Search results for: untrusted rate
6437 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate
Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina
Abstract:
Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin
Procedia PDF Downloads 826436 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 3806435 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools
Authors: Mehmet Erdi Korkmaz, Mustafa Günay
Abstract:
Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method
Procedia PDF Downloads 3716434 Effect of Different Feed Composition on the Growth Performance in Early Weaned Piglets
Authors: Obuzor Eze Obuzor, Ekpoke Okurube Sliver
Abstract:
The study was carried out at Debee farms at Ahoada West Local Government area, Rivers State, Nigeria. To evaluate the impact of two different cost-effective available feed composition on growth performance of weaned piglets. Thirty weaned uncontrolled cross bred (Large white x pietrain) piglets of average initial weight of 3.04 Kg weaned at 30days were assigned to three dietary treatments, comprising three replicates of 10 weaned piglets each, piglets were kept at 7 °C in different pens with dimensions of 4.50 × 4.50 m. The design of the experiment was completely randomized design, data from the study were subjected to one-way analysis of variance (ANOVA) and significant means were separated using Duncan's Multiple Range Test using Statistical Analysis System (SAS) software for windows (2 0 0 3), statistical significance was assessed at P < 0.05 (95% confidence interval) while survival rate was calculated using simple percentage. A standard diet was prepared to meet the nutrient requirements of weaned piglets at (20.8% crude protein). The three diets were fed to the animals in concrete feeding trough, control diet (C) had soybean meal while first treatment had spent grain (T1) and the second treatment had wheat offal (T2) respectively. The experiment was partitioned into four weeks periods (days 1-7, 8-14, 15-21 and 22-28). Feed and water were given unrestrictedly throughout the period of the experiment. The feed intake and weights of the pigs were recorded on weekly basis. Feed conversion ratio and daily weight gain were calculated and the study lasted for four weeks. There was no significant (P>0.05) effect of diet on survival rate, final body weight, average daily weight gain, daily feed intake and feed conversion ratio. The overall performance showed that treatment one (T1) had survival rate (93%), improved daily weight gain (36.21 g), average daily feed intake (120.14 g) and had the best feed conversion ratio (0.29) similar high mean value with the control while treatment two (T2) had lowest and negative response to all parameters. It could be concluded that feed formulated with spent grain is cheaper than control (soybean meal) and also improved the growth performance of weaned piglets.Keywords: piglets, weaning, feed conversions ratio, daily weight gain
Procedia PDF Downloads 666433 An Econometric Analysis of the Impacts of Inflation on the Economic Growth of South Africa
Authors: Gisele Mah, Paul Saah
Abstract:
The rising rates of inflation are hindering economic growth in developing nations. Hence, this study investigated the effects of inflation rates on the economic growth of South Africa using the secondary time series data from 1987 to 2022. The main objectives of this study were to investigate the long run relationship between inflation and economic growth, and also to determine the causality direction between these two variables. The study utilized the Autoregressive Distributed Lag (ARDL) bounds test of co-integration to investigate whether there is a long-run relationship between inflation and economic growth. The Pairwise Granger causality approach was employed to determine the second objective, which is the direction of causality. The study discovered only one co-integration relationship between our variables and it was between inflation and economic growth. The results showed that there is a negative and significant relationship between inflation and economic growth. There appeared to be a positive and significant relationship between economic growth and exchange rate. The interest rates have shown to be negative and insignificant in explaining economic growth. The study also established that inflation does Granger cause economic growth which is given as GDP. Similarly, the study discovered that inflation Granger causes exchange rates. Therefore, the study recommends that inflation should be decreased in South Africa, in order for economic growth to increase. Contrary, this study recommends that South Africa should increase its exchange rates, in order for economic growth to also increase.Keywords: inflation rate, economic growth, South Africa, autoregressive distributed lag model
Procedia PDF Downloads 496432 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials
Authors: H. Yanar, G. Purcek, H. H. Ayar
Abstract:
The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.Keywords: brake pad composite, friction and wear, rubber, friction materials
Procedia PDF Downloads 1396431 Social Strategeries for HIV and STDs Prevention
Authors: Binu Sahayam
Abstract:
HIV/AIDS epidemic is in its third decade and has become a virulent disease that threatens the world population. Many countless efforts had been made yet this has become a social and developmental concern. According to UNAIDS 2013 Report, In India around 2.4 million people are currently living with HIV and third in the infection rate. As every country is facing this health issue, this has become a social and developmental concern for India. In country like India, open discussion on sex and sexuality is not possible due to its conventional culture. Educational institution like schools and colleges can create awareness on sex education, life skill education, information on HIV and STD which is lacking. It is very clear that preventive knowledge remains low and this leads to increase in the HIV/AIDS infection rate. HIV/AIDS is a disease which is not curable but preventable, keeping this in mind religious leaders of various have come forward in addressing the issue of HIV/AIDS using various social strategies. The study has been focused on three main India religious teachings Hinduism, Christianity and Islam in addressing the issue of HIV/AIDS and its possible intervention in dealing with HIV/AIDS prevention. The study is important because it highlights the health issues, stigma discrimination, psychological disturbances and insecurity faced by the infected and affected persons. Therefore, this study privileges the role of religious leadership in the efforts and processes of preventing HIV/AIDS, caring and providing support to People living with HIV/AIDS and argues that intervention of religious leadership is an effective measure to confront many of the barriers associated with HIV/AIDS.Keywords: HIV and AIDS, STDs, religion and religious organisation
Procedia PDF Downloads 3926430 Prognosis, Clinical Outcomes and Short Term Survival Analyses of Patients with Cutaneous Melanomas
Authors: Osama Shakeel
Abstract:
The objective of the paper is to study the clinic-pathological factors, survival analyses, recurrence rate, metastatic rate, risk factors and the management of cutaneous malignant melanoma at Shaukat Khanum Memorial Cancer Hospital and Research Center. Methodology: From 2014 to 2017, all patients with a diagnosis of cutaneous malignant melanoma (CMM) were included in the study. Demographic variables were collected. Short and long term oncological outcomes were recorded. All data were entered and analyzed in SPSS version 21. Results: A total of 28 patients were included in the study. Median age was 46.5 +/-15.9 years. There were 16 male and 12 female patients. The family history of melanoma was present in 7.1% (n=2) of the patients. All patients had a mean survival of 13.43+/- 9.09 months. Lower limb was the commonest site among all which constitutes 46.4%(n=13). On histopathological analyses, ulceration was seen in 53.6% (n=15) patients. Unclassified tumor type was present in 75%(n=21) of the patients followed by nodular 21.4% (n=6) and superficial spreading 3.5%(n=1). Clark level IV was the commonest presentation constituting 46.4%(n=13). Metastases were seen in 50%(n=14) of the patients. Local recurrence was observed in 60.7%(n=17). 64.3%(n=18) lived after one year of treatment. Conclusion: CMM is a fatal disease. Although its disease of fair skin individuals, however, the incidence of CMM is also rising in this part of the world. Management includes early diagnoses and prompt management. However, mortality associated with this disease is still not favorable.Keywords: malignant cancer of skin, cutaneous malignant melanoma, skin cancer, survival analyses
Procedia PDF Downloads 1706429 Effect of Tillage Practices and Planting Patterns on Growth and Yield of Maize (Zee Maize)
Authors: O. R. Obalowu, F. B. Akande, T. P Abegunrin
Abstract:
Maize (Zea may) is mostly grown and consumed by Nigeria farmers using different tillage practices which have a great effect on its growth and yield. In order to maximize output, there is need to recommend a suitable tillage practice for crop production which will increase the growth and yield of maize. This study investigated the effect of tillage practices and planting pattern on the growth and yield of maize. The experiment was arranged in a 4x3x3 Randomized Complete Block Design (RCBD) layout, with four tillage practices consisting of no-tillage (NT), disc ploughing only (Ponly), disc ploughing followed by harrowing (PH), and disc ploughing, harrowing then ridging (PHR). Three planting patterns which include; 65 x 75, 75 x 75 and 85 x 75 cm spacing within and between the rows respectively, were randomly applied on the plots. All treatments were replicated three times. Data which consist of plant height, stem girth, leaf area and weight of maize per plots were taken and recorded. Data gathered were analyzed using Analysis of Variance (ANOVA) in the Minitab Software Package. The result shows that PHR under the third planting pattern has the highest growth rate (216.50 cm) while NT under the first planting pattern has the lowest mean value of growth rate (115.60 cm). Also, Ponly under the first planting pattern gives a better maize yield (19.45 kg) when compared with other tillage practices while NT under first planting pattern recorded the least yield of maize (9.40 kg). In conclusion, considering soil and weather conditions of the research area, plough only under the first planting pattern (65 x 75 cm) is the best alternative for the production of the Swan maize variety.Keywords: tillage practice, planting pattern, disc ploughing, harrowing, ridging
Procedia PDF Downloads 4926428 Micro Celebrities in Social Media Instagram and Their Personal Influence in Business Perspective
Authors: Yoga Maulana Putra, Herry Hudrasyah
Abstract:
The Internet has now become an important part of human life; it can be accessed through a computer or even a smartphone almost anywhere and anytime. The Internet has created many social media such as Facebook, Twitter, and Instagram. Instagram has been acquired by Facebook in 2012. Since then, Instagram is growing fast. And now, Instagram is transforming from photo-sharing social media into business tools. As the result, some new behavior has been discovered. Some of Instagram user is becoming popular. These people also being called minor celebrity and they are also being used as marketing tools by many companies to influencing or promoting their product or service. This minor celebrity is existing because of their behavior in using Instagram. The company is using the personal influence of the minor celebrity to promoting and influencing their product or service, and the minor celebrity gets paid as much as their rate card. And their rate card based on their followers and insight. This research is using a qualitative method. An interview is being done to 6 minor celebrities from many different categories such as photographer, travel blogger, lifestyle, food blogger, fashion, and healthcare. Theory of reasoned behavior is being used as the grounded theory to discover the reason for their behavior and personal influence to describe their way to influencing people. The result of the interview is most of the minor celebrities is influenced by their friend’s circle in the process of using Instagram. They also had a different way to use their personal influence to affect their followers when the company employs them.Keywords: humanities and social sciences, Instagram, minor celebrity, social media
Procedia PDF Downloads 1666427 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets
Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li
Abstract:
Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet
Procedia PDF Downloads 1306426 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature
Procedia PDF Downloads 1306425 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method
Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna
Abstract:
Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF
Procedia PDF Downloads 1976424 Estimation of Hydrogen Production from PWR Spent Fuel Due to Alpha Radiolysis
Authors: Sivakumar Kottapalli, Abdesselam Abdelouas, Christoph Hartnack
Abstract:
Spent nuclear fuel generates a mixed field of ionizing radiation to the water. This radiation field is generally dominated by gamma rays and a limited flux of fast neutrons. The fuel cladding effectively attenuates beta and alpha particle radiation. Small fraction of the spent nuclear fuel exhibits some degree of fuel cladding penetration due to pitting corrosion and mechanical failure. Breaches in the fuel cladding allow the exposure of small volumes of water in the cask to alpha and beta ionizing radiation. The safety of the transport of radioactive material is assured by the package complying with the IAEA Requirements for the Safe Transport of Radioactive Material SSR-6. It is of high interest to avoid generation of hydrogen inside the cavity which may to an explosive mixture. The risk of hydrogen production along with other radiation gases should be analyzed for a typical spent fuel for safety issues. This work aims to perform a realistic study of the production of hydrogen by radiolysis assuming most penalizing initial conditions. It consists in the calculation of the radionuclide inventory of a pellet taking into account the burn up and decays. Westinghouse 17X17 PWR fuel has been chosen and data has been analyzed for different sets of enrichment, burnup, cycles of irradiation and storage conditions. The inventory is calculated as the entry point for the simulation studies of hydrogen production by radiolysis kinetic models by MAKSIMA-CHEMIST. Dose rates decrease strongly within ~45 μm from the fuel surface towards the solution(water) in case of alpha radiation, while the dose rate decrease is lower in case of beta and even slower in case of gamma radiation. Calculations are carried out to obtain spectra as a function of time. Radiation dose rate profiles are taken as the input data for the iterative calculations. Hydrogen yield has been found to be around 0.02 mol/L. Calculations have been performed for a realistic scenario considering a capsule containing the spent fuel rod. Thus, hydrogen yield has been debated. Experiments are under progress to validate the hydrogen production rate using cyclotron at > 5MeV (at ARRONAX, Nantes).Keywords: radiolysis, spent fuel, hydrogen, cyclotron
Procedia PDF Downloads 5216423 Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol
Authors: Perminderjit Singh, Randeep Singh
Abstract:
The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multifuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Biodiesel produced from rice bran oil by transesterification process has been used in this study. The experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives the best performance has been identified. The results indicate longer ignition delay, the maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.Keywords: biodiesel, rice bran oil, transesterification, ethanol, compression ratio
Procedia PDF Downloads 4276422 Increasing Efficiency, Performance and Safety of Aircraft during Takeoff and Landing by Interpreting Electromagnetism
Authors: Sambit Supriya Dash
Abstract:
Aerospace Industry has evolved over the last century and is growing by approaching towards, more fuel efficient, cheaper, simpler, convenient and safer ways of flight stages. In this paper, the accident records of aircrafts are studied and found about 71% of accidents caused on runways during Takeoff and Landing. By introducing the concept of interpreting electromagnetism, the cause of bounced touchdown and flare failure such as landing impact loads and instability could be eliminated. During Takeoff, the rate of fuel consumption is observed to be maximum. By applying concept of interpreting electromagnetism, a remarkable rate of fuel consumption is reduced, which can be used in case of emergency due to lack of fuel or in case of extended flight. A complete setup of the concept, its effects and characteristics are studied and provided with references of few popular aircrafts. By embedding series of strong and controlled electromagnets below the runway along and aside the centre line and fixed in the line of acting force through wing-fuselage aerodynamic centre. By the essence of its strength controllable nature, it can contribute to performance and fuel efficiency for aircraft. This ensures a perfect Takeoff with less fuel consumption followed by safe cruise stage, which in turn ensures a short and safe landing, eliminating the till known failures, due to bounced touchdowns and flare failure.Keywords: efficiency, elctromagnetism, performance, reduced fuel consumption, safety
Procedia PDF Downloads 2326421 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System
Authors: Ya Lv
Abstract:
This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system
Procedia PDF Downloads 1546420 Evaluation of Requests and Outcomes of Magnetic Resonance Imaging Assessing for Cauda Equina Syndrome at a UK Trauma Centre
Authors: Chris Cadman, Marcel Strauss
Abstract:
Background: In 2020, the University Hospital Wishaw in the United Kingdom became the centre for trauma and orthopaedics within its health board. This resulted in the majority of patients with suspected cauda equina syndrome (CES) being assessed and imaged at this site, putting an increased demand on MR imaging and displacing other previous activity. Following this transition, imaging requests for CES did not always follow national guidelines and would often be missing important clinical and safety information. There also appeared to be a very low positive scan rate compared with previously reported studies. In an attempt to improve patient selection and reduce the burden of CES imaging at this site clinical audit was performed. Methods: A total of 250 consecutive patients imaged to assess for CES were evaluated. Patients had to have presented to either the emergency or orthopaedic department acutely with a presenting complaint of suspected CES. Patients were excluded if they were not admitted acutely or were assessed by other clinical specialities. In total, 233 patients were included. Requests were assessed for appropriate clinical history, accurate and complete clinical assessment and MRI safety information. Clinical assessment was allocated a score of 1-6 based on information relating to history of pain, level of pain, dermatomes/myotomes affected, peri-anal paraesthesia/anaesthesia, anal tone and post-void bladder volume with each element scoring one point. Images were assessed for positive findings of CES, acquired spinal stenosis or nerve root compression. Results: Overall, 73% of requests had a clear clinical history of CES. The urgency of the request for imaging was given in 23% of cases. The mean clinical assessment score was 3.7 out of a total of 6. Overall, 2% of scans were positive for CES, 29% had acquired spinal stenosis and 30% had nerve root compression. For patients with CES, 75% had acute neurological signs compared with 68% of the study population. CES patients had a mean clinical history score of 5.3 compared with 3.7 for the study population. Overall, 95% of requests had appropriate MRI safety information. Discussion: it study included 233 patients who underwent specialist assessment and referral for MR imaging for suspected CES. Despite the serious nature of this condition, a large proportion of imaging requests did not have a clear clinical query of CES and the level of urgency was not given, which could potentially lead to a delay in imaging and treatment. Clinical examination was often also incomplete, which can make triaging of patients presenting with similar symptoms challenging. The positive rate for CES was only 2%, much below other studies which had positive rates of 6–40% with a large meta-analysis finding a mean positive rate of 19%. These findings demonstrate an opportunity to improve the quality of imaging requests for suspected CES. This may help to improve patient selection for imaging and result in a positive rate for CES imaging that is more in line with other centres.Keywords: cauda equina syndrome, acute back pain, MRI, spine
Procedia PDF Downloads 116419 The Effect of Dry Matter Production Growth Rate, Temperature Rapeseed
Authors: Vadood Mobini, Mansoreh Agazadeh Shahrivar, Parvin Hashemi Gelenjkhanlo, Hassan Vazifah
Abstract:
Seed number is a function of dry matter accumulation, crop growth rate (CGR), photothermal quotient (PTQ) and temperature during a critical developmental period, which is around flowering in canola (Brassica napus L.). The objective of this experiment was to determine factors such as dry matter, CGR, temperature, and PTQ around flowering which affect seed number. The experiment was conducted at Agricultural Research Station of Gonbad, Iran, between 2005 and 2007. Two cultivars of canola (Hyola401 and RGS003), as subplots were grown at 5 sowing dates as main plots, spaced approximately 30 days apart, to obtain different environmental conditions during flowering. The experiment was arranged in two conditions, i.e., supplemental irrigation and rainfed. Seed number per unit area was a key factor for increasing seed yield. Late sowing dates made the critical period of flowering coincide with high temperatures, decreased days to the flowering, seed number per unit area and seed yield. Seed number was driven by the availability of carbohydrates around flowering. Seed number per unit area was maximized for the cultivars when exposed to the highest PTQ, and to the lowest temperature between the beginning of flowering to that of seed filling. The relationship of seed number with aboveground dry matter, CGR, temperature, and PTQ around flowering, over different environmental conditions, showed these variables were generally applicable to seed number determination.Keywords: flowering, cultivar, seed filling, environmental conditions, seed yield
Procedia PDF Downloads 4586418 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 1706417 Prioritized Processor-Sharing with a Maximum Permissible Sojourn Time
Authors: Yoshiaki Shikata
Abstract:
A prioritized processor-sharing (PS) system with a maximum permissible sojourn time (MPST) is proposed. In this PS system, a higher-priority request is allocated a larger service ratio than a lower-priority request. Moreover, each request receiving service is guaranteed the maximum permissible sojourn time determined by each priority class, regardless of its service time. Arriving requests that cannot receive service due to this guarantee are rejected. We further propose a guarantee method for implementing such a system, and discuss performance evaluation procedures for the resulting system. Practical performance measures, such as the relationships between the loss probability or mean sojourn time of each class request and the maximum permissible sojourn time are evaluated via simulation. At the arrival of each class request, its acceptance or rejection is judged using extended sojourn times of all requests receiving service in the server. As the MPST increases, the mean sojourn time increases almost linearly. However, the logarithm of the loss probability decreases almost linearly. Moreover with an MPST, the difference in the mean sojourn time for different MPSTs increases with the traffic rate. Conversely, the difference in the loss probability for different MPSTs decreases as the traffic rate increases.Keywords: prioritized processor sharing, priority ratio, permissible sojourn time, loss probability, mean sojourn time, simulation
Procedia PDF Downloads 1936416 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens
Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian
Abstract:
Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate
Procedia PDF Downloads 1756415 Foliar Feeding of Methyl Jasmonate Induces Resistance in Normal and Salinity Stressed Tomato Plants, at Different Stages
Authors: Abdul Manan, Choudhary Muhammad Ayyub, Rashid Ahmad, Muhammad Adnan Bukhari
Abstract:
A project was designed to investigate the effect of foliar application of methyl jasmonate (MeJA) on physiological, biochemical and ionic attributes of salinity stressed and normal tomato plants at different stages. Salinity stress at every stage markedly reduced the net photosynthetic rate, stomatal conductance, transpiration rate, water relations parameters, protein contents, total free aminoacids and potassium (K+) contents. While, antioxidant enzymes (peroxidase (POX) and catalase (CAT)), sodium (Na+) contents and proline contents were increased substantially. Foliar application of MeJA ameliorated the drastic effects of salinity regime by recovery of physiological and biochemical attributes by enhanced production of antioxidant enzymes and osmoprotectants. The efficacy of MeJA at very initial stage (15 days after sowing (15 DAS)).proved effective for attenuating the deleterious effects of salinity stress than other stages (15 days after transplanting (15 DAT) and 30 days after transplanting (30 DAT)). To the best of our knowledge, different times of foliar feeding of MeJA was observed first time for amelioration of salinity stress in tomato plants that would be of pivotal significance for scientist to better understand the dynamics of physiological and biochemical processes in tomato.Keywords: methyl jasmonate, osmoregulation, salinity stress, stress tolerance, tomato
Procedia PDF Downloads 3096414 Evaluation of the Effect of Intravenous Dexamethasone on Hemodynamic Variables and Hypotension in Female Undergoing Cesarean Section With Spinal Anesthesia
Authors: Shekoufeh Behdad, Sahar Yadegari, Alireza Ghehrazad, Amirhossein Yadegari
Abstract:
Background: In this study, we compared the effect of intravenous dexamethasone with placebo on hemodynamic variables and hypotension in patients undergoing cesarean section under spinal anesthesia. Materials and methods: This double-blind, randomized clinical trial was conducted with the approval of the university ethics committee. Written informed consent was obtained from all participating patients. Before spinal anesthesia, patients were randomly assigned to receive either dexamethasone (8 mg IV) or placebo (normal saline). Hemodynamic variables, including systolic, diastolic, and mean arterial blood pressures, as well as heart rate, were measured before drug administration and every 3 minutes until the birth of the neonate and then every 5 minutes until the end of surgery. Side effects such as hypotension, bradycardia, nausea, and vomiting were assessed and recorded for all the patients. Results: There were no significant differences in mean systolic, diastolic, and mean arterial blood pressures before and after administration of the studied drugs in both groups (P.Value>0.05), but heart rate and the incidence of hypotension in the dexamethasone group were less than placebo significantly. Conclusions: Intravenous administration of 8 mg dexamethasone before spinal anesthesia in females undergoing cesarean section can reduce the incidence of post-spinal hypotension without causing serious side effects.Keywords: cesarean section, hypotension, spinal anesthesia, dexamethasone
Procedia PDF Downloads 776413 Change of Epidemiological Characteristics and Disease Burden of Varicella Due to Implementation of Mass Immunization Program in Taiwan from 2000 to 2012
Authors: En-Tzu Wang, Ting-Ann Wang, Yi-Hui Shen, Yu-Min Chou, Chi-Tai Fang, Chin-Hui Yang
Abstract:
Background and purpose: A mass varicella immunization program was established to provide free 1-dose vaccination for all 1-year-old children throughout Taiwan since 2004. The epidemiological characteristics and disease burden of varicella from 2000 to 2012 was investigated and the results will be essential to refine the national immunization policy. Method: We included patients (n = 17,838–164,245) with ICD-9-CM codes 052 (chickenpox) from the 2000 to 2012 National Health Insurance Database. The age, period, and cohort-specific incidence of varicella were calculated. The hospital admission rate, medical costs and indirect costs from the societal perspective of varicella including travel costs to the medical facility, registration fee, productivity losses of the patients and caregivers were also estimated. Result: There were 979,252 patients for medical treatment due to varicella from 2000 to 2012 in Taiwan. The implementation of a routine childhood varicella vaccination program has resulted in 87% decline in morbidity (881.49 to 115.17 per 100,000). The average age of patients increased from 7.9 years to 16.3 years. The overall varicella-related hospital admission rate was 15.5 per 1000 patients, and peaked in the groups of infants younger than 1 year, adults aged from 20 to 39 years and elders over 70 years. Among patients admitted to hospital, 33.5% of them had one or more complications. Patients with underlying diseases had higher admission rate (241.6 per 1,000) and longer duration of hospital stay (6.61 days vs. 4.76 days). The annual varicella-related medical expense declined after 2002 and the proportion of medical costs for admission has increased to 42%. The annual indirect costs from the societal perspective of varicella were 5.29 to 9.63 times higher than varicella-related medical costs. Every one dollar invested in the varicella immunization program, 2.97 dollars of medical and social costs were saved on average. Conclusion: The dramatic decline in morbidity, hospitalization, medical and social costs of varicella can be directly attributed to the implementation of the mass immunization program. Two-dose vaccination is recommended for both children with underlying diseases and susceptible adults to prevent serious complications and hospitalizations.Keywords: disease burden, epidemiology, medical and social costs, varicella, varicella vaccine
Procedia PDF Downloads 4126412 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles
Authors: Zhao Bo
Abstract:
The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading
Procedia PDF Downloads 2396411 Cationic Solid Lipid Nanoparticles Conjugated with Anti-Melantransferrin and Apolipoprotein E for Delivering Doxorubicin to U87MG Cells
Authors: Yung-Chih Kuo, Yung-I Lou
Abstract:
Cationic solid lipid nanoparticles (CSLNs) with anti-melanotransferrin (AMT) and apolipoprotein E (ApoE) were used to carry antimitotic doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) treatment. Dox-loaded CSLNs were prepared in microemulsion, grafted covalently with AMT and ApoE, and applied to human brain microvascular endothelial cells (HBMECs), human astrocytes, and U87MG cells. Experimental results revealed that an increase in the weight percentage of stearyl amine (SA) from 0% to 20% increased the size of AMT-ApoE-Dox-CSLNs. In addition, an increase in the stirring rate from 150 rpm to 450 rpm decreased the size of AMT-ApoE-Dox-CSLNs. An increase in the weight percentage of SA from 0% to 20% enhanced the zeta potential of AMT-ApoE-Dox-CSLNs. Moreover, an increase in the stirring rate from 150 rpm to 450 rpm reduced the zeta potential of AMT-ApoE-Dox-CSLNs. AMT-ApoE-Dox-CSLNs exhibited a spheroid-like geometry, a minor irregular boundary deviating from spheroid, and a somewhat distorted surface with a few zigzags and sharp angles. The encapsulation efficiency of Dox in CSLNs decreased with increasing weight percentage of Dox and the order in the encapsulation efficiency of Dox was 10% SA > 20% SA > 0% SA. However, the reverse order was true for the release rate of Dox, suggesting that AMT-ApoE-Dox-CSLNs containing 10% SA had better-sustained release characteristics. An increase in the concentration of AMT from 2.5 to 7.5 μg/mL slightly decreased the grafting efficiency of AMT and an increase in that from 7.5 to 10 μg/mL significantly decreased the grafting efficiency. Furthermore, an increase in the concentration of ApoE from 2.5 to 5 μg/mL slightly reduced the grafting efficiency of ApoE and an increase in that from 5 to 10 μg/mL significantly reduced the grafting efficiency. Also, AMT-ApoE-Dox-CSLNs at 10 μg/mL of ApoE could slightly reduce the transendothelial electrical resistance (TEER) and increase the permeability of propidium iodide (PI). An incorporation of 10 μg/mL of ApoE could reduce the TEER and increase the permeability of PI. AMT-ApoE-Dox-CSLNs at 10 μg/mL of AMT and 5-10 μg/mL of ApoE could significantly enhance the permeability of Dox across the BBB. AMT-ApoE-Dox-CSLNs did not induce serious cytotoxicity to HBMECs. The viability of HBMECs was in the following order: AMT-ApoE-Dox-CSLNs = AMT-Dox-CSLNs = Dox-CSLNs > Dox. The order in the efficacy of inhibiting U87MG cells was AMT-ApoE-Dox-CSLNs > AMT-Dox-CSLNs > Dox-CSLNs > Dox. A surface modification of AMT and ApoE could promote the delivery of AMT-ApoE-Dox-CSLNs to cross the BBB via melanotransferrin and low density lipoprotein receptor. Thus, AMT-ApoE-Dox-CSLNs have appropriate physicochemical properties and can be a potential colloidal delivery system for brain tumor chemotherapy.Keywords: anti-melanotransferrin, apolipoprotein E, cationic catanionic solid lipid nanoparticle, doxorubicin, U87MG cells
Procedia PDF Downloads 2856410 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles
Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia
Abstract:
This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes
Procedia PDF Downloads 146409 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts
Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh
Abstract:
In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain
Procedia PDF Downloads 1746408 Present an Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University of Ramhormoz
Authors: M. Talebzadegan, S. Bina , I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50 C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the Net Present Value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the Internal Rate of Return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: solar energy, heat demand, renewable, pollution
Procedia PDF Downloads 421