Search results for: physiological signals
302 Field Environment Sensing and Modeling for Pears towards Precision Agriculture
Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani
Abstract:
The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model
Procedia PDF Downloads 314301 Effects of Forest Therapy on Depression among Healthy Adults
Authors: Insook Lee, Heeseung Choi, Kyung-Sook Bang, Sungjae Kim, Minkyung Song, Buhyun Lee
Abstract:
Backgrounds: A clearer and comprehensive understanding of the effects of forest therapy on depression is needed for further refinements of forest therapy programs. The purpose of this study was to review the literature on forest therapy programs designed to decrease the level of depression among adults to evaluate current forest therapy programs. Methods: This literature review was conducted using various databases including PubMed, EMBASE, CINAHL, PsycArticle, KISS, RISS, and DBpia to identify relevant studies published up to January 2016. The two authors independently screened the full text articles using the following criteria: 1) intervention studies assessing the effects of forest therapy on depression among healthy adults ages 18 and over; 2) including at least one control group or condition; 3) being peer-reviewed; and 4) being published either in English. The Scottish Intercollegiate Guideline Network (SIGN) measurement tool was used to assess the risk of bias in each trial. Results: After screening current literature, a total of 14 articles (English: 6, Korean: 8) were included in the present review. None of the studies used randomized controlled (RCT) study design and the sample size ranged from 11 to 300. Walking in the forest and experiencing the forest using the five senses was the key component of the forest therapy that was included in all studies. The majority of studies used one-time intervention that usually lasted a few hours or half-day. The most widely used measure for depression was Profile of Mood States (POMS). Most studies used self-reported, paper-and-pencil tests, and only 5 studies used both paper-and-pencil tests and physiological measures. Regarding the quality assessment based on the SIGN criteria, only 3 articles were rated ‘acceptable’ and the rest of the 14 articles were rated ‘low quality.’ Regardless of the diversity in format and contents of forest therapies, most studies showed a significant effect of forest therapy in curing depression. Discussions: This systematic review showed that forest therapy is one of the emerging and effective intervention approaches for decreasing the level of depression among adults. Limitations of the current programs identified from the review were as follows; 1) small sample size; 2) a lack of objective and comprehensive measures for depression; and 3) inadequate information about research process. Futures studies assessing the long-term effect of forest therapy on depression using rigorous study designs are needed.Keywords: forest therapy, systematic review, depression, adult
Procedia PDF Downloads 292300 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink
Procedia PDF Downloads 534299 Periodicity of Solutions to Impulsive Equations
Authors: Jin Liang, James H. Liu, Ti-Jun Xiao
Abstract:
It is known that there exist many physical phenomena where abrupt or impulsive changes occur either in the system dynamics, for example, ad-hoc network, or in the input forces containing impacts, for example, the bombardment of space antenna by micrometeorites. There are many other examples such as ultra high-speed optical signals over communication networks, the collision of particles, inventory control, government decisions, interest changes, changes in stock price, etc. These are impulsive phenomena. Hence, as a combination of the traditional initial value problems and the short-term perturbations whose duration can be negligible in comparison with the duration of the process, the systems with impulsive conditions (i.e., impulsive systems) are more realistic models for describing the impulsive phenomenon. Such a situation is also suitable for the delay systems, which include some of the past states of the system. So far, there have been a lot of research results in the study of impulsive systems with delay both in finite and infinite dimensional spaces. In this paper, we investigate the periodicity of solutions to the nonautonomous impulsive evolution equations with infinite delay in Banach spaces, where the coefficient operators (possibly unbounded) in the linear part depend on the time, which are impulsive systems in infinite dimensional spaces and come from the optimal control theory. It was indicated that the study of periodic solutions for these impulsive evolution equations with infinite delay was challenging because the fixed point theorems requiring some compactness conditions are not applicable to them due to the impulsive condition and the infinite delay. We are happy to report that after detailed analysis, we are able to combine the techniques developed in our previous papers, and some new ideas in this paper, to attack these impulsive evolution equations and derive periodic solutions. More specifically, by virtue of the related transition operator family (evolution family), we present a Poincaré operator given by the nonautonomous impulsive evolution system with infinite delay, and then show that the operator is a condensing operator with respect to Kuratowski's measure of non-compactness in a phase space by using an Amann's lemma. Finally, we derive periodic solutions from bounded solutions in view of the Sadovskii fixed point theorem. We also present a relationship between the boundedness and the periodicity of the solutions of the nonautonomous impulsive evolution system. The new results obtained here extend some earlier results in this area for evolution equations without impulsive conditions or without infinite delay.Keywords: impulsive, nonautonomous evolution equation, optimal control, periodic solution
Procedia PDF Downloads 252298 Demand-Side Financing for Thai Higher Education: A Reform Towards Sustainable Development
Authors: Daral Maesincee, Jompol Thongpaen
Abstract:
Thus far, most of the decisions made within the walls of Thai higher education (HE) institutions have primarily been supply-oriented. With the current supply-driven, itemized HE financing systems, the nation is struggling to systemically produce high-quality manpower that serves the market’s needs, often resulting in education mismatches and unemployment – particularly in science, technology, and innovation (STI)-related fields. With the COVID-19 pandemic challenges widening the education inequality (accessibility and quality) gap, HE becomes even more unobtainable for underprivileged students, permanently leaving some out of the system. Therefore, Thai HE needs a new financing system that produces the “right people” for the “right occupations” through the “right ways,” regardless of their socioeconomic backgrounds, and encourages the creation of non-degree courses to tackle these ongoing challenges. The “Demand-Side Financing for Thai Higher Education” policy aims to do so by offering a new paradigm of HE resource allocation via two main mechanisms: i) standardized formula-based unit-cost subsidizations that is specific to each study field and ii) student loan programs that respond to the “demand signals” from the labor market and the students, that are in line with the country’s priorities. Through in-dept reviews, extensive studies, and consultations with various experts, education committees, and related agencies, i) the method of demand signal analysis is identified, ii) the unit-cost of each student in the sample study fields is approximated, iii) the method of budget analysis is formulated, iv) the interagency workflows are established, and v) a supporting information database is created to suggest the number of graduates each HE institution can potentially produce, the study fields and skillsets that are needed by the labor market, the employers’ satisfaction with the graduates, and each study field’s employment rates. By responding to the needs of all stakeholders, this policy is expected to steer Thai HE toward producing more STI-related manpower in order to uplift Thai people’s quality of life and enhance the nation’s global competitiveness. This policy is currently in the process of being considered by the National Education Transformation Committee and the Higher Education Commission.Keywords: demand-side financing, higher education resource, human capital, higher education
Procedia PDF Downloads 202297 Impact of Twin Therapeutic Approaches on Certain Biophysiological Parameters among Breast Cancer Patients after Breast Surgery at Selected Hospital
Authors: Selvia Arokiya Mary
Abstract:
Introduction: Worldwide, breast cancer comprises 10.4% of all cancer incidence among women. In 2004, breast cancer caused 519,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). Many women who undergo breast surgery suffer from ill-defined pain syndromes. STATEMENT OF THE PROBLEM: A study to assess the effectiveness of twin therapeutic approaches on certain bio-physiological parameters in breast cancer patients after breast surgery at selected hospital, Chennai. Objectives: This study is to 1. assess the level of certain biophysiological parameters in women after mastectomy. 2. assess the effectiveness of twin therapeutic approaches on certain biophysiological parameters in women after mastectomy. 3. correlate the practice of twin therapeutic approaches with certain biophysiological parameters. 4. associate the selected demographic variables with certain biophysiological parameters in women after mastectomy Research Design and Method: Pre experimental research design was used. Fifty women were selected by using convenient sampling technique at government general hospital, Chennai. Results: The Level of pain shows, in the study group 49(98%) of them had moderate in the pre test and after the intervention all of them had mild pain in the post test. In relation to level of shoulder function before the intervention shows that in the study group 49(98%) of them had movement towards gravity and after intervention 24 (48%) of them had movement against gravity maximum resistance. There was a significant reduction in pain and shoulder stiffness level at a ‘P’ level of < 0.001. There was a negative correlation between the pranayama practice and the level of pain, there was a positive correlation between the arm exercise practice and the level of shoulder function. There was no significant association between demographic and clinical variables with the level of pain and shoulder function in the study. Hypothesis: There is a significant difference in level of pain and shoulder function among women following breast surgery who receive pranayama & arm exercise programme. The pranayama had effect in terms of reduction of pain, arm exercise programme had effect in prevention of arm stiffness among post operative women following breast surgery. Thus the stated hypothesis was accepted. Conclusion: On the basis of the findings of the present study there was Advancing age related to increasing risk of breast cancer, level of pain also the type of surgery was associated with level of pain and shoulder function, There fore it is to be concluded that the study participants may get benefited by practice of pranayama and arm exercise program.Keywords: biophysiological parameters breast surgery, lumpectomy , mastectomy, radical mastectomy, twin therapeutic approach, pranayama, arm exercise
Procedia PDF Downloads 245296 Regulatory Frameworks and Bank Failure Prevention in South Africa: Assessing Effectiveness and Enhancing Resilience
Authors: Princess Ncube
Abstract:
In the context of South Africa's banking sector, the prevention of bank failures is of paramount importance to ensure financial stability and economic growth. This paper focuses on the role of regulatory frameworks in safeguarding the resilience of South African banks and mitigating the risks of failures. It aims to assess the effectiveness of existing regulatory measures and proposes strategies to enhance the resilience of financial institutions in the country. The paper begins by examining the specific regulatory frameworks in place in South Africa, including capital adequacy requirements, stress testing methodologies, risk management guidelines, and supervisory practices. It delves into the evolution of these measures in response to lessons learned from past financial crises and their relevance in the unique South African banking landscape. Drawing on empirical evidence and case studies specific to South Africa, this paper evaluates the effectiveness of regulatory frameworks in preventing bank failures within the country. It analyses the impact of these frameworks on crucial aspects such as early detection of distress signals, improvements in risk management practices, and advancements in corporate governance within South African financial institutions. Additionally, it explores the interplay between regulatory frameworks and the specific economic environment of South Africa, including the role of macroprudential policies in preventing systemic risks. Based on the assessment, this paper proposes recommendations to strengthen regulatory frameworks and enhance their effectiveness in bank failure prevention in South Africa. It explores avenues for refining existing regulations to align capital requirements with the risk profiles of South African banks, enhancing stress testing methodologies to capture specific vulnerabilities, and fostering better coordination among regulatory authorities within the country. Furthermore, it examines the potential benefits of adopting innovative approaches, such as leveraging technology and data analytics, to improve risk assessment and supervision in the South African banking sector.Keywords: banks, resolution, liquidity, regulation
Procedia PDF Downloads 87295 Occupational Heat Stress Related Adverse Pregnancy Outcome: A Pilot Study in South India Workplaces
Authors: Rekha S., S. J. Nalini, S. Bhuvana, S. Kanmani, Vidhya Venugopal
Abstract:
Introduction: Pregnant women's occupational heat exposure has been linked to foetal abnormalities and pregnancy complications. The presence of heat in the workplace is expected to lead to Adverse Pregnancy Outcomes (APO), especially in tropical countries where temperatures are rising and workplace cooling interventions are minimal. For effective interventions, in-depth understanding and evidence about occupational heat stress and APO are required. Methodology: Approximately 800 pregnant women in and around Chennai who were employed in jobs requiring moderate to hard labour participated in the cohort research. During the study period (2014-2019), environmental heat exposures were measured using a Questemp WBGT monitor, and heat strain markers, such as Core Body Temperature (CBT) and Urine Specific Gravity (USG), were evaluated using an Infrared Thermometer and a refractometer, respectively. Using a valid HOTHAPS questionnaire, self-reported health symptoms were collected. In addition, a postpartum follow-up with the mothers was done to collect APO-related data. Major findings of the study: Approximately 47.3% of pregnant workers have workplace WBGTs over the safe manual work threshold value for moderate/heavy employment (Average WBGT of 26.6°C±1.0°C). About 12.5% of the workers had CBT levels above the usual range, and 24.8% had USG levels above 1.020, both of which suggested mild dehydration. Miscarriages (3%), stillbirths/preterm births (3.5%), and low birth weights (8.8%) were the most common unfavorable outcomes among pregnant employees. In addition, WBGT exposures above TLVs during all trimesters were associated with a 2.3-fold increased risk of adverse fetal/maternal outcomes (95% CI: 1.4-3.8), after adjusting for potential confounding variables including age, education, socioeconomic status, abortion history, stillbirth, preterm, LBW, and BMI. The study determined that WBGTs in the workplace had direct short- and long-term effects on the health of both the mother and the foetus. Despite the study's limited scope, the findings provided valuable insights and highlighted the need for future comprehensive cohort studies and extensive data in order to establish effective policies to protect vulnerable pregnant women from the dangers of heat stress and to promote reproductive health.Keywords: adverse outcome, heat stress, interventions, physiological strain, pregnant women
Procedia PDF Downloads 73294 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple
Authors: Oscar Norman Nekesa, Yoshitaka Kajita
Abstract:
Tom Mboya Street is a vital urban corridor within the spectrum of Nairobi city, it experiences high volumes of pedestrian and vehicular traffic. Despite past intervention measures to lessen this catastrophe, rates have remained high. This highlights significant safety concerns that need urgent attention. This study investigates the correlation and pedestrian accident predictability with significant independent variables using multiple linear regression to model to develop effective mobility management strategies for accident mitigation. The methodology involves collecting and analyzing data on pedestrian accidents and various related independent variables. Data sources include the National Transport and Safety Authority (NTSA), Kenya National Bureau of Statistics, and Nairobi City County records, covering five years. This study aims to investigate that traffic volumes (pedestrian and vehicle), Vehicular speed, human factors, illegal parking, policy issues, urban-land use, built environment, traffic signals conditions, inadequate lighting, and insufficient traffic control measures significantly have predictability with the rate of pedestrian accidents. Explanatory variables related to road design and geometry are significant in predictor models for the Tom Mboya Road link but less influential in junction along the 5 km stretch road models. The most impactful variable across all models was vehicular traffic flow. The study recommends infrastructural improvements, enhanced enforcement, and public awareness campaigns to reduce accidents and improve urban mobility. These insights can inform policy-making and urban planning to enhance pedestrian safety along the dense packed Tom Mboya Street and similar urban settings. The findings will inform evidence-based interventions to enhance pedestrian safety and improve urban mobility.Keywords: multiple linear regression, urban mobility, traffic management, Nairobi, Tom Mboya street, infrastructure conditions., pedestrian safety, correlation and prediction
Procedia PDF Downloads 25293 The Connection Between the Semiotic Theatrical System and the Aesthetic Perception
Authors: Păcurar Diana Istina
Abstract:
The indissoluble link between aesthetics and semiotics, the harmonization and semiotic understanding of the interactions between the viewer and the object being looked at, are the basis of the practical demonstration of the importance of aesthetic perception within the theater performance. The design of a theater performance includes several structures, some considered from the beginning, art forms (i.e., the text), others being represented by simple, common objects (e.g., scenographic elements), which, if reunited, can trigger a certain aesthetic perception. The audience is delivered, by the team involved in the performance, a series of auditory and visual signs with which they interact. It is necessary to explain some notions about the physiological support of the transformation of different types of stimuli at the level of the cerebral hemispheres. The cortex considered the superior integration center of extransecal and entanged stimuli, permanently processes the information received, but even if it is delivered at a constant rate, the generated response is individualized and is conditioned by a number of factors. Each changing situation represents a new opportunity for the viewer to cope with, developing feelings of different intensities that influence the generation of meanings and, therefore, the management of interactions. In this sense, aesthetic perception depends on the detection of the “correctness” of signs, the forms of which are associated with an aesthetic property. Fairness and aesthetic properties can have positive or negative values. Evaluating the emotions that generate judgment and implicitly aesthetic perception, whether we refer to visual emotions or auditory emotions, involves the integration of three areas of interest: Valence, arousal and context control. In this context, superior human cognitive processes, memory, interpretation, learning, attribution of meanings, etc., help trigger the mechanism of anticipation and, no less important, the identification of error. This ability to locate a short circuit produced in a series of successive events is fundamental in the process of forming an aesthetic perception. Our main purpose in this research is to investigate the possible conditions under which aesthetic perception and its minimum content are generated by all these structures and, in particular, by interactions with forms that are not commonly considered aesthetic forms. In order to demonstrate the quantitative and qualitative importance of the categories of signs used to construct a code for reading a certain message, but also to emphasize the importance of the order of using these indices, we have structured a mathematical analysis that has at its core the analysis of the percentage of signs used in a theater performance.Keywords: semiology, aesthetics, theatre semiotics, theatre performance, structure, aesthetic perception
Procedia PDF Downloads 89292 Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato
Authors: Nurulhikma Md Isa, Intan Elya Suka, Nur Farhana Roslan, Chew Bee Lynn
Abstract:
The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes.Keywords: ERFs, PRT6, tomato, ubiquitin
Procedia PDF Downloads 240291 Retrospective Analysis of 142 Cases of Incision Infection Complicated with Sternal Osteomyelitis after Cardiac Surgery Treated by Activated PRP Gel Filling
Authors: Daifeng Hao, Guang Feng, Jingfeng Zhao, Tao Li, Xiaoye Tuo
Abstract:
Objective: To retrospectively analyze the clinical characteristics of incision infection with sternal osteomyelitis sinus tract after cardiac surgery and the operation method and therapeutic effect of filling and repairing with activated PRP gel. Methods: From March 2011 to October 2022, 142 cases of incision infection after cardiac surgery with sternal osteomyelitis sinus were retrospectively analyzed, and the causes of poor wound healing after surgery, wound characteristics, perioperative wound management were summarized. Treatment during operation, collection and storage process of autologous PRP before debridement surgery, PRP filling repair and activation method after debridement surgery, effect of anticoagulant drugs on surgery, postoperative complications and average wound healing time, etc.. Results: Among the cases in this group, 53.3% underwent coronary artery bypass grafting, 36.8% underwent artificial heart valve replacement, 8.2% underwent aortic artificial vessel replacement, and 1.7% underwent allogeneic heart transplantation. The main causes of poor incision healing were suture reaction, fat liquefaction, osteoporosis, diabetes, and metal allergy in sequence. The wound is characterized by an infected sinus tract. Before the operation, 100-150ml of PRP with 4 times the physiological concentration was collected separately with a blood component separation device. After sinus debridement, PRP was perfused to fill the bony defect in the middle of the sternum, activated with thrombin freeze-dried powder and calcium gluconate injection to form a gel, and the outer skin and subcutaneous tissue were sutured freely. 62.9% of patients discontinued warfarin during the perioperative period, and 37.1% of patients maintained warfarin treatment. There was no significant difference in the incidence of postoperative wound hematoma. The average postoperative wound healing time was 12.9±4.7 days, and there was no obvious postoperative complication. Conclusions: Application of activated PRP gel to fill incision infection with sternal osteomyelitis sinus after cardiac surgery has a less surgical injury and satisfactory and stable curative effect. It can completely replace the previously used pectoralis major muscle flap transplantation operation scheme.Keywords: platelet-rich plasma, negative-pressure wound therapy, sternal osteomyelitis, cardiac surgery
Procedia PDF Downloads 78290 Study of the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration Using Microfluidics
Authors: Nishanth Venugopal Menon, Chuah Yon Jin, Samantha Phey, Wu Yingnan, Zhang Ying, Vincent Chan, Kang Yuejun
Abstract:
Cell Migration is a vital phenomenon that the cells undergo in various physiological processes like wound healing, disease progression, embryogenesis, etc. Cell migration depends primarily on the chemical and physical cues available in the cellular environment. The chemical cue involves the chemokines secreted and gradients generated in the environment while physical cues indicate the impact of matrix properties like nanotopography and stiffness on the cells. Mesenchymal Stem Cells (MSCs) have been shown to have a role wound healing in vivo and its migration to the site of the wound has been shown to have a therapeutic effect. In the field of stem cell based tissue regeneration of bones and cartilage, one approach has been to introduce scaffold laden with MSCs into the site of injury to enable tissue regeneration. In this work, we have studied the combinatorial impact of the substrate physical properties on MSC migration. A microfluidic in vitro model was created to perform the migration studies. The microfluidic model used is a three compartment device consisting of two cell seeding compartments and one migration compartment. Four different PDMS substrates with varying substrate roughness, stiffness and hydrophobicity were created. Its surface roughness and stiffness was measured using Atomic Force Microscopy (AFM) while its hydrphobicity was measured from the water contact angle using an optical tensiometer. These PDMS substrates are sealed to the microfluidic chip following which the MSCs are seeded and the cell migration is studied over the period of a week. Cell migration was quantified using fluorescence imaging of the cytoskeleton (F-actin) to find out the area covered by the cells inside the migration compartment. The impact of adhesion proteins on cell migration was also quantified using a real-time polymerase chain reaction (qRT PCR). These results suggested that the optimal substrate for cell migration would be one with an intermediate level of roughness, stiffness and hydrophobicity. A higher or lower value of these properties affected cell migration negatively. These observations have helped us in understanding that different substrate properties need to be considered in tandem, especially while designing scaffolds for tissue regeneration as cell migration is normally impacted by the combinatorial impact of the matrix. These observations may lead us to scaffold optimization in future tissue regeneration applications.Keywords: cell migration, microfluidics, in vitro model, stem cell migration, scaffold, substrate properties
Procedia PDF Downloads 557289 Giant Cancer Cell Formation: A Link between Cell Survival and Morphological Changes in Cancer Cells
Authors: Rostyslav Horbay, Nick Korolis, Vahid Anvari, Rostyslav Stoika
Abstract:
Introduction: Giant cancer cells (GCC) are common in all types of cancer, especially after poor therapy. Some specific features of such cells include ~10-fold enlargement, drug resistance, and the ability to propagate similar daughter cells. We used murine NK/Ly lymphoma, an aggressive and fast growing lymphoma model that has already shown drastic changes in GCC comparing to parental cells (chromatin condensation, nuclear fragmentation, tighter OXPHOS/cellular respiration coupling, multidrug resistance). Materials and methods: In this study, we compared morpho-functional changes of GCC that predominantly show either a cytostatic or a cytotoxic effect after treatment with drugs. We studied the effect of a combined cytostatic/cytotoxic drug treatment to determine the correlation of drug efficiency and GCC formation. Doses of G1/S-specific drug paclitaxel/PTX (G2/M-specific, 50 mg/mouse), vinblastine/VBL (50 mg/mouse), and DNA-targeting agents doxorubicin/DOX (125 ng/mouse) and cisplatin/CP (225 ng/mouse) on C57 black mice. Several tests were chosen to estimate morphological and physiological state (propidium iodide, Rhodamine-123, DAPI, JC-1, Janus Green, Giemsa staining and other), which included cell integrity, nuclear fragmentation and chromatin condensation, mitochondrial activity, and others. A single and double factor ANOVA analysis were performed to determine correlation between the criteria of applied drugs and cytomorphological changes. Results: In all cases of treatment, several morphological changes were observed (intracellular vacuolization, membrane blebbing, and interconnected mitochondrial network). A lower gain in ascites (49.97% comparing to control group) and longest lifespan (22+9 days) after tumor injection was obtained with single VBL and single DOX injections. Such ascites contained the highest number of GCC (83.7%+9.2%), lowest cell count number (72.7+31.0 mln/ml), and a strong correlation coefficient between increased mitochondrial activity and percentage of giant NK/Ly cells. A high number of viable GCC (82.1+9.2%) was observed compared to the parental forms (15.4+11.9%) indicating that GCC are more drug resistant than the parental cells. All this indicates that the giant cell formation and its ability to obtain drug resistance is an expanding field in cancer research.Keywords: ANOVA, cisplatin, doxorubicin, drug resistance, giant cancer cells, NK/Ly lymphoma, paclitaxel, vinblastine
Procedia PDF Downloads 217288 The Impact of Climate Change on Sustainable Aquaculture Production
Authors: Peyman Mosberian-Tanha, Mona Rezaei
Abstract:
Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.Keywords: aquaculture, climate change, sustainability, salmonids
Procedia PDF Downloads 188287 Time-Interval between Rectal Cancer Surgery and Reintervention for Anastomotic Leakage and the Effects of a Defunctioning Stoma: A Dutch Population-Based Study
Authors: Anne-Loes K. Warps, Rob A. E. M. Tollenaar, Pieter J. Tanis, Jan Willem T. Dekker
Abstract:
Anastomotic leakage after colorectal cancer surgery remains a severe complication. Early diagnosis and treatment are essential to prevent further adverse outcomes. In the literature, it has been suggested that earlier reintervention is associated with better survival, but anastomotic leakage can occur with a highly variable time interval to index surgery. This study aims to evaluate the time-interval between rectal cancer resection with primary anastomosis creation and reoperation, in relation to short-term outcomes, stratified for the use of a defunctioning stoma. Methods: Data of all primary rectal cancer patients that underwent elective resection with primary anastomosis during 2013-2019 were extracted from the Dutch ColoRectal Audit. Analyses were stratified for defunctioning stoma. Anastomotic leakage was defined as a defect of the intestinal wall or abscess at the site of the colorectal anastomosis for which a reintervention was required within 30 days. Primary outcomes were new stoma construction, mortality, ICU admission, prolonged hospital stay and readmission. The association between time to reoperation and outcome was evaluated in three ways: Per 2 days, before versus on or after postoperative day 5 and during primary versus readmission. Results: In total 10,772 rectal cancer patients underwent resection with primary anastomosis. A defunctioning stoma was made in 46.6% of patients. These patients had a lower anastomotic leakage rate (8.2% vs. 11.6%, p < 0.001) and less often underwent a reoperation (45.3% vs. 88.7%, p < 0.001). Early reoperations (< 5 days) had the highest complication and mortality rate. Thereafter the distribution of adverse outcomes was more spread over the 30-day postoperative period for patients with a defunctioning stoma. Median time-interval from primary resection to reoperation for defunctioning stoma patients was 7 days (IQR 4-14) versus 5 days (IQR 3-13 days) for no-defunctioning stoma patients. The mortality rate after primary resection and reoperation were comparable (resp. for defunctioning vs. no-defunctioning stoma 1.0% vs. 0.7%, P=0.106 and 5.0% vs. 2.3%, P=0.107). Conclusion: This study demonstrated that early reinterventions after anastomotic leakage are associated with worse outcomes (i.e. mortality). Maybe the combination of a physiological dip in the cellular immune response and release of cytokines following surgery, as well as a release of endotoxins caused by the bacteremia originating from the leakage, leads to a more profound sepsis. Another explanation might be that early leaks are not contained to the pelvis, leading to a more profound sepsis requiring early reoperations. Leakage with or without defunctioning stoma resulted in a different type of reinterventions and time-interval between surgery and reoperation.Keywords: rectal cancer surgery, defunctioning stoma, anastomotic leakage, time-interval to reoperation
Procedia PDF Downloads 138286 Bioreactor for Cell-Based Impedance Measuring with Diamond Coated Gold Interdigitated Electrodes
Authors: Roman Matejka, Vaclav Prochazka, Tibor Izak, Jana Stepanovska, Martina Travnickova, Alexander Kromka
Abstract:
Cell-based impedance spectroscopy is suitable method for electrical monitoring of cell activity especially on substrates that cannot be easily inspected by optical microscope (without fluorescent markers) like decellularized tissues, nano-fibrous scaffold etc. Special sensor for this measurement was developed. This sensor consists of corning glass substrate with gold interdigitated electrodes covered with diamond layer. This diamond layer provides biocompatible non-conductive surface for cells. Also, a special PPFC flow cultivation chamber was developed. This chamber is able to fix sensor in place. The spring contacts are connecting sensor pads with external measuring device. Construction allows real-time live cell imaging. Combining with perfusion system allows medium circulation and generating shear stress stimulation. Experimental evaluation consist of several setups, including pure sensor without any coating and also collagen and fibrin coating was done. The Adipose derived stem cells (ASC) and Human umbilical vein endothelial cells (HUVEC) were seeded onto sensor in cultivation chamber. Then the chamber was installed into microscope system for live-cell imaging. The impedance measurement was utilized by vector impedance analyzer. The measured range was from 10 Hz to 40 kHz. These impedance measurements were correlated with live-cell microscopic imaging and immunofluorescent staining. Data analysis of measured signals showed response to cell adhesion of substrates, their proliferation and also change after shear stress stimulation which are important parameters during cultivation. Further experiments plan to use decellularized tissue as scaffold fixed on sensor. This kind of impedance sensor can provide feedback about cell culture conditions on opaque surfaces and scaffolds that can be used in tissue engineering in development artificial prostheses. This work was supported by the Ministry of Health, grants No. 15-29153A and 15-33018A.Keywords: bio-impedance measuring, bioreactor, cell cultivation, diamond layer, gold interdigitated electrodes, tissue engineering
Procedia PDF Downloads 301285 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study
Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda
Abstract:
This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety
Procedia PDF Downloads 123284 The Effects of Self- and Partner Reported Attachment Orientations and Mate Retention Behaviors: Actor and Partner Effects in Romantic Couples
Authors: Jasna Hudek-Knezevic, Igor Kardum, Nada Krapic, Martina Jurcic
Abstract:
The aim of this study was to examine the effects of self- and partner reported attachment orientations on self-reported mate retention behaviors in romantic couples using the actor-partner interdependence model. The study was carried out on 187 heterosexual couples aged from 18 to 35 years, with an average relationship length of 4.5 years. Participants were asked to complete the revised scale of adult attachment and short form of mate retention inventory. Actor and partner effects of self- and partner reported anxious and avoidant attachment orientations on mate retention categories (direct guarding, intersexual negative inducements, positive inducements, public signals of possession and intrasexual negative inducements) and domains (cost-inflicting and benefit-provisioning), as well on overall mate retention were examined. Actor effects for women estimate whether their attachment orientations predict their own mate retention behaviors, whereas men’s actor effects estimate whether their attachment orientations predict their own mate retention behaviors. Women’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors, whereas men’s partner effects estimate whether their attachment orientations predict their partner’s mate retention behaviors. The use of two data sources, self- and partner reports, allow the control of the effects of common method variance when exploring actor and partner effects. Positive actor and partner effects of anxious attachment, as well as negative actor and partner effects of avoidant attachment on mate retention, were expected. In other words, it was expected that more anxiously attached individuals themselves, as well as their partners, will use mate retention behaviors more frequently. On the other hand, more avoidantly attached individuals themselves, as well as their partners, will use mate retention behaviors less frequently. These hypotheses were partially confirmed. The results showed that the strongest and most consistent effects across both data sources were men’s actor effects on the cost-inflicting mate retention domain, and especially on two mate retention categories, direct guarding, and intersexual negative inducements. Additionally, a consistent positive partner effect of men’s anxious attachment orientations on direct guarding was also obtained. Avoidant attachment orientation exerted few and inconsistent actor and partner effects on mate retention domains and categories. The results are explained by theoretical propositions addressing the effects of attachment orientations on an interpersonal romantic relationship in early adulthood.Keywords: actor and partner effects, attachment orientations, dyadic analysis, mate retention behavior
Procedia PDF Downloads 166283 Effects of AG1 and AG2 QTLs on Rice Seedling Growth and Physiological Processes during Germination in Flooded Soils
Authors: Satyen Mondal, Frederickson Entila, Shalabh Dixit, Pompe C. Sta. Cruz, Abdelbagi M. Ismail
Abstract:
Anaerobic condition caused by flooding during germination in direct seeded rice systems, known as anaerobic germination (AG), severely reduces crop establishment in both rainfed and irrigated areas. Seeds germinating in flooded soils could encounter hypoxia or even anoxia in severe cases, and this hinders germination and seedling growth. This study was conducted to quantify the effects of incorporating two major QTLs, AG1 and AG2, associated with tolerance of flooding during germination and to assess their interactive effects on enhancing crop establishment. A greenhouse experiment was conducted at the International Rice Research Institute (IRRI), Los Baňos, Philippines, using elite lines incorporating AG1, AG2 and AG1+AG2 in the background of the popular varieties PSBRc82 (PSBRc82-AG1, PSBRc82-AG2, PSBRc82-AG1+AG2) and Ciherang-Sub1 (Ciherang-Sub1-AG1, Ciherang-Sub1-AG2, Ciherang-Sub1-AG1+AG2), along with the donors Kho Hlan On (for AG1) and Ma-Zhan Red (AG2) and the recipients PSBRc82 and Ciherang-Sub1. The experiment was conducted using concrete tanks in an RCBD with three replications. Dry seeds were sown in seedling trays then flooded with 10 cm water depth. Seedling survival, root and shoot growth and relative growth rate were measured. The germinating seedlings were used for assaying nonstructural carbohydrate (NSC) and ascorbate concentrations, lipid peroxidation, total phenolic concentration, reactive oxygen species and total amylase enzyme activity. Flooding reduced overall survival, though survival of AG1+AG2 introgression lines was greater than other genotypes. Soluble sugars increased, while starch concentration decreased gradually under flooding especially in the tolerant checks and AG1+AG2 introgression lines. Less lipid peroxidation and higher amylase activity, reduced-ascorbate (RAsA) and total phenolic contents (TPC) were observed in the tolerant checks and in AG1+AG2 introgression lines. Lipid peroxidation correlated negatively with ascorbate and total phenolic concentrations and with reactive oxygen species (ROS). Introgression of AG1+AG2 QTLs upregulated total amylase activity causing rapid starch degradation and increase in ascorbate and total phenolic concentrations resulting in higher germination and seedling growth in flooded soils.Keywords: amylase, anaerobic germination, ascorbate, direct-seeded rice, flooding, lipid peroxidation
Procedia PDF Downloads 274282 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds
Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel
Abstract:
Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.Keywords: biomaterial, chitosan, hybrid, plasma
Procedia PDF Downloads 276281 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits
Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav
Abstract:
The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.Keywords: dove, duck, egret, esophagus, goshawk, kite
Procedia PDF Downloads 439280 Insight2OSC: Using Electroencephalography (EEG) Rhythms from the Emotiv Insight for Musical Composition via Open Sound Control (OSC)
Authors: Constanza Levicán, Andrés Aparicio, Rodrigo F. Cádiz
Abstract:
The artistic usage of Brain-computer interfaces (BCI), initially intended for medical purposes, has increased in the past few years as they become more affordable and available for the general population. One interesting question that arises from this practice is whether it is possible to compose or perform music by using only the brain as a musical instrument. In order to approach this question, we propose a BCI for musical composition, based on the representation of some mental states as the musician thinks about sounds. We developed software, called Insight2OSC, that allows the usage of the Emotiv Insight device as a musical instrument, by sending the EEG data to audio processing software such as MaxMSP through the OSC protocol. We provide two compositional applications bundled with the software, which we call Mapping your Mental State and Thinking On. The signals produced by the brain have different frequencies (or rhythms) depending on the level of activity, and they are classified as one of the following waves: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz). These rhythms have been found to be related to some recognizable mental states. For example, the delta rhythm is predominant in a deep sleep, while beta and gamma rhythms have higher amplitudes when the person is awake and very concentrated. Our first application (Mapping your Mental State) produces different sounds representing the mental state of the person: focused, active, relaxed or in a state similar to a deep sleep by the selection of the dominants rhythms provided by the EEG device. The second application relies on the physiology of the brain, which is divided into several lobes: frontal, temporal, parietal and occipital. The frontal lobe is related to abstract thinking and high-level functions, the parietal lobe conveys the stimulus of the body senses, the occipital lobe contains the primary visual cortex and processes visual stimulus, the temporal lobe processes auditory information and it is important for memory tasks. In consequence, our second application (Thinking On) processes the audio output depending on the users’ brain activity as it activates a specific area of the brain that can be measured using the Insight device.Keywords: BCI, music composition, emotiv insight, OSC
Procedia PDF Downloads 322279 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps
Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe
Abstract:
Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion
Procedia PDF Downloads 166278 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial
Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria
Abstract:
Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders
Procedia PDF Downloads 292277 Organic Farming for Sustainable Production of Some Promising Halophytic Species in Saline Environment
Authors: Medhat Tawfik, Ezzat Abd El Lateef, Bahr Amany, Mohamed Magda
Abstract:
Applying organic farming systems in biosaline agriculture is unconventional approach for sustainable use of marginal soil and desert land for planting non-traditional halophytic crops such as Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens. These plants are highly salt tolerant C4 halophytic forage plants grown well in coastal salt marsh. These halophytic plant will take important place in the farming system, especially in the coastal areas and salt-affected land. We can call it environmentally smart crops because they ensure food security, contribute to energy security, guarantee environmental sustainability, and mitigate the negative impacts of climate change. Organic Agriculture is the most important and widely practiced agro-ecological farming system. It is claimed to be the most sustainable approach and long term adaptation strategy. It promotes soil fertility and diversity at all levels and makes soils less susceptible to erosion. It is also reported to be climate change resilience farming systems as it promotes the proper management of soil, water, biodiversity and local knowledge and provides producers with ecologically sound management decisions. A field experiment was carried out at the Model Farm of National Research Centre, El Tour, South Sinai to study the impact of (Mycorrhiza 1kg/fed., charcoal 4 tons/fed., chicken manure 5 tons/fed., in addition to control treatment) on some growth characters, photosynthetic pigments content, and some physiological aspects i.e. prolind and soluble carbohydrates content, succulence and osmotic pressure values, as well as nutritive values i.e. Crude fat (CF), Acid detergent fiber (ADF), Neutral detergent fiber (NDF), Ether extract (EE) and Nitrogen-free extract (NFE) of five halophytic plant species (Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens). Our results showed that organic fertilizer treatment enhanced all the previous character as compared with control with superiority to chicken manure over the other treatments.Keywords: organic agriculture, halophytic plants, saline environment, water security
Procedia PDF Downloads 225276 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture
Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran
Abstract:
The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development
Procedia PDF Downloads 152275 The Relationship of Depression Risk and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis
Authors: Yu Chen Su
Abstract:
Introduction: Gestational diabetes mellitus (GDM) refers to impaired glucose tolerance in pregnant women, impacting both the mother and newborn with short and long-term effects. It increases risks of preeclampsia, hypertension, type 2 diabetes, cesarean section, and preterm birth. GDM is associated with fetal macrosomia, shoulder dystocia, neonatal hypoglycemia, and future type 2 diabetes risk. A study on 6,421 pregnant women found 12% experienced high stress, linked to maladaptive coping and depressive emotions. Women with high-risk pregnancies may experience greater stress and depression. Research suggests GDM increases depression prevalence. A study on 632 Hispanic women with GDM showed severe stress and depression tendencies. Involving 95 women with GDM, 33.4% exhibited depression symptoms. Another study compared 180 GDM women to 186 with normal glucose levels, revealing higher depression levels in GDM women. They found GDM women were 1.85 times more likely to receive antidepressants during pregnancy and 1.69 times more likely to experience postpartum depression. Maternal stress and depressive symptoms during pregnancy are significant factors. Early identification by healthcare professionals can greatly benefit GDM women, their infants, and their families. Objectives: The purpose of this study was to investigate the association between gestational diabetes mellitus (GDM) and the risk of depression. Methods: This study reviewed and analyzed relevant literature on gestational diabetes mellitus (GDM) and depression in 6,876 patients. The literature search followed PRISMA guidelines and included databases like Embase, PubMed, MEDLINE, CINAHL, and Cochrane Library. Prospective or retrospective studies with relevant risk ratios and estimates were included, using a random-effects model for the analysis of depression risk correlation. Studies without depression data or relevant risks were excluded. The search period extended until October 2022. Results: Systematic review of 7 studies (6,876 participants) found a significant association (OR = 8.77, CI: 7.98-9.64, p < 0.05) between gestational diabetes mellitus (GDM) and higher depression risk compared to healthy pregnant women. Conclusions: Pregnancy is a significant life transition involving physiological, psychological, and social changes. Gestational diabetes poses challenges to women's physical and mental well-being. Sensitive healthcare professionals identifying issues early can greatly benefit women, babies, and the family.Keywords: gestational diabetes, depression, systematic review, neta-analysis
Procedia PDF Downloads 74274 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential
Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen
Abstract:
Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance
Procedia PDF Downloads 393273 Towards Development of Superior Brassica juncea by Pyramiding of Genes of Diverse Pathways for Value Addition, Stress Alleviation and Human Health
Authors: Deepak Kumar, Ravi Rajwanshi, Mohd. Aslam Yusuf, Nisha Kant Pandey, Preeti Singh, Mukesh Saxena, Neera Bhalla Sarin
Abstract:
Global issues are leading to concerns over food security. These include climate change, urbanization, increase in population subsequently leading to greater energy and water demand. Futuristic approach for crop improvement involves gene pyramiding for agronomic traits that empower the plants to withstand multiple stresses. In an earlier study from the laboratory, the efficacy of overexpressing γ-tocopherol methyl transferase (γ-TMT) gene from the vitamin E biosynthetic pathway has been shown to result in six-fold increase of the most biologically active form, the α-tocopherol in Brassica juncea which resulted in alleviation of salt, heavy metal and osmoticum induced stress by the transgenic plants. The glyoxalase I (gly I) gene from the glyoxalase pathway has also been earlier shown by us to impart tolerance against multiple abioitc stresses by detoxification of the cytotoxic compound methylglyoxal in Brassica juncea. Recently, both the transgenes were pyramided in Brassica juncea lines through sexual crosses involving two stable Brassica juncea lines overexpressing γ-TMT and gly I genes respectively. The transgene integration was confirmed by PCR analysis and their mRNA expression was evident by RT-PCR analysis. Preliminary physiological investigations showed ~55% increased seed germination under 200 mM NaCl stress in the pyramided line and 81% higher seed germination under 200 mM mannitol stress as compared to the WT control plants. The pyramided lines also retained more chlorophyll content when the leaf discs were floated on NaCl (200, 400 and 600 mM) or mannitol (200, 400 and 600 mM) compared to the WT control plants. These plants had higher Relative Water Content and greater solute accumulation under stress compared to the parental plants having γ-TMT or the glyI gene respectively. The studies revealed the synergy of two components from different metabolic pathways in enhancing stress hardiness of the transgenic B. juncea plants. It was concluded that pyramiding of genes (γ-TMT and glyI) from diverse pathways can lead to enhanced tolerance to salt and mannitol stress (simulating drought conditions). This strategy can prove useful in enhancing the crop yields under various abiotic stresses.Keywords: abiotic stress, brassica juncea, glyoxalase I, α-tocopherol
Procedia PDF Downloads 549