Search results for: jasmonic acid defence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3399

Search results for: jasmonic acid defence

1869 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 296
1868 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography

Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias

Abstract:

In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.

Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA

Procedia PDF Downloads 313
1867 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 430
1866 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 111
1865 Increased Expression Levels of Soluble Epoxide Hydrolase in Obese and Its Modulation by Physical Exercise

Authors: Abdelkrim Khadir, Sina Kavalakatt, Preethi Cherian, Ali Tiss

Abstract:

Soluble epoxide hydrolase (sEH) is an emerging therapeutic target in several chronic states that have inflammation as a common underlying cause such as immunometabolic diseases. Indeed, sEH is known to play a pro-inflammatory role by metabolizing anti-inflammatory, epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. Recently, it was shown sEH to be linked to diet and microbiota interaction in rat models of obesity. Nevertheless, the functional contribution of sEH and its anti-inflammatory substrates EETs in obesity remain poorly understood. In the current study, we compared the expression pattern of sEH between lean and obese nondiabetic human subjects using subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs). Using RT-PCR, western blot and immunofluorescence confocal microscopy, we show here that the level of sEH mRNA and protein to be significantly increased in obese subjects with concomitant increase in endoplasmic reticulum (ER) stress components (GRP78 and ATF6α) and inflammatory markers (TNF-α, IL-6) when compared to lean controls. The observation that sEH was overexpressed in obese subjects’ prompt us to investigate whether physical exercise could reduce its expression. In this study, we report here 3-months supervised physical exercise significantly attenuated the expression of sEH in both the SAT and PBMCs, with a parallel decrease in the expression of ER stress markers along with attenuated inflammatory response. On the other hand, homocysteine, a sulfur containing amino acid deriving from the essential amino acid methionine was shown to be directly associated with insulin resistance. When 3T3-L1 preadipocytes cells were treated with homocysteine our results show increased sEH levels along with ER stress markers. Collectively, our data suggest that sEH upregulation is strongly linked to ER stress in adiposity and that physical exercise modulates its expression. This gives further evidence that exercise might be useful as a strategy for managing obesity and preventing its associated complications.

Keywords: obesity, adipose tissue, epoxide hydrolase, ER stress

Procedia PDF Downloads 122
1864 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: dental materials, polymers, strength, biomaterials

Procedia PDF Downloads 418
1863 Exploring Emerging Viruses From a Protected Reserve

Authors: Nemat Sokhandan Bashir

Abstract:

Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.

Keywords: wild, plant, novel, metagenomics

Procedia PDF Downloads 55
1862 Metal Extraction into Ionic Liquids and Hydrophobic Deep Eutectic Mixtures

Authors: E. E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M. F. Volia, C. M. Folden III

Abstract:

Room temperature ionic liquids (RTILs) are a class of liquid organic salts with melting points below 20 °C that are considered to be environmentally friendly ‘designers’ solvents. Pure hydrophobic ILs are known to extract metallic species from aqueous solutions. The closest analogues of ionic liquids are deep eutectic solvents (DESs), which are a eutectic mixture of at least two compounds with a melting point lower than that of each individual component. DESs are acknowledged to be attractive for organic synthesis and metal processing. Thus, these non-volatile and less toxic compounds are of interest for critical metal extraction. The US Department of Energy and the European Commission consider indium as a key metal. Its chemical homologue, thallium, is also an important material for some applications and environmental safety. The aim of this work is to systematically investigate In and Tl extraction from aqueous solutions into pure fluorinated ILs and hydrophobic DESs. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. The extraction efficiency of the TlXz3–z anionic species (where X = Cl– and/or Br–) is greater for ionic liquids with more hydrophobic cations. Unexpectedly high distribution ratios (> 103) of Tl(III) were determined even by applying a pure ionic liquid as receiving phase. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the co-extraction of two different anionic species, and the relative contributions of each mechanism have been determined. The first evidence of indium extraction into new quaternary ammonium- and menthol-based hydrophobic DESs from hydrochloric and oxalic acid solutions with distribution ratios up to 103 will be provided. Data obtained allow us to interpret the mechanism of thallium and indium extraction into ILs and DESs media. The understanding of Tl and In chemical behavior in these new media is imperative for the further improvement of separation and purification of these elements.

Keywords: deep eutectic solvents, indium, ionic liquids, thallium

Procedia PDF Downloads 222
1861 Effects of Spirulina Platensis Powder on Nutrition Value, Sensory and Physical Properties of Four Different Food Products

Authors: Yazdan Moradi

Abstract:

Spirulina platensis is a blue-green microalga with unique nutrient content and has many nutritional and therapeutic effects that are used to enrich various foods. The purpose of this research was to investigate the effect of Spirulina platensis microalgae on the nutritional value and sensory and physical properties of four different cereal-based products. For this purpose, spirulina microalgae dry powder with amounts of 0.25, 0.5, 0.75, and 1 is added to the formula of pasta, bulk bread, layered sweets, and cupcakes. A sample without microalgae powder of each product is also considered as a control. The results showed that adding Spirulina powder to the formulation of selected foods significantly changed the nutrition value and sensory and physical characteristics. Comparison to control protein increased in the samples containing spirulina powder. The increase in protein was about 1, 0.6, 1.2 and 1.1 percent in bread, cake, layered sweets and Pasta, respectively. The iron content of samples, including Spirulina, also increased. The increase was 0.6, 2, 5 and 18 percent in bread, cake, layered sweets and Pasta respectively. Sensory evaluation analysis showed that all products had an acceptable acceptance score. The instrumental analysis of L*, a*, and b* color indices showed that the increase of spirulina caused green color in the treatments, and this color change is more significant in the bread and pasta samples. The results of texture analysis showed that adding spirulina to selected food products reduces the hardness of the samples. No significant differences were observed in fat content in samples, including spirulina samples and control. However, fatty acid content and a trace amount of EPA found in samples included 1% spirulina. Added spirulina powder to food ingredients also changed the amino acid profile, especially essential amino acids. An increase of histidine, isoleucine, leucine, tryptophan, and valine in samples, including Spirulina was observed.

Keywords: spirulina, nutrition, Alge, iron, food

Procedia PDF Downloads 5
1860 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers

Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh

Abstract:

Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.

Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers

Procedia PDF Downloads 184
1859 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: crystalline TiO2, sonochemical mechanism, sol-gel reaction, XRD

Procedia PDF Downloads 437
1858 The Effect of Parameters on Production of NİO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: F. Sevim, E. Sevimli, F. Demir, T. Çalban

Abstract:

For the first time, nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters of 500 nm could be successfully obtained. The fibers were characterized by TG/DTA, FT-IR, XRD and SEM analyses.

Keywords: nano fibers, NiO/Al2O3/B2O3/SiO2 composite, sol-gel processing, electro spinning

Procedia PDF Downloads 318
1857 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 262
1856 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 239
1855 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 265
1854 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Alec Chabwinja, Cannan Tawonezvi, Jerneja Vidmar, Constance Chingwaru, Walter Chingwaru

Abstract:

Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: lactic acid bacteria, Staphylococcus aureus, Streptococcus spp, yeast, inhibition, acid tolerance

Procedia PDF Downloads 390
1853 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 178
1852 Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity

Authors: Tia Kristian Tajnšek, Matjaž Mazaj, Nataša Zabukovec Logar

Abstract:

Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material.

Keywords: ascorbic acid, bioMOF, MOF, optimization, synthesis, zinc ascorbate

Procedia PDF Downloads 120
1851 Management of Hypoglycemia in Von Gierke’s Disease

Authors: Makda Aamir, Sood Aayushi, Syed Omar, Nihan Khuld, Iskander Peter, Ijaz Naeem, Sharma Nishant

Abstract:

Introduction:Glycogen Storage Disease Type-1 (GSD-1) is a rare phenomenon primarily affecting the liver and kidney. Excessive accumulation of glycogen and fat in liver, kidney, and intestinal mucosa is noted in patients with deficiency of Glucose-6-phosphatase deficiency. Patients with GSD-1 have a wide spectrum of symptoms, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Age of onset, rate of disease progression and its severity is variable in this disease.Case:An 18-year-old male with GSD-1a, Von Gierke’s disease, hyperuricemia, and hypertension presented to the hospital with nausea and vomiting. The patient followed an hourly cornstarch regimen during the day and overnight through infusion via a PEG tube. The complaints started at work, where he was unable to tolerate oral cornstarch. He washemodynamically stable on arrival. ABG showed pH 7.372, PaCO2 30.3, and PaO2 92.2. WBC 16.80, K+ 5.8, HCO3 13, BUN 28, Cr 2.2, Glucose 60, AST 115, ALT 128, Cholesterol 352, Triglycerides >1000, Uric Acid 10.6, Lactic Acid 11.8 which trended down to 8.0. CT abdomen showed hepatomegaly and fatty infiltration with the PEG tube in place.He was admitted to the ICU and started on D5NS for hypoglycemia and lactic acidosis. Per request by the patient’s pediatrician, he was transitioned to IV D10/0.45NS at 110mL/Hr to maintain blood glucose above 75 mg/L. Frequent accuchecks were done till he could tolerate his dietary regimen with cornstarch. Lactic acid downtrend to 2.9, and accuchecks ranged between 100-110. Cr improved to 1.3, and his home medications (Allopurinol and Lisinopril) were resumed. He was discharged in stable condition with plans for further genetic therapy work up.Discussion:Mainstay therapy for Von Gierke’s Disease is the prevention of metabolic derangements for which dietary and lifestyle changes are recommended. A low fructose and sucrose diet is recommended by limiting the intake of galactose and lactose to one serving per day. Hypoglycemia treatment in such patients is two-fold, utilizing both quick and stable release sources. Cornstarch has been one such therapy since the 1980s; its slow digestion provides a steady release of glucose over a longer period of time as compared with other sources of carbohydrates. Dosing guidelines vary from age to age and person to person, but it is highly recommended to check BG levels frequently to maintain a BG > 70 mg/dL. Associated high levels of triglycerides and cholesterol can be treated with statins, fibrates, etc. Conclusion:The management of hypoglycemia in GSD 1 disease presents various obstacles which could prove to be fatal. Due to the deficiency of G6P, treatment with a specialized hypoglycemic regimen is warranted. A D10 ½ NS infusion can be used to maintain blood sugar levels as well as correct metabolic or lactate imbalances. Infusion should be gradually weaned off after the patient can tolerate oral feeds as this can help prevent the risk of hypoglycemia and other derangements. Further research is needed in regards to these patients for more sustainable regimens.

Keywords: von gierke, glycogen storage disease, hypoglycemia, genetic disease

Procedia PDF Downloads 89
1850 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 372
1849 The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta

Authors: Trieu Anh Ngoc, Nguyen Quang Kim

Abstract:

Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta.

Keywords: sediment transport, sea level rise, climate change, Mike Model

Procedia PDF Downloads 256
1848 Nutritional Evaluation of Sea Buckthorn “Hippophae rhamnoides” Berries and the Pharmaceutical Potential of the Fermented Juice

Authors: Sobhy A. El-Sohaimy, Mohamed G. Shehata, Ashwani Mathur, Amira G. Darwish, Nourhan M. Abd El-Aziz, Pammi Gauba, Pooja Upadhyay

Abstract:

Sea buckthorn is a temperate bush plant native to Asian and European countries, explored across the world in traditional medicine to treat various diseases due to the presence of an exceptionally high content of phenolics, flavonoids and antioxidants. In addition to the evaluation of nutrients and active compounds, the focus of the present work was to assess the optimal levels for L. plantarum RM1 growth by applying response surface methodology (RSM), and to determine the impact of juice fermentation on antioxidant, anti-hypertension and anticancer activity, as well as on organoleptic properties. Sea buckthorn berries were shown to contain good fiber content (6.55%, 25 DV%), high quality of protein (3.12%, 6.24 DV%) containing: histidine, valine, threonine, leucine and lysine (with AAS 24.32, 23.66, 23.09, 23.05 and 21.71%, respectively), and 4.45% sugar that pro- vides only 79 calories. Potassium was shown to be the abundant mineral content (793.43%, 22.66 DV), followed by copper and phosphorus (21.81 and 11.07 DV%, respectively). Sea buckthorn juice exhibited a rich phenolic, flavonoid and carotenoid content (283.58, 118.42 and 6.5 mg/g, respec- tively), in addition to a high content of vitamin C (322.33 mg/g). The HPLC profile indicated that benzoic acid is the dominant phenolic compound in sea buckthorn berries (3825.90 mg/kg). Antiox- idant potentials (DPPH and ABTS) of sea buckthorn showed higher inhibition than ascorbic acid. Antimicrobial potentials were most pronounced against Escherichia coli BA12296 (17.46 mm). The probiotic growth was 8.5 log cfu/mL, with juice concentration, inoculum size and temperature as the main contributors to probiotic growth with a 95% confidence level. Fermentation of sea buck- thorn juice with L. plantarum RM1 enhanced the functional phenolic and flavonoid content, as well as antioxidant and antimicrobial activities. The fermentation with L. plantarum RM1 enhanced the anti-hypertension and anticancer properties of the sea buckthorn juice and gained consumers’ sensorial overall acceptance.

Keywords: sea buckthorn juice, L. plantarum RM1, fermentation, antioxidant, antimicrobial, angiotensin converting enzyme inhibition

Procedia PDF Downloads 73
1847 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model

Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche

Abstract:

Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.

Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins

Procedia PDF Downloads 279
1846 Effect of Chemical Modification of Functional Groups on Copper(II) Biosorption by Brown Marine Macroalgae Ascophyllum nodosum

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The principal mechanism of metal ions sequestration by brown algae involves the formation of complexes between the metal ion and functional groups present on the cell wall of the biological material. To understand the role of functional groups on copper(II) uptake by Ascophyllum nodosum, some functional groups were chemically modified. The esterification of carboxylic groups was carried out by suspending the biomass in a methanol/HCl solution under stirring for 48 h and the blocking of the sulfonic groups was performed by repeating the same procedure for 4 cycles of 48 h. The methylation of amines was conducted by suspending the biomass in a formaldehyde/formic acid solution under shaking for 6 h and the chemical modification of sulfhydryl groups on the biomass surface was achieved using dithiodipyridine for 1 h. Equilibrium sorption studies for Cu2+ using the raw and esterified algae were performed at pH 2.0 and 4.0. The experiments were performed using an initial copper concentration of 300 mg/L and algae dose of 1.0 g/L. After reaching the equilibrium, the metal in solution was quantified by atomic absorption spectrometry. The biological material was analyzed by Fourier Transform Infrared Spectroscopy and Potentiometric Titration techniques for functional groups identification and quantification, respectively. The results using unmodified algae showed that the maximum copper uptake capacity at pH 4.0 and 2.0 was 1.17 and 0.52 mmol/g, respectively. At acidic pH values most carboxyl groups are protonated and copper sorption suffered a significant reduction of 56%. Blocking the carboxylic, sulfonic, amines and sulfhydryl functional groups, copper uptake decreased by 24/26%, 69/81%, 1/23% and 40/27% at pH 2.0/4.0, respectively, when compared to the unmodified biomass. It was possible to conclude that the carboxylic and sulfonic groups are the main functional groups responsible for copper binding (>80%). This result is supported by the fact that the adsorption capacity is directly related to the presence of carboxylic groups of the alginate polymer, and the second most abundant acidic functional group in brown algae is the sulfonic acid of fucoidan that contributes, to a lower extent, to heavy metal binding, particularly at low pH.

Keywords: biosorption, brown marine macroalgae, copper, ion-exchange

Procedia PDF Downloads 307
1845 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch

Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale

Abstract:

Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.

Keywords: blend, compatibilizer, polyethylene, thermoplastic starch

Procedia PDF Downloads 421
1844 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 93
1843 Antioxidant Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthium

Authors: Hallal Nouria, Kharoubi Omar

Abstract:

Wormwood (Artemisia absinthium L.) is a medicinal and aromatic bitter herb, which has been used as a medicine from ancient times. It has traditionally been used as anthelmintic, choleretic, antiseptic, balsamic, depurative, digestive, diuretic, emmenagogue and in treating leukemia and sclerosis. The species was cited to be used externally as cataplasm of crushed leaves for snake and scorpion bites or decoction for wounds and sores applied locally as antiseptic and antifungal. Wormwood extract have high contents of total phenolic compounds and total flavonoids indicating that these compounds contribute to antiradical and antioxidative activity. Most of the degenerative diseases are caused by free radicals. Antioxidants are the agents responsible for scavenging free radicals. The aim of present study was to evaluate the phytochemical and in vitro antioxidant properties of Wormwood extract. DPPH assay and reducing power assay were the method adopted to study antioxidant potentials of extracts. Standard methods were used to screen preliminary phytochemistry and quantitative analysis of tannin, phenolics and flavanoids. Aqueous and alcoholic extracts were showed good antioxidant effect with IC50 ranges from 62 μg/ml for aqueous and 116μg/ml for alcoholic extracts. Phenolic compounds, tannins and flavonoids were the major phytochemicals present in both the extracts. Percentage of inhibition increased with the increased concentration of extracts. The aqueous and alcoholic extract yielded 20, 15& 3, 59 mg/g gallic acid equivalent phenolic content 2, 78 & 1,83 mg/g quercetin equivalent flavonoid and 2, 34 & 6, 40 g tannic acid equivalent tannins respectively. The aqueous and methanol extracts of the aerial parts showed a positive correlation between the total phenolic content and the antioxidant activity measured in the plant samples. The present study provides evidence that both extracts of Artemisia absinthium is a potential source of natural antioxidant.

Keywords: pharmaceutical industries, medicinal and aromatic plant, antioxidants, phenolic compounds, Artemisia absinthium

Procedia PDF Downloads 415
1842 Developing Manufacturing Process for the Graphene Sensors

Authors: Abdullah Faqihi, John Hedley

Abstract:

Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.

Keywords: laser scribing, lightscribe DVD, graphene oxide, scanning electron microscopy

Procedia PDF Downloads 97
1841 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 339
1840 Hypolipidemic and Antioxidant Effects of Mycelial Polysaccharides from Calocybe indica in Hyperlipidemic Rats Induced by High-Fat Diet

Authors: Govindan Sudha, Mathumitha Subramaniam, Alamelu Govindasamy, Sasikala Gunasekaran

Abstract:

The aim of this study was to investigate the protective effect of Hypsizygus ulmarius polysaccharides (HUP) on reducing oxidative stress, cognitive impairment and neurotoxicity in D-galactose induced aging mice. Mice were subcutaneously injected with D-galactose (150 mg/kg per day) for 6 weeks and were administered HUP simultaneously. Aged mice receiving vitamin E (100 mg/kg) served as positive control. Chronic administration of D-galactose significantly impaired cognitive performance oxidative defence and mitochondrial enzymes activities as compared to control group. The results showed that HUP (200 and 400 mg/kg) treatment significantly improved the learning and memory ability in Morris water maze test. Biochemical examination revealed that HUP significantly increased the decreased activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), mitochondrial enzymes-NADH dehydrogenase, malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH), Na+K+, Ca2+, Mg2+ATPase activities, elevated the lowered total anti-oxidation capability (TAOC), glutathione (GSH), vitamin C and decreased the raised acetylcholinesterase (AChE) activities, malondialdehyde (MDA), hydroperoxide (HPO), protein carbonyls (PCO), advanced oxidation protein products (AOPP) levels in brain of aging mice induced by D-gal in a dose-dependent manner. In conclusion, present study highlights the potential role of HUP against D-galactose induced cognitive impairment, biochemical and mitochondrial dysfunction in mice. In vitro studies on the effect of HUP on scavenging DPPH, ABTS, DMPD, OH radicals, reducing power, B-carotene bleaching and lipid peroxidation inhibition confirmed the free radical scavenging and antioxidant activity of HUP. The results suggest that HUP possesses anti-aging efficacy and may have potential in treatment of neurodegenerative diseases.

Keywords: aging, antioxidants, mushroom, neurotoxicity

Procedia PDF Downloads 500