Search results for: gas utilization efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8258

Search results for: gas utilization efficiency

6548 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels

Procedia PDF Downloads 151
6547 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 484
6546 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: down hole safety valve, security devices, installation, oil-wells

Procedia PDF Downloads 275
6545 Sustainable User Comfort Using Building Envelope Design; From Traditional Methods to Innovative Solutions

Authors: Soufi Saylam

Abstract:

Environmental concerns, rising consumption of energy, and the high cost of mechanical systems have all contributed to increased interest in building energy efficiency and passive thermal design in recent years. This study attempts to make an evaluation of building envelope components and associated retrofits in terms of their impact on energy efficiency and occupant comfort in a sustainable context. The design of the building envelope, as a critical component of the building, has a significant impact on the organization of interior space and user comfort. In this regard, in order to achieve maximum comfort and energy savings, the design of the building envelope should include a thermal comfort system that adapts to climatic variables. This system should be developed in harmony with the environmental features, building shape, and materials used. The aim of this study is to investigate the role of the building envelope in sustainable architecture by integrating traditional envelope design principles and strategies with technological techniques, as well as to examine its role in providing physical and psychological comfort to users in the interior space.

Keywords: envelope design, functional needs, physiological comfort, sustainable architecture, traditional techniques

Procedia PDF Downloads 14
6544 Manual Wheelchair Propulsion Efficiency on Different Slopes

Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse

Abstract:

In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.

Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion

Procedia PDF Downloads 291
6543 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach

Procedia PDF Downloads 299
6542 Comparison of Small Ruminants (Sheep) Production Efficiency of Nomadic and Transhumance Flocks in Malakand, Pakistan

Authors: Akbar Nawaz Khan, Abdul Ghaffar, Abdur Rehman, Muhammad Naeem Riaz, Sayed Muhammad Hassan Andrabi

Abstract:

The present study was conducted to compare sheep rearing in nomadic with transhumance system in term of production parameters. The following parameters which studied for comparison were household size, landholding area, flock size, body condition score, fecal egg count and live weight change in sheep under nomadic and transhumance systems of management in Malakand since October 2010 to March 2011. Further the effects of Body Condition Score (BCS) and Fecal Egg Count (FEC) on production were also examined. Two systems were checked for the purpose to check the efficiency of production. A total of eight flocks, four each from nomadic and transhumance system were selected for the study; each flock was divided into treatment and controlled groups to check the effect of treatment or de-wormers. A total of 160 animals were selected randomly (80 treated, 80 controlled). The adult ram average weight transhumance system was 55.58 kg while in nomadic that was 54.16 kg, weight change was positive, and the highest change was recorded in transhumance treated which was 13%. Fecal egg count was record low (75 EPG) in transhumance treated group while high (330 EPG) in nomadic controlled. Body condition score was recorded 3.6 for transhumance treated and 3.32 for nomadic treated. It is concluded from the present study that transhumance system performed significantly (p < 0.05) better in respect of live weight, BCS, FEC, family size, Landholding area, number of animals in a flock, offspring record, culling, and mortality. Mean values are 7.367 ± 0221, 0.900 ± 0.071, 63.167 ± 1.559, 55.600 ± 1.480, 8.300 ± 0.321 and 2.500 ± 0.158 respectively. De-wormer effect on FEC showed a significant reduction in egg load in mature sheep on both systems.

Keywords: small ruminant, sheep, nomadic, transhumance, Malakand, production efficiency

Procedia PDF Downloads 228
6541 Real-Time Aerial Marine Surveillance System for Safe Navigation

Authors: Vinesh Thiruchelvam, Umar Mumtaz Chowdry, Sathish Kumar Selvaperumal

Abstract:

The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module.

Keywords: SMS, real time, GUI, maritime industry

Procedia PDF Downloads 502
6540 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles

Authors: J. P. Borah, R. D. Raland

Abstract:

Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.

Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study

Procedia PDF Downloads 168
6539 Effect of Agricultural Extension Services on Technical Efficiency of Smallholder Cassava Farmers in Ghana: A Stochastic Meta-Frontier Analysis

Authors: Arnold Missiame

Abstract:

In Ghana, rural dwellers who depend primarily on agriculture for their livelihood constitute about 60% of the country’s population. This shows the critical role and potentials of the agricultural sector in helping to achieve Ghana’s vision 2030. With the current threat of climate change and advancements in technology, agricultural extension is not just about technology transfer and improvements in productivity, but it is also about improving the managerial and technical skills of farmers. In Ghana, the government of Ghana as well as other players in the sector like; non-governmental organizations, NGOs, local and international funding agencies, for decades now, have made capacity-building-investments in smallholder farmers by way of extension services delivery. This study sought to compare the technical efficiency of farmers who have access to agricultural extension and farmers who do not in Ghana. The study employed the stochastic meta-frontier model to analyze household survey data comprising 300 smallholder cassava farmers from the Fanteakwa district of Ghana. The farmers were selected through a two-stage sampling technique where 5 communities were purposively selected in the first stage and then 60 smallholder cassava farmers were randomly selected from each of the 5 communities. Semi-structured questionnaires were used to collect data on farmers’ socioeconomic and farm-level characteristics. The results showed that farmers who have access to agricultural extensions services have higher technical efficiencies (TE) and produce much closer to their meta-production frontiers (higher technology gap ratios (TGR) than farmers who do not have access to such extension services. Furthermore, experience in cassava cultivation and formal education significantly improves the technical efficiencies of farmers. The study recommends that the mode and scope of agricultural extension service delivery in the country should be enhanced to ensure that smallholder farmers have easy access to extension agents.

Keywords: agricultural extension, Ghana, smallholder farmers, stochastic meta-frontier model, technical efficiency

Procedia PDF Downloads 115
6538 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies

Authors: Hideaki Endo, Mika Goto

Abstract:

The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.

Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency

Procedia PDF Downloads 76
6537 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 106
6536 The Perception of Teacher Candidates' on History in Non-Educational TV Series: The Magnificent Century

Authors: Evren Şar İşbilen

Abstract:

As it is known, the movies and tv series are occupying a large part in the daily lives of adults and children in our era. In this connection, in the present study, the most popular historical TV series of recent years in Turkey, “Muhteşem Yüzyıl” (The Magnificent Century), was selected as the sample for the data collection in order to explore the perception of history of university students’. The data collected was analyzed bothqualitatively and quantitatively. The findings discussed in relation to the possible educative effects of historical non-educational TV series and movies on students' perceptions related to history. Additionally, suggestions were made regarding to the utilization of non-educational TV series or movies in education in a positive way.

Keywords: education, history, movies, teacher candidates

Procedia PDF Downloads 334
6535 Phytochemical Profile and in Vitro Bioactivity Studies on Two Underutilized Vegetables in Nigeria

Authors: Borokini Funmilayo Boede

Abstract:

B. alba L., commonly called ‘Amunututu’ and Solanecio biafrae called ‘Worowo’ among the Yoruba tribe in the southwest part of Nigeria are reported to be of great ethnomedicinal importance but are among many underutilized green leafy vegetables in the country. Many studies have established the nutritional values of these vegetables, utilization are very poor and indepth information on their chemical profiles is scarce. The aqueous, methanolic and ethanolic extracts of these vegetables were subjected to phytochemical screening and phenolic profiles of the alcoholic extracts were characterized by using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Total phenol and flavonoid contents were determined, antioxidant activities were evaluated using five in vitro assays to assess DPPH, nitric oxide and hydroxyl radical-scavenging abilities, as well as reducing power with ferric reducing antioxidant assay and phosphomolybdate method. The antibacterial activities of the extracts against Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi were evaluated by using agar well diffusion method and the antifungal activity evaluated against food-associated filamentous fungi by using poisoned food technique with the aim of assessing their nutraceutical potentials to encourage their production and utilization. The results revealed the presence of saponnin, steroids, tannin, terpenoid and flavonoid as well as phenolic compounds: gallic acid, chlorogenic acid, caffeic acid, coumarin, rutin, quercitrin, quercetin and kaemferol. The vegetables showed varying concentration dependent reducing and radical scavenging abilities from weak to strong compared with gallic acid, rutin, trolox and ascorbic acid used as positive controls; the aqueous extracts which gave higher concentrations of total phenol displayed higher ability to reduce Fe (lll) to Fe (ll) and stronger inhibiting power against hydroxyl radical than the alcoholic extracts and in most cases exhibited more potency than the ascorbic acids used as positive controls, at the same concentrations, whereas, methanol and / or ethanol extracts were found to be more effective in scavenging 2, 2-diphenyl-1-picryl hydrazyl radical and showed higher ability to reduce Mo (VI) to Mo (V) in total antioxidant assay than the aqueous extracts. However, the inhibition abilities of all the extracts against nitric oxide were comparable with the ascorbic acid control at the same concentrations. There were strong positive correlations with total phenol (mg GAE/g) and total flavonoid (mg RE/g) contents in the range TFC (r=0.857- 0999 and r= 0.904-1.000) and TPC (r= 0.844- 0.992 and r= 0.900 -0.999) for Basella alba and Senecio biafrae respectively. Inhibition concentration at 50 % (IC50) for each extract to scavenge DPPH, OH and NO radicals ranged from 32.73 to 1.52 compared with control (0.846 - -6.42) mg/ml. At 0.05g/ml, the vegetables were found to exhibit mild antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi compared with streptomycin sulphate used as control but appreciable antifungi activities against (Trichoderma rubrum and Aspergillus fumigates) compared with bonlate antibiotic positive control. The vegetables possess appreciable antioxidant and antimicrobial properties for promoting good health, their cultivation and utilization should be encouraged especially in the face of increasing health and economic challenges and food insecurity in many parts of the world.

Keywords: antimicrobial, antioxidants, extracts, phytochemicals

Procedia PDF Downloads 327
6534 Performance Improvement of Information System of a Banking System Based on Integrated Resilience Engineering Design

Authors: S. H. Iranmanesh, L. Aliabadi, A. Mollajan

Abstract:

Integrated resilience engineering (IRE) is capable of returning banking systems to the normal state in extensive economic circumstances. In this study, information system of a large bank (with several branches) is assessed and optimized under severe economic conditions. Data envelopment analysis (DEA) models are employed to achieve the objective of this study. Nine IRE factors are considered to be the outputs, and a dummy variable is defined as the input of the DEA models. A standard questionnaire is designed and distributed among executive managers to be considered as the decision-making units (DMUs). Reliability and validity of the questionnaire is examined based on Cronbach's alpha and t-test. The most appropriate DEA model is determined based on average efficiency and normality test. It is shown that the proposed integrated design provides higher efficiency than the conventional RE design. Results of sensitivity and perturbation analysis indicate that self-organization, fault tolerance, and reporting culture respectively compose about 50 percent of total weight.

Keywords: banking system, Data Envelopment Analysis (DEA), Integrated Resilience Engineering (IRE), performance evaluation, perturbation analysis

Procedia PDF Downloads 191
6533 Ensuring Continuity in Subcutaneous Depot Medroxy Progesterone Acetate (DMPA-SC) Contraception Service Provision Using Effective Commodity Management Practices

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: The Delivering Innovations in Selfcare (DISC) project aims to increase access to self-care options for women of reproductive age, starting with self-inject subcutaneous depot medroxyprogesterone acetate (DMPA-SC) contraception services. However, the project has faced challenges in ensuring the continuous availability of the commodity in health facilities. Although most states in the country rely on the federal ministry of Health for supplies, some are gradually funding the procurement of Family Planning (FP) commodities. This attempt is, however, often accompanied by procurement delays and purchases inadequate to meet demand. This dilemma was further exacerbated by the commencement of demand generation activities by the project in supported states which geometrically increased commodity utilization rates and resulted in receding stock and occasional service disruptions. Strategies: The project deployed various strategies were implemented to ensure the continuous availability of commodities. These include facilitating inter-facility transfer, monthly tracking of commodity utilization, and alerting relevant authorities when stock levels reach a minimum. And supporting state-level procurement of DMPA-SC commodities through catalytic interventions. Results: Effective monitoring of commodity inventory at the facility level and strategic engagement with federal and state-level logistics units have proven successful in mitigating stock-out of commodities. It has helped secure up to 13,000 units of DMPA-SC commodities from federal logistics units and enabled state units to prioritize supported sites. This has ensured the continuity of DMPA-SC services and an increasing trend in the practice of self-injection. Conclusion: A functional supply chain is crucial to achieving commodity security, and without it, health programs cannot succeed. Stakeholder engagement, stock management and catalytic interventions have provided both short- and long-term measures to mitigate stock-outs and ensured a consistent supply of commodities to clients.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, commodities, stock-out

Procedia PDF Downloads 91
6532 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 246
6531 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems

Authors: Moustafa Osman Mohammed

Abstract:

The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.

Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling

Procedia PDF Downloads 159
6530 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 227
6529 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages

Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska

Abstract:

The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method. Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.

Keywords: sea buckthorn, meat products, texture, color parameters, lipid oxidation

Procedia PDF Downloads 299
6528 Integrated Grey Rational Analysis-Standard Deviation Method for Handover in Heterogeneous Networks

Authors: Mohanad Alhabo, Naveed Nawaz, Mahmoud Al-Faris

Abstract:

The dense deployment of small cells is a promising solution to enhance the coverage and capacity of the heterogeneous networks (HetNets). However, the unplanned deployment could bring new challenges to the network ranging from interference, unnecessary handovers and handover failures. This will cause a degradation in the quality of service (QoS) delivered to the end user. In this paper, we propose an integrated Grey Rational Analysis Standard Deviation based handover method (GRA-SD) for HetNet. The proposed method integrates the Standard Deviation (SD) technique to acquire the weight of the handover metrics and the GRA method to select the best handover base station. The performance of the GRA-SD method is evaluated and compared with the traditional Multiple Attribute Decision Making (MADM) methods including Simple Additive Weighting (SAW) and VIKOR methods. Results reveal that the proposed method has outperformed the other methods in terms of minimizing the number of frequent unnecessary handovers and handover failures, in addition to improving the energy efficiency.

Keywords: energy efficiency, handover, HetNets, MADM, small cells

Procedia PDF Downloads 117
6527 Advanced Exergetic Analysis: Decomposition Method Applied to a Membrane-Based Hard Coal Oxyfuel Power Plant

Authors: Renzo Castillo, George Tsatsaronis

Abstract:

High-temperature ceramic membranes for air separation represents an important option to reduce the significant efficiency drops incurred in state-of-the-art cryogenic air separation for high tonnage oxygen production required in oxyfuel power stations. This study is focused on the thermodynamic analysis of two power plant model designs: the state-of-the-art supercritical 600ᵒC hard coal plant (reference power plant Nordrhein-Westfalen) and the membrane-based oxyfuel concept implemented in this reference plant. In the latter case, the oxygen is separated through a mixed-conducting hollow fiber perovskite membrane unit in the three-end operation mode, which has been simulated under vacuum conditions on the permeate side and at high-pressure conditions on the feed side. The thermodynamic performance of each plant concept is assessed by conventional exergetic analysis, which determines location, magnitude and sources of efficiency losses, and advanced exergetic analysis, where endogenous/exogenous and avoidable/unavoidable parts of exergy destruction are calculated at the component and full process level. These calculations identify thermodynamic interdependencies among components and reveal the real potential for efficiency improvements. The endogenous and exogenous exergy destruction portions are calculated by the decomposition method, a recently developed straightforward methodology, which is suitable for complex power stations with a large number of process components. Lastly, an improvement priority ranking for relevant components, as well as suggested changes in process layouts are presented for both power stations.

Keywords: exergy, carbon capture and storage, ceramic membranes, perovskite, oxyfuel combustion

Procedia PDF Downloads 189
6526 Proprietary Blend Synthetic Rubber as Loss Circulation Material in Drilling Operation

Authors: Zatil Afifah Omar, Siti Nur Izati Azmi, Kathi Swaran, Navin Kumar

Abstract:

Lost circulation has always been one of the greatest problems faced by drilling companies during drilling operations due to excessive drilling Fluids losses. Loss of circulation leads to Huge cost and non-productive time. The objective of this study is to evaluate the sealing efficiency of a proprietary blend of synthetic rubber as loss circulation material in comparison with a conventional product such as calcium carbonate, graphite, cellulosic, and nutshells. Sand Bed Tester with a different proprietary blend of synthetic rubber compositions has been used to determine the effectiveness of the LCM in preventing drilling fluids losses in a lab scale. Test results show the proprietary blend of synthetic rubber have good bridging properties and sealing Off fractures of various sizes. The finish product is environmentally friendly with lower production lead time and lower production cost compared to current conventional loss circulation materials used in current drilling operations.

Keywords: loss circulation materials, drilling operation, sealing efficiency, LCM

Procedia PDF Downloads 184
6525 Dimensionally Stable Anode as a Bipolar Plate for Vanadium Redox Flow Battery

Authors: Jaejin Han, Jinsub Choi

Abstract:

Vanadium redox flow battery (VRFB) is a type of redox flow battery which uses vanadium ionic solution as electrolyte. Inside the VRFB, 2.5mm thickness of graphite is generally used as bipolar plate for anti-corrosion of current collector. In this research, thick graphite bipolar plate was substituted by 0.126mm thickness of dimensionally stable anode which was coated with IrO2 on an anodic nanotubular TiO2 substrate. It can provide dimensional advantage over the conventional graphite when the VRFB is used as multi-stack. Ir was coated by using spray coating method in order to enhance electric conductivity. In this study, various electrochemical characterizations were carried out. Cyclic voltammetry data showed activation of Ir in the positive electrode of VRFB. In addition, polarization measurements showed Ir-coated DSA had low overpotential in the positive electrode of VRFB. In cell test results, the DSA-used VRFB showed better efficiency than graphite-used VRFB in voltage and overall efficiency.

Keywords: bipolar plate, DSA (dimensionally stable anode), iridium oxide coating, TiO2 nanotubes, VRFB (vanadium redox flow battery)

Procedia PDF Downloads 498
6524 Modeling Jordan University of Science and Technology Parking Using Arena Program

Authors: T. Qasim, M. Alqawasmi, M. Hawash, M. Betar, W. Qasim

Abstract:

Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology.

Keywords: car park, simulation, modeling, service time

Procedia PDF Downloads 189
6523 Nearly Zero-Energy Regulation and Buildings Built with Prefabricated Technology: The Case of Hungary

Authors: András Horkai, Attila Talamon, Viktória Sugár

Abstract:

There is an urgent need nowadays to reduce energy demand and the current level of greenhouse gas emission and use renewable energy sources increase in energy efficiency. On the other hand, the European Union (EU) countries are largely dependent on energy imports and are vulnerable to disruption in energy supply, which may, in turn, threaten the functioning of their current economic structure. Residential buildings represent a significant part of the energy consumption of the building stock. Only a small part of the building stock is exchanged every year, thus it is essential to increase the energy efficiency of the existing buildings. Present paper focuses on the buildings built with industrialized technology only, and their opportunities in the boundaries of nearly zero-energy regulation. Current paper shows the emergence of panel construction method, and past and present of the ‘panel’ problem in Hungary with a short outlook to Europe. The study shows as well as the possibilities for meeting the nearly zero and cost optimized requirements for residential buildings by analyzing the renovation scenarios of an existing residential typology.

Keywords: Budapest, energy consumption, industrialized technology, nearly zero-energy buildings

Procedia PDF Downloads 349
6522 Role of Biotechnology to Reduce Climate-Induced Impacts

Authors: Sandani Muthukumarana, Pavithra Rathnasiri

Abstract:

Climate change is one of the greatest challenges our generation faces, but by embracing biotechnology, we can turn this challenge into an opportunity to grow the economy. Biotechnology provides the sector with a range of solutions that help mitigate the effects of global warming. However, research efforts on investigating the potential and challenges for further utilization of biotechnology to mitigate climate change impacts are still lacking. To address this issue, existing context over the use of biotechnology for climate change mitigation, potential applications, practices being used, and challenges that exist need to be investigated to provide a broader understanding for future researchers and practitioners. This paper, therefore, reviews the existing literature addressing these perspectives to facilitate the application of biotechnology in mitigating hazards arising from climate change.

Keywords: climate change, impacts, biotechnology, solutions

Procedia PDF Downloads 93
6521 Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance

Authors: Shayan Arefi, Qadir Esmaili, Seyed Ali Jazayeri

Abstract:

The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle.

Keywords: turbo generator, axial fan, Ansys, performance

Procedia PDF Downloads 367
6520 Energy Consumption and Energy Conservation Potential for HVAC System in Commercial Buildings Sector in India

Authors: Rishabh Agrawal, S. C. Kaushik, T. S. Bhatti

Abstract:

In order to reduce energy consumption for sustainable development, continuous energy consumption tracking of building energy systems are essential. In this paper an assessment study has been done to identify the energy consumption & energy conservation potential for commercial buildings sector in Karnataka state, India. There are a total of 326 commercial buildings in the state of Karnataka who has qualified as designated consumers (i.e., having a Contract Demand ≥ 600 KVA), was consider for the study. It has estimated that the annual electricity sale to commercial sector is 3.62 Billion Units (BU) in alone Karnataka State, India, which is an account for 9.57 % of the total electricity sold. The commercial sector constitutes Government & private establishments, hospitals, hotels, restaurants, educational institutions, malls etc. Total 326 commercial buildings in the state accounting for annual energy consumption of 1295.72 Million Units (MU) which works out to about 35% of the sectoral consumption. The annual energy savings potential for 326 commercial buildings is assessed to be 0.25 BU.

Keywords: commercial buildings, connected load, energy conservation studies, energy savings, energy efficiency, energy conservation strategy, energy efficiency, thermal energy, HVAC system

Procedia PDF Downloads 585
6519 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 62