Search results for: search algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3768

Search results for: search algorithms

2178 The Utilization of Big Data in Knowledge Management Creation

Authors: Daniel Brian Thompson, Subarmaniam Kannan

Abstract:

The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.

Keywords: big data, knowledge management, data driven, knowledge creation

Procedia PDF Downloads 116
2177 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
2176 UPPAAL-based Design and Analysis of Intelligent Parking System

Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif

Abstract:

The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.

Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal

Procedia PDF Downloads 147
2175 Optimization of Process Parameters for Peroxidase Production by Ensifer Species

Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh

Abstract:

Given the high utility of peroxidase in several industrial processes, the search for novel microorganisms with enhanced peroxidase production capacity is of keen interest. This study investigated the process conditions for optimum peroxidase production by Ensifer sp, new ligninolytic proteobacteria with peroxidase production potential. Also, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimum at an initial medium pH 7, incubation temperature of 30 °C and agitation speed of 100 rpm using alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen. Optimum peroxidase production by Ensifer sp. was attained at 48 h with specific productivity of 12.76 ± 1.09 U mg⁻¹. Interestingly, probable laccase production was observed with optimum specific productivity of 12.76 ± 0.45 U mg⁻¹ at 72 h. The highest peroxidase yield was observed with sawdust as solid substrate under solid state fermentation. In conclusion, Ensifer sp. possesses the capacity for enhanced peroxidase production that can be exploited for various biotechnological applications.

Keywords: catalase-peroxidase, enzyme production, peroxidase, polymerase chain reaction, proteobacteria

Procedia PDF Downloads 307
2174 Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics

Authors: Su Mon Saw, Joe Rothnagel

Abstract:

Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics.

Keywords: bioinformatics, HEK293 cells, liquid chromatography-mass spectrometry, ProteinPilot, Strong Cation Exchange Chromatography, SDS-PAGE, sPEPs

Procedia PDF Downloads 188
2173 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 478
2172 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 83
2171 An Algorithm for Removal of Noise from X-Ray Images

Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See

Abstract:

In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.

Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF

Procedia PDF Downloads 383
2170 Intelligent Adaptive Learning in a Changing Environment

Authors: G. Valentis, Q. Berthelot

Abstract:

Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.

Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment

Procedia PDF Downloads 424
2169 Photovoltaic Water Pumping System Application

Authors: Sarah Abdourraziq

Abstract:

Photovoltaic (PV) water pumping system is one of the most used and important applications in the field of solar energy. However, the cost and the efficiency are still a concern, especially with continued change of solar radiation and temperature. Then, the improvement of the efficiency of the system components is a good solution to reducing the cost. The use of maximum power point tracking (MPPT) algorithms to track the output maximum power point (MPP) of the PV panel is very important to improve the efficiency of the whole system. In this paper, we will present a definition of the functioning of MPPT technique, and a detailed model of each component of PV pumping system with Matlab-Simulink, the results shows the influence of the changing of solar radiation and temperature in the output characteristics of PV panel, which influence in the efficiency of the system. Our system consists of a PV generator, a boost converter, a motor-pump set, and storage tank.

Keywords: PV panel, boost converter, MPPT, MPP, PV pumping system

Procedia PDF Downloads 398
2168 Comparative study of the technical efficiency of the cotton farms in the towns of Banikoara and Savalou

Authors: Boukari Abdou Wakilou

Abstract:

Benin is one of West Africa's major cotton-producing countries. Cotton is the country's main source of foreign currency and employment. But it is also one of the sources of soil degradation. The search for good agricultural practices is therefore, a constant preoccupation. The aim of this study is to measure the technical efficiency of cotton growers by comparing those who constantly grow cotton on the same land with those who practice crop rotation. The one-step estimation approach of the stochastic production frontier, including determinants of technical inefficiency, was applied to a stratified random sample of 261 cotton producers. Overall, the growers had a high average technical efficiency level of 90%. However, there was no significant difference in the level of technical efficiency between the two groups of growers studied. All the factors linked to compliance with the technical production itinerary had a positive influence on the growers' level of efficiency. It is, therefore, important to continue raising awareness of the importance of respecting the technical production itinerary and of integrated soil fertility management techniques.

Keywords: technical efficiency, soil fertility, cotton, crop rotation, benin

Procedia PDF Downloads 65
2167 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
2166 The Effectiveness of Prenatal Breastfeeding Education on Breastfeeding Uptake Postpartum: A Systematic Review

Authors: Jennifer Kehinde, Claire O’Donnell, Annmarie Grealish

Abstract:

Introduction: Breastfeeding has been shown to provide numerous health benefits for both infants and mothers. The decision to breastfeed is influenced by physiological, psychological, and emotional factors. However, the importance of equipping mothers with the necessary knowledge for successful breastfeeding practice cannot be ruled out. The decline in global breastfeeding rate can be linked to a lack of adequate breastfeeding education during the prenatal stage. This systematic review examined the effectiveness of prenatal breastfeeding education on breastfeeding uptake postpartum. Method: This review was undertaken and reported in conformity with the Preferred Reporting Items for Systemic Reviews and Meta-Analysis statement (PRISMA) and was registered on the international prospective register for systematic reviews (PROSPERO: CRD42020213853). A PICO analysis (population, intervention, comparison, outcome) was undertaken to inform the choice of keywords in the search strategy to formulate the review question, which was aimed at determining the effectiveness of prenatal breastfeeding educational programs in improving breastfeeding uptake following birth. A systematic search of five databases (Cumulative Index to Nursing and Allied Health Literature, Medline, Psych INFO, and Applied Social Sciences Index and Abstracts) was searched between January 2014 until July 2021 to identify eligible studies. Quality assessment and narrative synthesis were subsequently undertaken. Results: Fourteen studies were included. All 14 studies used different types of breastfeeding programs; eight used a combination of curriculum-based breastfeeding education programs, group prenatal breastfeeding counselling, and one-to-one breastfeeding educational programs, which were all delivered in person; four studies used web-based learning platforms to deliver breastfeeding education prenatally which were both delivered online and face to face over a period of 3 weeks to 2 months with follow-up periods ranging from 3 weeks to 6 months; one study delivered breastfeeding educational intervention using mother-to-mother breastfeeding support groups in promoting exclusive breastfeeding, and one study disseminated breastfeeding education to participants based on the theory of planned behaviour. The most effective interventions were those that included both theory and hands-on demonstrations. Results showed an increase in breastfeeding uptake, breastfeeding knowledge, an increase in a positive attitude to breastfeeding, and an increase in maternal breastfeeding self-efficacy among mothers who participated in breastfeeding educational programs during prenatal care. Conclusion: Prenatal breastfeeding education increases women’s knowledge of breastfeeding. Mothers who are knowledgeable about breastfeeding and hold a positive approach towards breastfeeding have the tendency to initiate breastfeeding and continue for a lengthened period. Findings demonstrate a general correlation between prenatal breastfeeding education and increased breastfeeding uptake postpartum. The high level of positive breastfeeding outcomes inherent in all the studies can be attributed to prenatal breastfeeding education. This review provides rigorous contemporary evidence that healthcare professionals and policymakers can apply when developing effective strategies to improve breastfeeding rates and ultimately improve the health outcomes of mothers and infants.

Keywords: breastfeeding, breastfeeding programs, breastfeeding self-efficacy, prenatal breastfeeding education

Procedia PDF Downloads 84
2165 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 555
2164 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm

Authors: Galu Papy Yuma

Abstract:

This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.

Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation

Procedia PDF Downloads 449
2163 The Urban Project: Metropolization Tool and Sustainability Vector - Case of Constantine

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad, Chouabbia Khedidja

Abstract:

Cities grow, large or small; they seek to gain a place in the market competition, which talks to sell a product that is the city itself. The metropolis are large cities enjoying a legal status and assets providing their dominions elements on a territory larger than their range, do not escape this situation. Thus, the search for promising tool metropolises better development and durability meet the challenges as economic, social and environmental is timely. The urban project is a new way to build the city; it is involved in the metropolises of two ways, either to manage the crisis and to meet the internal needs of the metropolis, or by creating a regional attractiveness with their potential. This communication will address the issue of urban project as a tool that has and should find a place in the panoply of existing institutional tools. Based on the example of the modernization project of the metropolis of eastern Algeria "Constantine", we will examine what the urban project can bring to a city, the extent of its impact but also the relationship between the visions actors so metropolization a success.

Keywords: urban project, metropolis, institutional tools, Constantine

Procedia PDF Downloads 403
2162 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
2161 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 124
2160 The Incident of Concussion across Popular American Youth Sports: A Retrospective Review

Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin H. McCleery

Abstract:

Introduction: A leading cause of emergency room visits among youth (in the United States), is sports-related traumatic brain injuries. Mild traumatic brain injuries (mTBIs), also called concussions, are caused by linear and/or angular acceleration experienced at the head and represent an increasing societal burden. Due to the developing nature of the brain in youth, there is a great risk for long-term neuropsychological deficiencies following a concussion. Accordingly, the purpose of this paper is to investigate incidence rates of concussion across gender for the five most common youth sports in the United States. These include basketball, track and field, soccer, baseball (boys), softball (girls), football (boys), and volleyball (girls). Methods: A PubMed search was performed for four search themes combined. The first theme identified the outcomes (concussion, brain injuries, mild traumatic brain injury, etc.). The second theme identified the sport (American football, soccer, basketball, softball, volleyball, track, and field, etc.). The third theme identified the population (adolescence, children, youth, boys, girls). The last theme identified the study design (prevalence, frequency, incidence, prospective). Ultimately, 473 studies were surveyed, with 15 fulfilling the criteria: prospective study presenting original data and incidence of concussion in the relevant youth sport. The following data were extracted from the selected studies: population age, total study population, total athletic exposures (AE) and incidence rate per 1000 athletic exposures (IR/1000). Two One-Way ANOVA and a Tukey’s post hoc test were conducted using SPSS. Results: From the 15 selected studies, statistical analysis revealed the incidence of concussion per 1000 AEs across the considered sports ranged from 0.014 (girl’s track and field) to 0.780 (boy’s football). Average IR/1000 across all sports was 0.483 and 0.268 for boys and girls, respectively; this difference in IR was found to be statistically significant (p=0.013). Tukey’s post hoc test showed that football had significantly higher IR/1000 than boys’ basketball (p=0.022), soccer (p=0.033) and track and field (p=0.026). No statistical difference was found for concussion incidence between girls’ sports. Removal of football was found to lower the IR/1000 for boys without a statistical difference (p=0.101) compared to girls. Discussion: Football was the only sport showing a statistically significant difference in concussion incidence rate relative to other sports (within gender). Males were overall more likely to be concussed than females when football was included (1.8x), whereas concussion was more likely for females when football was excluded. While the significantly higher rate of concussion in football is not surprising because of the nature and rules of the sport, it is concerning that research has shown higher incidence of concussion in practices than games. Interestingly, findings indicate that girls’ sports are more concussive overall when football is removed. This appears to counter the common notion that boys’ sports are more physically taxing and dangerous. Future research should focus on understanding the concussive mechanisms of injury in each sport to enable effective rule changes.

Keywords: gender, football, soccer, traumatic brain injury

Procedia PDF Downloads 141
2159 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain

Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai

Abstract:

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation

Procedia PDF Downloads 269
2158 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 120
2157 Using the Cluster Computing to Improve the Computational Speed of the Modular Exponentiation in RSA Cryptography System

Authors: Te-Jen Chang, Ping-Sheng Huang, Shan-Ten Cheng, Chih-Lin Lin, I-Hui Pan, Tsung- Hsien Lin

Abstract:

RSA system is a great contribution for the encryption and the decryption. It is based on the modular exponentiation. We call this system as “a large of numbers for calculation”. The operation of a large of numbers is a very heavy burden for CPU. For increasing the computational speed, in addition to improve these algorithms, such as the binary method, the sliding window method, the addition chain method, and so on, the cluster computer can be used to advance computational speed. The cluster system is composed of the computers which are installed the MPICH2 in laboratory. The parallel procedures of the modular exponentiation can be processed by combining the sliding window method with the addition chain method. It will significantly reduce the computational time of the modular exponentiation whose digits are more than 512 bits and even more than 1024 bits.

Keywords: cluster system, modular exponentiation, sliding window, addition chain

Procedia PDF Downloads 522
2156 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 53
2155 Discovering the Real Psyche of Human Beings

Authors: Sheetla Prasad

Abstract:

The objective of this study is ‘discovering the real psyche of human beings for prediction of mode, direction and strength of the potential of actions of the individual. The human face was taken as a source of central point to search for the route of real psyche. Analysis of the face architecture (shape and salient features of face) was done by three directional photographs ( 600 left and right and camera facing) of human beings. The shapes and features of the human face were scaled in 177 units on the basis of face–features locations (FFL). The mathematical analysis was done of FFLs by self developed and standardized formula. At this phase, 800 samples were taken from the population of students, teachers, advocates, administrative officers, and common persons. The finding shows that real psyche has two external rings (ER). These ER are itself generator of two independent psyches (manifested and manipulated). Prima-facie, it was proved that micro differences in FFLs have potential to predict the state of art of the human psyche. The potential of psyches was determined by the saving and distribution of mental energy. It was also mathematically proved.

Keywords: face architecture, psyche, potential, face functional ratio, external rings

Procedia PDF Downloads 505
2154 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang

Abstract:

The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.

Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking

Procedia PDF Downloads 92
2153 AI In Health and Wellbeing - A Seven-Step Engineering Method

Authors: Denis Özdemir, Max Senges

Abstract:

There are many examples of AI-supported apps for better health and wellbeing. Generally, these applications help people to achieve their goals based on scientific research and input data. Still, they do not always explain how those three are related, e.g. by making implicit assumptions about goals that hold for many but not for all. We present a seven-step method for designing health and wellbeing AIs considering goal setting, measurable results, real-time indicators, analytics, visual representations, communication, and feedback. It can help engineers as guidance in developing apps, recommendation algorithms, and interfaces that support humans in their decision-making without patronization. To illustrate the method, we create a recommender AI for tiny wellbeing habits and run a small case study, including a survey. From the results, we infer how people perceive the relationship between them and the AI and to what extent it helps them to achieve their goals. We review our seven-step engineering method and suggest modifications for the next iteration.

Keywords: recommender systems, natural language processing, health apps, engineering methods

Procedia PDF Downloads 165
2152 The Algorithmic Dilemma: Virtue Development in the Midst of Role Conflict and Role Ambiguity in Platform Work

Authors: Thumesha Jayatilake

Abstract:

As platform work continues to proliferate, algorithmic management, which takes care of its operational role, poses complex challenges, including job satisfaction, worker involvement, ethical decision-making, and worker well-being. This conceptual paper scrutinizes how algorithmic management influences virtue development among platform workers, with an emphasis on the effects of role conflict and role ambiguity. Using an interdisciplinary approach, the research elucidates the complex relationship between algorithmic management systems and the ethical dimensions of work. The study also incorporates the interplay of human interaction and short-term task orientation, thus broadening the understanding of the impacts of algorithmic management on virtue development. The findings have significant implications for policymakers, academics, and industry practitioners, illuminating the ethical complexities presented by the use of algorithms in modern employment settings.

Keywords: algorithmic management, ethics, platform work, virtue

Procedia PDF Downloads 73
2151 Screening of New Antimicrobial Agents from Heterocyclic Derivatives

Authors: W. Mazari, K. Boucherit, Z. Boucherit-Otmani, M. N. Rahmoun, M. Benabdallah

Abstract:

The hospital or any other establishment of care can be considered as an ecosystem where the patient comes into contact with a frightening microbial universe and a risk to contract infection that is referred to as nosocomial or health care-associated. In these last years, the incidence of these infections has risen sharply. Several microorganisms are the cause of these nosocomial infections and the emergence of resistance of the microbial strains against antibiotics creates a danger to public health. The search for new antimicrobial agents to overcome this problem has produced interesting compounds through chemical synthesis, which plays a very important role in the research and discovery of new drugs. It is in this framework that our study was conducted at our laboratory and it involves evaluating the antibacterial activity of thirteen 2-pyridone derivatives synthesized by two methods, the diffusion disc method and the dilution method against eight Gram negative bacterial strains. The results seem interesting especially for two products that have shown the best activities against Escherichia coli ATCC 25922 and Enterobacter cloacae ATCC 13047 with CMI of 512µg/ml.

Keywords: heterocyclic derivatives, chemical synthesis, antimicrobial activity, biotechnology

Procedia PDF Downloads 367
2150 Trust Management for an Authentication System in Ubiquitous Computing

Authors: Malika Yaici, Anis Oussayah, Mohamed Ahmed Takerrabet

Abstract:

Security of context-aware ubiquitous systems is paramount, and authentication plays an important aspect in cloud computing and ubiquitous computing. Trust management has been identified as vital component for establishing and maintaining successful relational exchanges between trading partners in cloud and ubiquitous systems. Establishing trust is the way to build good relationship with both client and provider which positive activates will increase trust level, otherwise destroy trust immediately. We propose a new context-aware authentication system using a trust management system between client and server, and between servers, a trust which induces partnership, thus to a close cooperation between these servers. We defined the rules (algorithms), as well as the formulas to manage and calculate the trusting degrees depending on context, in order to uniquely authenticate a user, thus a single sign-on, and to provide him better services.

Keywords: ubiquitous computing, authentication, context-awareness, trust management

Procedia PDF Downloads 243
2149 Beyond the Beep: Optimizing Flight Controller Performance for Reliable Ultrasonic Sensing

Authors: Raunak Munjal, Mohammad Akif Ali, Prithiv Raj

Abstract:

This study investigates the relative effectiveness of various flight controllers for drone obstacle avoidance. To assess ultrasonic sensors' performance in real-time obstacle detection, they are integrated with ESP32 and Arduino Nano controllers. The study determines which controller is most effective for this particular application by analyzing important parameters such as accuracy (mean absolute error), standard deviation, and mean distance range. Furthermore, the study explores the possibility of incorporating state-driven algorithms into the Arduino Nano configuration to potentially improve obstacle detection performance. The results offer significant perspectives for enhancing sensor integration, choosing the best flight controller for obstacle avoidance, and maybe enhancing drones' general environmental navigation ability.

Keywords: ultrasonic distance measurement, accuracy and consistency, flight controller comparisons, ESP32 vs arduino nano

Procedia PDF Downloads 58