Search results for: shape evolution
2508 Emerging Threats and Adaptive Defenses: Navigating the Future of Cybersecurity in a Hyperconnected World
Authors: Olasunkanmi Jame Ayodeji, Adebayo Adeyinka Victor
Abstract:
In a hyperconnected world, cybersecurity faces a continuous evolution of threats that challenge traditional defence mechanisms. This paper explores emerging cybersecurity threats like malware, ransomware, phishing, social engineering, and the Internet of Things (IoT) vulnerabilities. It delves into the inadequacies of existing cybersecurity defences in addressing these evolving risks and advocates for adaptive defence mechanisms that leverage AI, machine learning, and zero-trust architectures. The paper proposes collaborative approaches, including public-private partnerships and information sharing, as essential to building a robust defence strategy to address future cyber threats. The need for continuous monitoring, real-time incident response, and adaptive resilience strategies is highlighted to fortify digital infrastructures in the face of escalating global cyber risks.Keywords: cybersecurity, hyperconnectivity, malware, adaptive defences, zero-trust architecture, internet of things vulnerabilities
Procedia PDF Downloads 192507 Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films
Authors: Rabah Bensaha, Badreddine Toubal
Abstract:
We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni.Keywords: Co-Ni co-doped, anatase TiO2, ferromagnetic, sol-gel method, thin films
Procedia PDF Downloads 4422506 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim
Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park
Abstract:
Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb
Procedia PDF Downloads 7302505 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1452504 Numerical Analysis of the Flow Characteristics Around a Deformable Vortex Generator
Authors: Aimad Koulali
Abstract:
Flow structure evolution around a single pair of Delta vortex generators (VGs) is studied numerically. For laminar, transient, and turbulent flow regimes, numerical simulations have been performed in a duct with a pair of Delta vortex generators. The finiteelementmethodwasused to simulate the flow. To formulate the fluid structure interaction problem, the ALE formulation was used. The aim of this study is to provide a detailed insight into the generation and dissipation of longitudinal vortices over a wide range of flow regimes, including the laminar-turbulent transition. A wide range of parameters has been exploited to describe the inducedphenomenawithin the flow. Weexaminedvariousparametersdepending on the VG geometry, the flow regime, and the channel geometry. A detailed analysis of the turbulence and wall shear stress properties has been evaluated. The results affirm that there are still optimal values to obtain better performing vortices in order to improve the exchange performance.Keywords: finte element method, deformable vortex generator, numerical analysis, fluid structure interaction, ALE formlation, turbulent flow
Procedia PDF Downloads 982503 Thermodynamic Optimization of an R744 Based Transcritical Refrigeration System with Dedicated Mechanical Subcooling Cycle
Authors: Mihir Mouchum Hazarika, Maddali Ramgopal, Souvik Bhattacharyya
Abstract:
The thermodynamic analysis shows that the performance of the R744 based transcritical refrigeration cycle drops drastically for higher ambient temperatures. This is due to the peculiar s-shape of the isotherm in the supercritical region. However, subcooling of the refrigerant at the gas cooler exit enhances the performance of the R744 based system. The present study is carried out to analyze the R744 based transcritical system with dedicated mechanical subcooling cycle. Based on this proposed cycle, the thermodynamic analysis is performed, and optimum operating parameters are determined. The amount of subcooling and the pressure ratio in the subcooling cycle are the parameters which are needed to be optimized to extract the maximum COP from this proposed cycle. It is expected that this study will be helpful in implementing the dedicated subcooling cycle with R744 based transcritical system to improve the performance.Keywords: optimization, R744, subcooling, transcritical
Procedia PDF Downloads 3042502 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando
Abstract:
Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.Keywords: olive stone, combustion, reaction rate, fluidized bed
Procedia PDF Downloads 1982501 From E-Government to Cloud-Government Challenges of Jordanian Citizens' Acceptance for Public Services
Authors: Abeer Alkhwaldi, Mumtaz Kamala
Abstract:
On the inception of the third millennium, there is much evidence that cloud technologies have become the strategic trend for many governments not only developed countries (e.g., UK, Japan, and USA), but also developing countries (e.g. Malaysia and the Middle East region), who have launched cloud computing movements for enhanced standardization of IT resources, cost reduction, and more efficient public services. Therefore, cloud-based e-government services considered as one of the high priorities for government agencies in Jordan. Although of their phenomenal evolution, government cloud-services still suffering from the adoption challenges of e-government initiatives (e.g. technological, human-aspects, social, and financial) which need to be considered carefully by governments contemplating its implementation. This paper presents a pilot study to investigate the citizens' perception of the extent in which these challenges affect the acceptance and use of cloud computing in Jordanian public sector. Based on the data analysis collected using online survey some important challenges were identified. The results can help to guide successful acceptance of cloud-based e-government services in Jordan.Keywords: challenges, cloud computing, e-government, acceptance, Jordan
Procedia PDF Downloads 4352500 Speech Motor Processing and Animal Sound Communication
Authors: Ana Cleide Vieira Gomes Guimbal de Aquino
Abstract:
Sound communication is present in most vertebrates, from fish, mainly in species that live in murky waters, to some species of reptiles, anuran amphibians, birds, and mammals, including primates. There are, in fact, relevant similarities between human language and animal sound communication, and among these similarities are the vocalizations called calls. The first specific call in human babies is crying, which has a characteristic prosodic contour and is motivated most of the time by the need for food and by affecting the puppy-caregiver interaction, with a view to communicating the necessities and food requests and guaranteeing the survival of the species. The present work aims to articulate speech processing in the motor context with aspects of the project entitled emotional states and vocalization: a comparative study of the prosodic contours of crying in human and non-human animals. First, concepts of speech motor processing and general aspects of speech evolution will be presented to relate these two approaches to animal sound communication.Keywords: speech motor processing, animal communication, animal behaviour, language acquisition
Procedia PDF Downloads 872499 12x12 MIMO Terminal Antennas Covering the Whole LTE and WiFi Spectrum
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A broadband resonant terminal antenna has been developed. It can be used in different MIMO arrangements such as 2x2, 4x4, 8x8, or even 12x12 MIMO configurations. The antenna covers the whole LTE and WiFi bands besides the existing 2G/3G bands (700-5800 MHz), without using any matching/tuning circuits. Matching circuits significantly reduce the efficiency of any antenna and reduce the battery life. They also reduce the bandwidth because they are frequency dependent. The antenna can be implemented in smartphone handsets, tablets, laptops, notebooks or any other terminal. It is also suitable for different IoT and vehicle applications. The antenna is manufactured from a flexible material and can be bent or folded and shaped in any form to fit any available space in any terminal. It is self-contained and does not need to use the ground plane, the chassis or any other component of the terminal. Hence, it can be mounted on any terminal at different positions and configurations. Its performance does not get affected by the terminal, regardless of its type, shape or size. Moreover, its performance does not get affected by the human body of the terminal’s users. Because of all these unique features of the antenna, multiples of them can be simultaneously used for MIMO diversity coverage in any terminal device with a high isolation and a low correlation factor between them.Keywords: IOT, LTE, MIMO, terminal antenna, WiFi
Procedia PDF Downloads 1852498 Quality Management and Service Organization
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.Keywords: quality, control, service, management, teamwork
Procedia PDF Downloads 512497 The Relationship between Confidence, Accuracy, and Decision Making in a Mobile Review Program
Authors: Carla Van De Sande, Jana Vandenberg
Abstract:
Just like physical skills, cognitive skills grow rusty over time unless they are regularly used and practiced, so academic breaks can have negative consequences on student learning and success. The Keeping in School Shape (KiSS) program is an engaging, accessible, and cost-effective intervention that harnesses the benefits of retrieval practice by using technology to help students maintain proficiency over breaks from school by delivering a daily review problem via text message or email. A growth mindset is promoted through feedback messages encouraging students to try again if they get a problem wrong and to take on a challenging problem if they get a problem correct. This paper reports on the relationship between confidence, accuracy, and decision-making during the implementation of the KiSS Program at a large university during winter break for students enrolled in an engineering introductory Calculus course sequence.Keywords: growth mindset, learning loss, on-the-go learning, retrieval practice
Procedia PDF Downloads 2042496 The Effect of Fast Food Globalisation on Students’ Food Choice
Authors: Ijeoma Chinyere Ukonu
Abstract:
This research seeks to investigate how the globalisation of fast food has affected students’ food choice. A mixed method approach was used in this research; basically involving quantitative and qualitative methods. The quantitative method uses a self-completion questionnaire to randomly sample one hundred and four students; while the qualitative method uses a semi structured interview technique to survey four students on their knowledge and choice to consume fast food. A cross tabulation of variables and the Kruskal Wallis nonparametric test were used to analyse the quantitative data; while the qualitative data was analysed through deduction of themes, and trends from the interview transcribe. The findings revealed that globalisation has amplified the evolution of fast food, popularising it among students. Its global presence has affected students’ food choice and preference. Price, convenience, taste, and peer influence are some of the major factors affecting students’ choice of fast food. Though, students are familiar with the health effect of fast food and the significance of using food information labels for healthy choice making, their preference of fast food is more than homemade food.Keywords: fast food, food choice, globalisation, students
Procedia PDF Downloads 2892495 Inherent Relation Between Atomic-Level Stresses and Nanoscale Spatial Heterogeneity in a Rejuvenated Bulk Metallic Glass
Authors: Majid Samavatian, Reza Gholamipour, Vahid Samavatian
Abstract:
This study addresses the role of rejuvenation on the fluctuation of atomic-level stresses and nanoscale topological heterogeneity in ZrCuNiAl bulk metallic glass (BMG). Based on atomic force microscopy (AFM) results, the rejuvenation process leads to an increase in nanoscale spatial heterogeneity manifested by the intensification of the local viscoelastic response of the BMG nanostructure. It means that the rejuvenation process induces more loose-packing structures which behave towards an external load in a viscoelastic way. Hence, it is suggested that the alteration of such heterogeneity may be attributed to the variation of positional atomic rearrangement during the evolution of structural rejuvenation. On the other side, the synchrotron X-ray diffraction (XRD) results indicate that the rejuvenation intensifies the variation of internal stresses at the atomic level. This conclusion unfolds that the increase of atomic-level stresses during rejuvenation induces structural disordering and nanoscale heterogeneity in the amorphous material.Keywords: bulk metallic glass, heterogeneity, rejuvenation, nanostructure
Procedia PDF Downloads 1432494 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System
Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López
Abstract:
Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring
Procedia PDF Downloads 2442493 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire
Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz
Abstract:
This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.Keywords: Fire for Effect, Application, Fire Control, Interpolation method, Software development.
Procedia PDF Downloads 3172492 Prerequisites for the Acquisition of Mammalian Pathogenicity by Influenza A Virus with a Prototypic Avian PB2 Gene
Authors: Chung-Young Lee, Se-Hee Ahn, Ilhwan Kim, Du-Min Go, Dae-Yong Kim, Jun-Gu Choi, Youn-Jeong Lee, Jae-Hong Kim, Hyuk-Joon Kwon
Abstract:
The polymerase of avian influenza A virus (AIV) is a heterotrimer composed of PB2, PB1 and PA. PB2 plays a role in overcoming the host barrier; however, the genetic prerequisites for avian PB2 to acquire mammalian pathogenic mutations have not been well elucidated. Here, we demonstrated that key amino acid mutations (I66M, I109V and I133V, collectively referred to as MVV) of prototypic avian PB2 increase the replication efficiency of recombinant PR8 virus carrying the mutated PB2 in both avian and mammalian hosts. The MVV mutations caused no weight loss in mice, but they did allow replication in infected lungs, and the viruses acquired fatal mammalian pathogenic mutations such as Q591R/K, E627K, or D701N in the infected lungs. The MVV mutations are located at the interfaces of the trimer and are predicted to increase the strength of this structure. Thus, gaining MVV mutations might be the first step for AIV to acquire mammalian pathogenicity. These results provide new insights into the evolution of AIV in birds and mammals.Keywords: avian influenza A virus, prototypic PB2, polymerase activity, mammalian pathogenicity, first-step mutations
Procedia PDF Downloads 3442491 Investigations on the Fatigue Behavior of Welded Details with Imperfections
Authors: Helen Bartsch, Markus Feldmann
Abstract:
The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.Keywords: effective notch stress, fatigue, fatigue design, weld imperfections
Procedia PDF Downloads 2562490 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility
Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah
Abstract:
Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis
Procedia PDF Downloads 1252489 Karyotyping the Date Palm (Phoenix dactylifera L.)
Authors: Abdullah M. Alzahrani
Abstract:
The karyotypes of Khalas (KH), Sukkary (SK), Sheeshi (SS), Shibeebi (SB) and Sillije (SJ) date palm cultivars were investigated. Data showed no variation in chromosome number, 2n = 36, 34 autosomes in addition to XX in females and XY in males. Mean autosomes length ranged from 3.85-9.93 μm and 3.71-2.73 μm for X and Y chromosomes, respectively. The formula of female date palm karyotype was 8m + 4sm +2st + 4t, and submedian Y chromosome. Relative chromosome length ranged from 3.3- 9.38 μm. SS cultivar showed high asymmetry levels by scoring low values of Syi (45.51), TF (42.8) and high values for A1 (0.53), A (0.41) and AI (0.29). Syi developed an inverse relation with A1 and A while A exhibited a direct correlation with A1. Cultivars SK, SB and SJ score medium values of Syi, A1, AI and A. KH cultivar exhibited high symmetry by scoring highest values of Syi (53.68), TF (51.81) and lowest values of A1 (0.44), A (0.34) and AI (0.18). Higher DI value was obtained in SB cultivar (1.34) followed by SJ (1.15) and low DI scores of 0.99, 0.86 and 0.71 were detected in KH, SS and SK, respectively. Stebbins classification assorted SS as 3B and the other cultivars as 2B, insuring the evolution and asymmetry of SS compared to the other karyotypes. Scatter diagram of Syi-A1 couple has the advantage of revealing high degree of sensitivity to present karyotype interrelationships, followed by AI-A and CVCL-CVCI couples.Keywords: Karyotype, date palm, Khalas, Sukkary, Sheeshi
Procedia PDF Downloads 3672488 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element
Procedia PDF Downloads 1612487 The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall
Authors: A. Arabzadeh, H. R. Kazemi Nia Korrani
Abstract:
Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency.Keywords: composite shear wall, opening, finite element method, modal analysis
Procedia PDF Downloads 5392486 Measure the Gas to Dust Ratio Towards Bright Sources in the Galactic Bulge
Authors: Jun Yang, Norbert Schulz, Claude Canizares
Abstract:
Knowing the dust content in the interstellar matter is necessary to understand the composition and evolution of the interstellar medium (ISM). The metal composition of the ISM enables us to study the cooling and heating processes that dominate the star formation rates in our Galaxy. The Chandra High Energy Transmission Grating (HETG) Spectrometer provides a unique opportunity to measure element dust compositions through X-ray edge absorption structure. We measure gas to dust optical depth ratios towards 9 bright Low-Mass X-ray Binaries (LMXBs) in the Galactic Bulge with the highest precision so far. Well calibrated and pile-up free optical depths are measured with the HETG spectrometer with respect to broadband hydrogen equivalent absorption in bright LMXBs: 4U 1636-53, Ser X-1, GX 3+1, 4U 1728-34, 4U 1705-44, GX 340+0, GX 13+1, GX 5-1, and GX 349+2. From the optical depths results, we deduce gas to dust ratios for various silicates in the ISM and present our results for the Si K edge in different lines of sight towards the Galactic Bulge.Keywords: low-mass X-ray binaries, interstellar medium, gas to dust ratio, spectrometer
Procedia PDF Downloads 1422485 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate
Authors: Anahita Aris
Abstract:
Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams
Procedia PDF Downloads 2182484 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation
Authors: Lassaad Smirani
Abstract:
In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A
Procedia PDF Downloads 3932483 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling
Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim
Abstract:
Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force
Procedia PDF Downloads 3872482 Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding
Authors: Ehsan Gholami, Vincent Demers
Abstract:
Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.Keywords: binder, feedstock, moldability, powder injection molding, viscosity
Procedia PDF Downloads 2712481 Anodization-Assisted Synthesis of Shape-Controlled Cubic Zirconia Nanotubes
Authors: Ibrahim Dauda Muhammad, Mokhtar Awang
Abstract:
To synthesize a specific phase of zirconia (ZrO₂) nanotubes, zirconium (Zr) foil was subjected to the anodization process in a fluorine-containing electrochemical bath for a fixed duration. The resulting zirconia nanotubes (ZNTs) were then characterized using various techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The XRD diffraction pattern confirmed that the ZNTs were crystalline, with a predominant texture along the [111] direction, indicating that the majority of the phase was cubic. TEM images revealed that most of the nanotubes were vertically aligned and self-organized, with diameters ranging from 32.9 to 38.8 nm and wall thicknesses between 3.0 and 7.3 nm. Additionally, the synthesized ZNTs had a length-to-width ratio of 235, which closely matches the ratio of 240 observed in another study where anodization was not used. This study demonstrates that a specific phase of zirconia nanotube can be successfully synthesized, with promising potential applications in catalysis and other areas.Keywords: zirconia nanotubes, anodization, characterization, cubic phase
Procedia PDF Downloads 152480 Packaging in the Design Synthesis of Novel Aircraft Configuration
Authors: Paul Okonkwo, Howard Smith
Abstract:
A study to estimate the size of the cabin and major aircraft components as well as detect and avoid interference between internally placed components and the external surface, during the conceptual design synthesis and optimisation to explore the design space of a BWB, was conducted. Sizing of components follows the Bradley cabin sizing and rubber engine scaling procedures to size the cabin and engine respectively. The interference detection and avoidance algorithm relies on the ability of the Class Shape Transform parameterisation technique to generate polynomial functions of the surfaces of a BWB aircraft configuration from the sizes of the cabin and internal objects using few variables. Interference detection is essential in packaging of non-conventional configuration like the BWB because of the non-uniform airfoil-shaped sections and resultant varying internal space. The unique configuration increases the need for a methodology to prevent objects from being placed in locations that do not sufficiently enclose them within the geometry.Keywords: packaging, optimisation, BWB, parameterisation, aircraft conceptual design
Procedia PDF Downloads 4622479 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment
Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo
Abstract:
In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning
Procedia PDF Downloads 35