2 was found to induce resistance in A. hypogaea L. seedlings via induction of different defense-related enzymes like phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, lipoxygenase and pathogenesis related protein like chitinase, ß – 1,3- glucanase. Jasmonic acid one of the major signaling molecules of inducing systemic resistance was also found to induced due to RA2 treatments. RA2 bacterium was also promoting peanut growth and reduce A. niger infection in pot studies. 16S rDNA sequence of RA2 showed 99 % homology to Azotobacter species.Keywords: plant growth promoting rhizobacteria, peanut, aspergillus niger, induce systemic resistance
Procedia PDF Downloads 2426154 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1776153 Epidemiological Analysis of the Patients Supplied with Foot Orthoses in Ortho-Prosthetic Center of Kosovo
Authors: Ardiana Murtezani, Ilirijana Dallku, Teuta Osmani Vllasolli, Sabit Sllamniku
Abstract:
Background: The use of foot orthoses are always indicated when there are alterations of the optimal biomechanics' position of the foot. Orthotics are very effective and very suitable for the majority of patients with pain due to overload which can be related to biomechanical disorders. Aim: To assess the frequency of patients requiring foot orthoses, type of orthoses and analysis of their disease leading to the use of foot orthoses. Material and Methods: Our study included 128 patients with various foot pathologies, treated at the outpatient department of the Ortho-Prosthetic Center of Kosovo (OPCK) in Prishtina. Prospective-descriptive clinical method was used during this study. Functional status of patients was examined, and the following parameters are noted: range of motion measurements for the affected joints/lower extremities, manual test for muscular strength below the knee and foot of the affected extremity, perimeter measurements of the lower extremities, measurements of lower extremities, foot length measurement, foot width measurements and size. In order to complete the measurements the following instruments are used: plantogram, pedogram, meter and cork shoe lift appliances. Results: The majority of subjects in this study are male (60.2% vs. 39.8%), and the dominant age group was 0-9 (47.7%), 61 subjects respectively. Most frequent foot disorders were: congenital disease 60.1%, trauma cases 13.3%, consequences from rheumatologic disease 12.5%, neurologic dysfunctions 11.7%, and the less frequented are the infectious cases 1.6%. Congenital anomalies were the most frequent cases, and from this group majority of cases suffered from pes planovalgus (37.5%), eqinovarus (15.6%) and discrepancies between extremities (6.3%). Furthermore, traumatic amputations (2.3%) and arthritis (0.8%). As far as neurologic disease, subjects with cerebral palsy are represented with (3.1%), peroneal nerve palsy (2.3%) and hemiparesis (1.6%). Infectious disease osteomyelitis sequels are represented with (1.6%). Conclusion: Based on our study results, we have concluded that the use of foot orthoses for patients suffering from rheumatoid arthritis and nonspecific arthropaty was effective treatment choice, leading to decrease of pain, less deformities and improves the quality of life.Keywords: orthoses, epidemiological analysis, rheumatoid arthritis, rehabilitation
Procedia PDF Downloads 2326152 Magnetic Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth, and Chemical Composition
Authors: Farzad Tofigh, Saeideh Najafi, Reza Heidari, Rashid Jamei
Abstract:
In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.Keywords: carotenoid, chlorophyll a, chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field
Procedia PDF Downloads 5026151 Varietal Screening of Advance Wheat Genotypes against Wheat Aphids
Authors: Zunnu Raen Akhtar, Haseeb Jan, Muhammad Latif, Ali Aziz, Ali Akash, Waleed Afzal Naveed, Muhammad Naveed Akhtar
Abstract:
Wheat (Triticum aestivium) is main staple food crop of Pakistan. This crop is highly infested with aphids which cause the loss of yield. A study was carried out at Entomological Research Institute of Ayub Agriculture Research Institute Faisalabad during 2015-16. Eleven wheat genotypes (FSD- 08, v-11098, NIBGE gandum-3, shafaq 2006, v-13372, Punjab-2011, v-12304, 11C023, v-13005, v-13016, v-12120) were sown using the Randomized Complete Block Design in the research area of Entomological Research Institute Faisalabad during the year 2015-16. The aphid infestation per tiller on each genotype was observed from the first week of January till the third week of March maximum. The results reveal that shafaq 2006 and V-12120 were found more susceptible with 10.22 and 9.90 aphids per tiller and minimum infestation was observed on the Punjab-2011 and 11C023 i.e., 5.72 and 5.99 aphid per tiller respectively. When the peak season observations were analyzed, slight changes occur in the peak population of aphid among all wheat genotypes. The most susceptible genotypes were Shafaq 2006 and V-12304 with 18.63 and 18.23 aphids per tiller while the wheat genotypes 11C023 and Punjab 2011 received minimum aphid population which was 9.99 and 10.47 aphids per tiller and they considered more tolerant.Keywords: Triticum aestivium, Schizaphis graminum, population, resistance
Procedia PDF Downloads 3326150 Study on an Integrated Real-Time Sensor in Droplet-Based Microfluidics
Authors: Tien-Li Chang, Huang-Chi Huang, Zhao-Chi Chen, Wun-Yi Chen
Abstract:
The droplet-based microfluidic are used as micro-reactors for chemical and biological assays. Hence, the precise addition of reagents into the droplets is essential for this function in the scope of lab-on-a-chip applications. To obtain the characteristics (size, velocity, pressure, and frequency of production) of droplets, this study describes an integrated on-chip method of real-time signal detection. By controlling and manipulating the fluids, the flow behavior can be obtained in the droplet-based microfluidics. The detection method is used a type of infrared sensor. Through the varieties of droplets in the microfluidic devices, the real-time conditions of velocity and pressure are gained from the sensors. Here the microfluidic devices are fabricated by polydimethylsiloxane (PDMS). To measure the droplets, the signal acquisition of sensor and LabVIEW program control must be established in the microchannel devices. The devices can generate the different size droplets where the flow rate of oil phase is fixed 30 μl/hr and the flow rates of water phase range are from 20 μl/hr to 80 μl/hr. The experimental results demonstrate that the sensors are able to measure the time difference of droplets under the different velocity at the voltage from 0 V to 2 V. Consequently, the droplets are measured the fastest speed of 1.6 mm/s and related flow behaviors that can be helpful to develop and integrate the practical microfluidic applications.Keywords: microfluidic, droplets, sensors, single detection
Procedia PDF Downloads 4936149 The Multiple Sclerosis and the Role of Human Herpesvirus 6 in Its Progression
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Human Herpesvirus 6 (HHV-6), and MS is one potential cause that is not well understood. In this study, we aim to summarize the available data on HHV-6 infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " Human Herpesvirus 6 ", and "central nervous system" in the databases PubMed and Google Scholar between 2017 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: HHV 6 tends towards TCD 4+ lymphocytes and enters the CNS due to the weakening of the blood-brain barrier due to inflammatory damage. Following the observation that the HHV-6 U24 protein has a seven amino acid sequence with myelin basic protein, which is one of the main components of the myelin sheath, it could cause a molecular mimicry mechanism followed by cross-reactivity. Reactivation of HHV-6 in the CNS can cause the release of proinflammatory cytokines, including TNF-α, leading to immune-mediated demyelination in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HHV-6 and MS, and that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HHV-6 may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, human herpesvirus 6, central nervous system, autoimmunity
Procedia PDF Downloads 1116148 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management
Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood
Abstract:
Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure
Procedia PDF Downloads 4146147 A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea
Authors: Ghirmay Teklemicheal, Samsom Mehari, Sara Tesfay
Abstract:
Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections.Keywords: Chikungunya, Chikungunya virus, disease outbreaks, case-control studies, Eritrea
Procedia PDF Downloads 1656146 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects
Authors: Karan Sharma, Ajay Kumar
Abstract:
Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.Keywords: EEG signal, Reiki, time consuming, epileptic seizure
Procedia PDF Downloads 4066145 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines
Authors: I. A. Farhat, M. Bin Hasan
Abstract:
A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)
Procedia PDF Downloads 559